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Abstract

Using different experimental techniques we visualize a cloud of gas in water that is produced

electrochemically by the alternating polarity process. Liquid enriched with gas does not con-

tain bubbles strongly scattering visible light but its refractive index changes significantly

near the electrodes. The change of the refractive index is a collective effect of bulk nanobub-

bles with a diameter smaller than 200 nm. Any alternative explanation fails to explain the

magnitude of the effect. Spatial structure of the cloud is investigated with the optical lever

method. Its dynamics is visualised observing optical distortion of the electrode images or

using differential interference contrast method. The cloud covers concentric electrodes, in

a steady state it is roughly hemispherical with a size two times larger than the size of the

electrode structure. When the electrical pulses are switched off the cloud disappears in less

than one second. The total concentration of gases can reach very high value estimated as

3.5 × 1020 cm−3 that corresponds to an effective supersaturation of 500 and 150 for hydro-

gen and oxygen, respectively.

Introduction

Nanobubbles (NBs) are nanoscopic gaseous domains than can exist on solid surfaces or in the

bulk of liquids. They attracted significant attention in the last decade [1–3] due to their long-

time stability and high potential for applications. The NBs can be applied for nanocsopic clean-

ing [4–7], for control of boundary slip in microfluidics [8, 9], for wastewater treatment [10,

11], for heterocoagulation [12, 13], and for medical applications [14, 15]. An extensive litera-

ture exists on the surface NBs (see, for example, [2]), which were observed using different

experimental methods. On the contrary, the bulk NBs are investigated much less.

Ohgaki et al. [16] produced the bulk NBs mechanically with a rotary pump reaching a

rather high effective supersaturation (36 for nitrogen) and related reduction of the liquid den-

sity. The effective supersaturation counts the gas dissolved in the liquid so as the gas collected

in small bubbles. The bubbles were visualized by scanning electron microscopy from freeze-

fracture replicas. Detailed size distribution of oxygen NBs was determined by dynamic light

scattering (DLS) by Ushikubo et al. [17] for smaller effective supersaturation 4–5. Bunkin et al.
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[18] observed NBs in sodium chloride solutions by DLS, phase microscopy, and polarimetric

scatterometry and have been able to distinct latex particles from NBs. Yurchenko et al. [19]

proposed that charges on the gas-water interface are responsible for exceptional stability of the

NBs. In a series of papers by Kikuchi et al. [20–24] hydrogen and oxygen NBs were produced

by the electrochemical process and investigated for a relatively small supersaturation of about

2. A cloud of O2 NBs around hydrophilic particles was observed with synchrotron technique

by Pan et al. [25]. Although these bubbles are the surface NBs, it is the first time when a local-

ized cloud of NBs is mentioned.

Extremely high effective supersaturation� 1000 was reached in alternating polarity (AP)

electrolysis of water (see [26] for a review) when polarity of electrodes is interchanged with a

frequency of the order of 100 kHz. The reason for this level of supersaturation is much larger

Faraday current density jF � 100 A/cm2 than that for normal electrolysis performed by DC

voltage (jF< 1 A/cm2 [27]). High supersaturation helps to overcome the nucleation barrier

resulting in homogeneous nucleation of the bubbles on the time scale shorter than 10 μs [28].

Only NBs are formed because no scattering of visible light is observed but a significant gas

concentration was confirmed by different methods [29, 30]. It has to be stressed that high

effective supersaturation can be supported due to high Laplace pressure in NBs. Moreover,

these bubbles must be bulk NBs otherwise all the electrodes would be covered with gas and

the current would stop. Because of fast change of polarity the high supersaturation with both

hydrogen and oxygen gases exists above the same electrode. In this situation bubbles contain-

ing hydrogen, oxygen, or mixture of gases can be formed. The NBs produced in this way show

very fast dynamics in comparison with the mechanical or normal electrolysis methods men-

tioned above.

The reason for the fast dynamics is not different physical properties of the bubbles but

rather ability of the gases to interact. A significant part of the gases disappears in phase with

the change of polarity [29, 30] as oscillations of the refractive index show. This observation was

explained as spontaneous reaction between H2 and O2 gases inside of NBs. Normally, the gases

cannot interact spontaneously at room temperature but in the NBs, where the surface-to-vol-

ume ratio is large, some surface channels for the reaction can be opened [31]. Generation of

free radicals was already observed in water containing shrinking microbubbles filled with air,

oxygen, or ozone in absence of external dynamic stimuli [32, 33].

The NBs containing only hydrogen or only oxygen are collected in the system. They pro-

duce overpressure in a microchamber closed with a flexible membrane. The overpressure

was measured using the calibrated membrane deflection [30]. When the electrochemical

current is switched off the overpressure relaxes in a few hundreds of microseconds suggest-

ing that NBs containing H2 merge with those containing O2 and disappear in the reaction.

If the overpressure becomes large (comparable with 1 bar), short-lived microbubles

(MBs) visualized with a stroboscope appear in the chamber [34]. They live just a few micro-

seconds and disappear with a significant energy release. In an open system these MBs were

accompanied by clicking sounds and their dynamics was investigated with a fast camera

[35]. These phenomena are well described by the combustion of gases inside of MBs. To

produce a MB with a stoichiometric mixture of gases many NBs have to coalesce. For this

the NBs have to be packed so densely that they practically touch each other. It was assumed

in [34, 35] that such a state of liquid densely packed with NBs exists but it was not observed

directly.

In this paper we investigate a state of liquid highly supersaturated with hydrogen and oxy-

gen gases. With different experimental techniques we probe a cloud of gas above the electrodes

and demonstrate that it can be controlled by electrical means. We argue that the gas in the

cloud exists in the form of NBs.

Electrically controlled cloud of bulk nanobubbles in water solutions
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Experimental section

Sodium sulfate solution in Milli-Q water (15 g of Na2SO4 per 100 g H2O) is used as the electro-

lyte. In contrast with previous works where platinum [34] or copper [35] electrodes were used,

in this experiment we sputter the electrodes containing three layers on an oxidized Si-wafer.

The electrodes consist of a 10 nm Ti adhesion layer, 500 nm Al layer, and 100 nm Ti layer on

top of the “sandwich”. Such electrodes can be used in the electrolysis for a long time without

significant reduction of their properties.

The electrodes were patterned using a standard lithography (photoresist Microposit S1813,

thickness 1.5 μm). Circular shape of the electrodes provides a better localisation of the gas pro-

duced by the electrochemical process. The internal electrode has a diameter of 300 μm and the

external diameter of the structure is 700 μm. The contact lines originally insulated by the pho-

toresist are covered additionally by a compound Omnivisc 1050 to provide better chemical

resistivity.

Square voltage pulses of alternating polarity are applied to the electrodes from an external

generator. One electrode is grounded while the other one is at a positive or negative potential

with respect to ground. The frequencies of the pulses in the experiments are f = 100, 200, and

400 kHz. We use continuously generated pulses, continuous pulses modulated by a sawtooth

function, and series consisting of a fixed number of pulses. All electrical signals are recorded

by a PicoScope 5000.

Optical distortion. A sample with the electrodes is fixed in a Petri dish and covered with

2–3 mm of the electrolyte. To observe optical distortion of the electrodes produced by the

cloud (see S1 Video) we apply to the electrodes the pulses with an amplitude of U = 10 V and a

frequency of f = 200 kHz. The video shows 3 series of pulses, each series contains 800 000 peri-

ods (one positive plus one negative pulses). Each series is triggered manually. The electrodes

were observed in a microscope Mitutoyo FS70 (objective 10X EO M Plan Apo, long working

distance, infinity corrected, numerical aperture 0.28, focus distance 20 mm, working distance

33.5 mm) with a mounted camera Nikon 1 J4 to record videos at a frame rate of 60 fps. A simi-

lar video was made with a thin (150 μm) glass floating above the electrodes to avoid possible

surface buckling.

Optical lever. Optical lever method allows investigation of a space distribution of the

gas cloud around the electrodes. The scheme of measurements is presented in Fig 1. The

sample is fixed at the bottom of a specially made transparent cuvette with dimensions of

2 × 3 × 3 cm3. A laser beam (λ = 632 nm) passes through the cuvette parallel to the sample

surface and is focused in the liquid volume. If the beam passes through the cloud, it is

deflected due to the change of the refractive index of the liquid enriched with the gas. This

deflection is measured by a four-section photodiode (PD). The cuvette with the sample

can be moved independently along all three axis. By moving the cuvette along the laser

beam (X axis) one can align the beam waist above the central electrode. Choosing the verti-

cal position of the cuvette (Z axis) we can probe the cloud on different distances from the

sample. A minimal vertical distance of 500 μm between the focal spot and the sample is lim-

ited by spurious reflections. The Z coordinate can be chosen with an accuracy of 2 μm

within the range of 2 mm.

When the cuvette moves in Y direction, the beam waist scans above the electrode structure.

The deflection of the beam is an integral effect of the change of the refractive index along the

beam but the main contribution comes from the region nearby the beam waist. The beam

passed through the cuvette is collected by a focusing lens on the PD. Scanning in the Y direc-

tion is realized by an electrodynamic driver, which gives smooth, well controllable, and repeat-

able motion.

Electrically controlled cloud of bulk nanobubbles in water solutions
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Differential interference contrast. Differential interference contrast (DIC) microscopy

uses [36] two mutually coherent orthogonally polarized beams, which are slightly displaced

spatially at the sample plane. When the beams are combined an interference pattern depends

on the optical path difference in the direction of the displacement. Therefore, DIC converts

the gradient in the optical path into the amplitude difference that can significantly improve

contrast. This method is appropriate for visualisation of the gas distribution in dynamics.

The AP voltage pulses were modulated by the sawtooth signal with a period of 5 s to observe

the dynamics of the gas distribution. In this case the concentration of the gas increases, reaches

a maximum, and decreases again. The interference pattern is observed in white incoherent

light with a Nomarski objective 10x. The displacement of the two orthogonally polarized

images was 30 μm. The phase difference between the two images is encoded in the colormap

(period λ/2). Since DIC is sensitive to only one direction of the phase gradient, the images

were obtained for two orthogonal orientations of a splitting prism in the Nomarski objective.

Vibrometer. Short-time dynamics of the cloud can be visualised with a laser Doppler vib-

rometer, which measures the rate of change of the phase difference between the beam passed

through the liquid and reflected from the sample and the reference beam reflected from a ref-

erence mirror within the instrument. We use a Polytec MSA-400 instrument. The laser beam

(λ = 632 nm) with a spot size of � 5 μm is focused on the sample. A series of pulses are applied

to the sample and the voltage, current, and vibrometer signal are recorded synchronously. We

Fig 1. Scheme of the optical lever experiment. A transparent cuvette is mounted on a 3D stage and filled with the electrolyte. The sample

with the electrodes is fixed at the bottom of the cuvette. A laser beam parallel to the sample surface is focused in the neighborhood of the

electrodes. Deflection of the beam due to presence of the gas-enriched cloud is picked up by a four-section photodiode.

https://doi.org/10.1371/journal.pone.0181727.g001

Electrically controlled cloud of bulk nanobubbles in water solutions
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used different number of pulses � 1000 and the beam is focused in different points on the

structure to probe the gas concentration locally.

It has to be noted that interpretation of the vibrometer data is not straightforward and has

to be taken with care. This is because not only change in the refractive index but also move-

ment of the liquid both give contribution to the signal. On the time scale > 1 ms it is impossi-

ble to separate the two contributions.

Results

Application of a constant potential to the electrodes results in the formation of titanium oxide

on the positive electrode, which reduces the current and the electrochemical process stops.

The oxide gives gold or copper-like color to the anode that is explained by the light interfer-

ence rather than stoichiometric defects in the oxide [37]. Application of the AP pulses revives

the electrochemical process since cathode and anode interchange with a high frequency.

The AP voltage pulses and the corresponding current response are shown in Fig 2 for

U = 10 V and f = 200 kHz. In previous investigations of the AP regime, where Pt, Au, Cu,

or W electrodes were used, each current pulse was well fitted by the time dependence [28]

I(t) = IF + I1e − t/τ, where IF is the Faraday current and the second term describes the charging-

discharging effects with a relaxation time τ. For Ti/Al electrodes this is not exactly the case as

one can see in Fig 2(d). The three parametric fit is not good probably due to the formation and

dissolution of titanium oxide, which also contributes to the current. Roughly IF is estimated as

60 mA.

All the experimental methods described in this paper visualise the change in the refractive

index n around the electrodes. Although we are not able to observe individual NBs due to fast

dynamics, it is possible to make a definite statement that the change in n is induced by the gas

presenting in liquid in the form of the NBs. This statement is based on the following experi-

mental facts: (i) observed n is always smaller than the refractive index of the solution ns; (ii) the

difference ns − n is so large (up to 0.26) that it can be explained only by a significant amount of

gas densely packed in NBs; (iii) absence of scattering of the visible light shows that the gas is

collected in nanoobjects with a size smaller than 200 nm; (iv) the local temperature near the

electrodes increases not more than 6.5˚C that excludes vapor as a possible origin of the refrac-

tive index change. The data supporting these facts are discussed below.

To relate the change in the refractive index to a volume fraction of inclusions fi (gas in our

case) we are using the Bruggeman effective medium approximation (see, for example, [38]). It

deals with the dielectric constants of the inclusions εi, of the solution εs, and of the effective

medium ε, which are related by the equation

fi
εi � ε
εi þ 2ε

þ ð1 � fiÞ
εs � ε
εs þ 2ε

¼ 0: ð1Þ

The refractive index is expressed via the dielectric constant as n ¼
ffiffiffi
ε
p

. In the visible light

we can take for 1 mol/L Na2SO4 solution ns� 1.35. If we consider gas as the inclusions, then

ni = 1 and an approximate solution of Eq (1) is

ns � n � 0:352 fg : ð2Þ

It holds true with a precision of 10−3 not only for small volume fractions of gas but for any fg.

Optical distortion experiment

S1 Video demonstrates the change in the optical image of the electrodes when three series of

AP pulses shown in Fig 2 are applied to the electrodes. No visible bubbles are produced during

Electrically controlled cloud of bulk nanobubbles in water solutions
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the experiment (each series is 4 s long) but we can observe the distortion of the electrode

images. Fig 3(a) is a snapshot of the electrodes in the very beginning of the third series at

t = 15 s but panel (b) shows the same electrodes at t = 17.6 s. First, one can notice that the

diameter of the central electrode is slightly smaller in panel (b). The variation of the diameter

is especially well visible in the video. Second, the central electrode in (b) is out of focus as one

can see in the insets between the panels. Fig 3(c) shows the relative change of the diameter D of

the central electrode ΔD/Dwith time. Each series of pulses results in the decrease of the visible

electrode size up to 4.5% and when the series is over the size gets back to its original value. Var-

iation of the size for the third series of pulses is zoomed in panel (d). After 2.5 s the size satu-

rates at some value. After the last pulse the size returns to its original value faster than in 1 s.

The circles defining the peripheral electrode also shrink but in less degree than the central elec-

trode as can be seen in panel (d).

The strongest distortion is observed in the center of the structure and it becomes smaller to

the periphery. The effect can be explained by the gas generated in the electrochemical process.

We can imagine that the gas produced by the process is distributed in a cloud of a lens-like

shape: the layer in the center is thicker than the layer at the periphery. The refractive index of

this lens is smaller than that for the surrounding liquid. One would see a similar situation

examining an object via a plano-concave lens: the imaginary image of the electrodes would

Fig 2. Applied voltage pulses and current response at U = 10 V and f = 200 kHz. (a) Three series of rectangular voltage pulses applied

to the electrodes. Only enveloping line is shown. (b) Enveloping line for the current response. The inset shows the increase of the current

amplitude with time for the third series of pulses. (c) Time resolved separate voltage pulses near t0 = 2 s (indicated by the blue arrow). (d)

Time resolved current pulses near t0 = 2 s (indicated by the red arrow).

https://doi.org/10.1371/journal.pone.0181727.g002

Electrically controlled cloud of bulk nanobubbles in water solutions
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look smaller than it is. An alternative explanation could be that the surface of liquid rises up

above the electrodes. This possibility can be excluded since we observe the same situation

when a glass is floating above the electrodes.

To estimate the amount of gas that can produce this level of distortion let us assume that

the gas-enriched layer above the center of the electrode structure has a thickness h. From a

simple geometrical optics one can deduce the relation between the relative change of the diam-

eter and the refractive index of the layer (see S1 Appendix)

DD
D
¼ �
ðM þ 1Þh

l1

1

n
�

1

ns

� �

; ð3Þ

where l1� 33.5 mm is the distance between the object and objective and M = 10 is the magnifi-

cation of the objective. To reproduce the observed ΔD the thickness of the gas-enriched layer

has to be in the interval hmin< h<H, where H is the thickness of the liquid layer above the

electrodes and hmin is the smallest possible thickness corresponding to the smallest possible

value of n. Of course, the lower limit n = 1 (pure gas) cannot be reached in the experiment since

we do not observe microbubbles as in [34, 35]. The smallest n one can estimate as follows. Sup-

pose that the gas in liquid is collected in clusters (nanobubbles) approximately of similar size.

Fig 3. Distortion of the electrodes produced by three series of pulses at U = 10 V and f = 200 kHz. (a) A snapshot of the electrodes in

the very beginning of the third series at t = 15 s. (b) The same electrodes 2.6 s later. The central areas within the dashed squares in (a) and

(b) are shown as insets in between the panels. (c) The relative change ΔD/D in the diameter of the central electrode as a function of time. (d)

The same change but only for the third series of pulses (starts at t = 15 s, ends at t = 19 s). The internal circle (electrode) is shown by the

black open circles, the middle circle is presented by the blue squares, and the external circle (on the external electrode) is shown by the red

triangles.

https://doi.org/10.1371/journal.pone.0181727.g003
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Due to surface tension these clusters are spherical. The maximal volume fraction of gas in such

a system is given by the fraction of close-packing of equal spheres that is fg� 0.74. The corre-

sponding minimal value of the refractive index is nmin = 1.09. Using this nmin and the observed

value ΔD/D� 0.045 we find from Eq (3) hmin� 780 μm. As the ultimate upper limit we use

H< (3 − 0.5 − 0.1) mm that is the maximal liquid layer minus the thickness of the substrate

and the sticking tape. It corresponds to the maximal refractive index nmax = 1.25. Thus, accord-

ing to Eq (2) the volume fraction of gas in the liquid has to be in the range 0.28< fg< 0.74.

It is natural to assume that the optical distortion is due to the gas produced by the electro-

chemical process. However, one could imaging an alternative explanation when the Faraday

current heats up the liquid locally that results in the change of the refractive index. Since the

conductivity of electrolytes depends linearly on temperature it can be used to estimate the

local temperature near the electrodes. The amplitude of the current is related to the tempera-

ture increase ΔT as I = I0(1 + αΔT), where α� 0.024 K−1 [30] is the thermal coefficient for

1 mol/L solution of Na2SO4. As one can see from Fig 2 the current increases slightly during

0.3 s after switching on the pulses, but then it reaches a steady state. The local temperature

increase is estimated from the inset in Fig 2 as ΔT� 6.5˚ K. This temperature rise is small

enough to exclude a significant volume fraction of vapor, which could influence the refractive

index. On the other hand, temperature increase of the solution on 6.5˚ K will reduce the refrac-

tive index less than 0.001 [39], while the observed value is more than 0.1.

If we increase the amplitude of the driving voltage above 12 V, clearly audible clicking

sounds will appear, which were described earlier [35] for similar circular electrodes but made

from copper. In this case the gas fraction in the electrolyte reaches a critical value fg = 0.74,

when many gaseous clusters merge. The stroboscope images [34] or fast camera videos [35]

show the formation of microbubbles, which exist very short time (microseconds) and disap-

pear with a significant release of energy. A manifestation of this energy release is the clicking

sound.

Optical lever experiment

The optical lever experiment gives information on the space structure of the gas cloud around

the electrodes. It is known that for a nonhomogeneous medium the beam is deflected in the

direction of a larger refractive index. In this experiment the laser beam is going parallel to the

sample surface at some vertical distance from this surface and the beam scans along Y direc-

tion (see Fig 1). When the beam crosses the cloud it always deflects outward. The deflection is

measured by the four-section PD. The segments denoted as “Up”, “Down”, “Left”, and “Right”

correspond to the direction of the beam deflection relative to the undeflected beam. If there is

no cloud the beam incident on the center of the PD on the gap between the segments. The cen-

ter of the electrodes is chosen as the origin of the coordinate system. When the beam crosses

the cloud the PD signal emerges sequentially in “Left”, “Up”, and “Right” segments (the beam

moves in the positive direction of Y axis). In all cases the signal of the PD responsible for the

beam defection towards the sample (segment “Down”) does not change and remains within

the noise level. Sectors “Left” and “Right” have their maxima at the distances +250 μm and

−250 μm from the center, respectively, indicating a finite size of the cloud. We define the edges

of the cloud as the distance where the signal of “Left” and “Right” sectors is half of the maxi-

mum that is 500–600 μm. Sector “Up” has the maximal signal in the center of the electrode

structure. The total lateral size of the cloud at the height h = 500 μm is estimated as L = 1000–

1200 μm that is in agreement with what we observe with the optical distortion method.

The deflection data are shown in Fig 4. In panels (a)-(c) the signal is obtained for distances

between the beam and substrate equal to h = 500, 600, and 700 μm, respectively. One can see

Electrically controlled cloud of bulk nanobubbles in water solutions
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that the magnitude of all the signals is slowly reduced with the increasing distance. When the

distance is above 1000 μm the signals drops down fast (see S1 Fig). The noise for all the PD seg-

ments is shown in panel (d). Of course, representation of the cloud as a spherical cap with a

constant concentration of gas as shown in Fig 1 is a simplification but our data show that it

can be considered as a reasonable starting guess.

To estimate a homogeneous refractive index n of the cloud we present it as a hemispheri-

cal one that is not far from what we observe. The radius of this hemisphere is estimated as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ L2=4

p
¼ 700 � 800 μm for h = 500 μm. Using the geometric optics we can relate,

for example, the displacement of the laser spot on the “Up” segment of the PD Δx with the

change of the refractive index Δn = ns − n as (see S1 Appendix)

Dn �
Dxl2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðh=RÞ2
q

2l1ðl � l2Þðh=RÞ
; ð4Þ

where R is the radius of the cloud, h is the vertical distance from the beam to the substrate in

the center of the electrode structure, l1 = 30 mm is the distance between the waist of the

Fig 4. Signal from the PD sections when the laser beam is scanning along Y direction (see Fig 1). (a) Signal from “Left” section as a

function of Y-coordinate. The signal is shown for three different heights (Z-coordinates) of the beam above the sample. (b) The signal from

“Up” section for the same three heights. (c) The signal from the “Right” section for the same heights. (d) Noise in the system (no pulses

applied). The signal from “Down” section is always within the noise.

https://doi.org/10.1371/journal.pone.0181727.g004
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beam and the condensing lens, l2 = 60 mm is the distance between the lens and the image of

the waist, and l = 210 mm is the distance between the lens and the PD. The displacement Δx
is determined from the voltage on the PD as one can see in the calibration curves shown in

S2 Fig. For h = 500 μm it is Δx� 400 μm. Using the indicated numbers we find Δn� 0.003

that corresponds to the fraction of gas volume in the electrolyte fg� 0.01. Note that the opti-

cal lever method is able to show only excessive gases (above the saturation level) in the liquid.

The amount of generated gas is smaller than that in the optical distortion case because much

smaller Faraday current IF � 2 mA is passed through the electrolyte. Small current is neces-

sary to keep the response of the PD linear.

The sensitivity of the system can be estimated from the noise level shown in Fig 4(d). The

noise level of a PD segment corresponds to 1 mV that gives a standard deviation in the beam

displacement Δx about 40 μm. Using Eq (4) with this Δx one finds for the noise level in n a

value of δn = 3 × 10−4.

DIC experiment

Change of the differential interference contrast with time due to the pulses modulated by the

sawtooth profile is presented in S2 and S3 Videos for two orthogonal directions of the splitting

prism. A few frames from S2 Video are shown in Fig 5. One can see two images formed by the

Nomarski objective for two different polarizations, which are shifted with respect to each

other. In Fig 5(d) the scheme of the contrast formation is presented, where one image is shown

red and the other one is shown green. In the overlapping region the interference contrast is

high and shown as light-brown. In the regions where there is no overlapping the contrast is

low because the substrate is a poor reflector in comparison with the electrodes. Outside of the

electrodes the contrast is high again since the interference happens between the beams of simi-

lar intensity.

Panel (a) shows the contrast when the amplitude of the pulses is minimal (zero). One can

see that in the overlapping regions the phase difference is zero. Some contrast exists only in the

upper part of the picture, where the structure is covered by the compound that has a height

gradient. Panel (b) shows the contrast when the amplitude of the pulses is half of its maximum

value. The central electrode in its center is still black because there is no gradient of the refrac-

tive index. However, at the maximal amplitude (panel (c)) some structure appeared in the cen-

tral part of the electrode that arise due to inhomogeneous current distribution and liquid flow

induced by the moving NBs (see below). We observed similar structures in the optical lever

data too.

The data demonstrate qualitatively the gas distribution in the cloud that is in agreement

with what we observe with the optical distortion and optical lever methods. However, the

interpretation of the gradient of n is less straightforward and we do not provide here a specific

number for n.

Vibrometer experiment

As we already mentioned the interpretation of the vibrometer data is more complicated

because the method is sensitive not only to the change of the refractive index but also to the liq-

uid movement. With this method we can see the change of the refractive index only on a short

time scale. Nevertheless, the vibrometer data are important in two aspects. First, the data have

a regular character as one can see in Fig 6 demonstrating absence of scattering by objects with

a size larger than λ/π� 200 nm. Occasionally microscopic bubbles are formed due to presence

of defects. They strongly scatter light, and can be easily recognised in the signal as shown in S3

Fig. The second aspect is small oscillations of the signal with the driving frequency f = 200 kHz

Electrically controlled cloud of bulk nanobubbles in water solutions
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as shown in Fig 6(b). These oscillations are explained by the reaction between hydrogen and

oxygen in the NBs containing mixture of gases [29, 30]. Note that the vibrometer signal is

completely uncoupled from the driving pulses.

Increase of the gas concentration in the cloud is responsible for smooth evolution of the sig-

nal as shown in panel (a). When the pulses are switched on the thickness of the gas-enriched

layer increases with time and the signal is negative because the optical path is reduced. New

gas clusters produced near the electrodes push the old ones further away generating movement

of the liquid. This movement contributes to the signal increasing the optical path. The liquid

flow is the reason for the minimum in the signal. When the pulses are switched off the signal

evolution is determined by the liquid flow. In the total time domain the signal is shown in

Fig 5. Differential interference contrast in dynamics. (a) Zero amplitude of the driving pulses at t = 0. Images for the beams of different

polarizations are shifted with respect to each other on 30 μm. (b) Amplitude of the pulses is half of its maximum value at t = 2.5 s. (c) Maximal

amplitude of the pulses at t = 5 s. (d) Scheme of the formation of the DIC.

https://doi.org/10.1371/journal.pone.0181727.g005
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Fig 6(c). It demonstrates the noise level, which is dominated by the resonance frequency of the

internal mirror of the instrument.

Discussion

All our observations show that the refractive index changes due to a significant volume frac-

tion of gas, which exists in the electrolyte near the electrodes. We see that the refractive index

is reduced that is unambiguously follows from the optical distortion experiment. In this exper-

iment the image of electrodes shrinks in response to the applied AP pulses that is possible only

Fig 6. Change of the optical pathΔd as measured by the vibrometer. The process is driven by voltage pulses at f = 200 kHz. (a) The

optical path as a function of time. Moments when the pulses are on and off are indicated. The thick blue arrow shows the place zoomed in

panel (b). The signal in (b) is shown in a restricted time domain 0.7 < t < 0.8 ms to see oscillations with the driving frequency. (c) The signal in

the total time domain. The red part of the curve is the one shown in panel (a).

https://doi.org/10.1371/journal.pone.0181727.g006
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if the refractive index of the cloud is smaller than that for the surrounding liquid. The same is

true for the optical lever experiment, for which the beam is always deflected out of the elec-

trode structure.

We cannot determine from our data the chemical nature of the gas that produces significant

change of the refractive index. However, there are no doubts that large amount of hydrogen

and oxygen is produced by the Faraday current. The total number of molecules N produced by

one series of pulses in the optical distortion experiment is

N ¼
3IFt

4jej
� 1:1� 1018; ð5Þ

where IF� 60 mA, τ = 4 s, and e is the charge of electron. At normal conditions this gas would

fill a volume as large as 47 mm3. The other gas that could appear in the electrolyte is vapor but

the temperature rise is too low to have any appreciable amount of vapor inside of the liquid.

No other gases can be produced in the process in appreciable amounts.

The reduction of the refractive index in the distortion experiment was estimated in between

0.1 and 0.26. Any impurity in the solution cannot produce this large change. One could imag-

ine the situation when the amount of salt in the electrolyte varies around the electrodes. How-

ever, if the salt concentration drops from 1 mol/L to zero, the refractive index decreases only

on 0.02 [40]. Moreover, it would result in a significant reduction of the current, which is

not observed. As we already mentioned the local heating also cannot be responsible for the

observed change in n since the current pulses increase the temperature near the electrodes

only on 6.5˚ K. The only reasonable explanation for the change of n in the optical distortion

experiment is the gas produced electrochemically.

To answer the question in which form this gas exists in the liquid, let us estimate first the

local supersaturation above the electrode. The gas produced by the process diffuses away from

the electrode. Within the diffusion layer of thickness lD �
ffiffiffiffiffi
Dt
p

, where D is the gas diffusion

coefficient and t is the time, the gas concentration is estimated as ng � ðjF=eÞ
ffiffiffiffiffiffiffiffi
t=D

p
, where jF is

the Faraday current density. The latter is jF � IF/A� 85 A/cm2, where A = 2.25 × 10−8 m2 is

the area of the central electrode. This is an average value of the current density but the local

value near the edge of the electrode can be a few times larger [28]. Using as an example the

diffusion coefficient for hydrogen D = 4.5 × 10−9 m2/s one finds that just in 50 μs the gas con-

centration reaches the value ng� 5.6 × 1026 m−3, which corresponds to the supersaturation S =

ng/nsat � 1200, where the saturated concentration for H2 is nsat = 4.7 × 1023 m−3.

This huge supersaturation reduces the barrier for bubble nucleation and bubbles are gener-

ated homogeneously in the diffusion layer. It was demonstrated [28] that hydrogen produced

by a 50 μs long single polarity pulse manifests itself in the form of nanobubbles covering the

negative electrode homogeneously already in 20 μs. These NBs scatter light and are visible as a

haze. After 100 μs they form well visible microbubbles and their dynamics becomes slow. It is

interesting to note that although the NBs cover a significant area of the electrode the current

is not reduced. It means that the nucleation most of the bubbles happens above the surface.

Indeed, this is possible only due to the homogeneous nucleation when surface defects do not

play a crucial role in the nucleation.

A somewhat different scenario is realized for alternating polarity pulses because both gases

are produced above the same electrode and these gases are able to interact. When a NB con-

tains mixture of gases they react to each other apparently via surface dominating processes [26,

29, 31]. This effect appears as periodic reduction of the gas concentration in the liquid as dem-

onstrated by the oscillations in the vibrometer signal (see Fig 6(b)). If the mixture of gases in a

bubble is not stoichiometric, this bubble ends up as a pure hydrogen or a pure oxygen bubble.

Electrically controlled cloud of bulk nanobubbles in water solutions
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Such NBs containing only H2 or only O2 are collected in the system and are responsible for the

change of the refractive index in our experiments. Therefore, we conclude that the gas in the

liquid exists in the form of NBs and the main reason for this is extremely high supersaturation

produced by the electrochemical process in AP regime.

The next question is why the NBs are not grow to the size strongly scattering the visible

light? Two bubbles containing different gases can exchange by the content due to gas diffusion

in the liquid (Ostwald ripening). In this process one bubble disappears at all but the other

one is not growing because the gas that enters in the bubble disappears in the reaction. If the

pulses are switched off and the gas is not produced, this effect reduces the total gas concentra-

tion as one can see in Fig 3(d). While the pulses are switched on, the dynamical equilibrium

is reached, which is responsible for a plateau in Fig 3(d). The same equilibrium provides the

hemispherical shape of the cloud instead of a cylindrical shape. At some distance from the elec-

trodes nearly all the gas is reacted and such a state is supported by the produced gas.

The discussion above shows that it is hardly possible to visualize individual NBs with the

existing methods because they are not only very small but also live a short time. These NBs

probably are not different from the bulk NBs produced mechanically [16, 17], but their short

lifetime is related to the possibility of the gases to react. Although we observe collective effect

and do not see individual NBs, we believe that it is possible to conclude that the cloud observed

optically consists of the bulk NBs with the size smaller than 200 nm. The reason for this believe

is that the gas has to cluster in 10 μs or less for supersaturations � 1000 reached in the AP elec-

trochemical process.

Nanobubbles open the possibility for a high effective supersaturation of liquids. Since the

gas in NBs is densely packed due to a high Laplace pressure, liquid can accept much more gas

than in the form of microscopic bubbles where the Laplace pressure does not dominate. We

can estimate the level of effective supersaturation in the cloud using the result of the distortion

experiment. Using the definition of the volume gas fraction fg and the ideal gas law for hydro-

gen concentration one has

nH2
¼

2fgðP0 þ 2g=rÞ
3kT

; ð6Þ

where r is the bubble size, γ is the surface tension of the liquid, P0 is the atmospheric pressure,

and kT is the temperature in energy units. Taking as reasonable values fg = 0.5 and r = 50 nm

one finds nH2
� 2.3 × 1026 m−3, which corresponds to the supersaturation with hydrogen

SH2
� 495. The concentration of oxygen is two times smaller than nH2

and the supersaturation

is SO2
� 152 (saturated concentration for O2 is 7.7 × 1023 m−3). These values of S are smaller

than those achieved near the electrodes because significant part of the produced gas turns back

to water, but anyway, the level of supersaturation in the cloud is very high.

If V is the volume of one NB, then the average volume per one bubble in the cloud is V/fg.
For the optical distortion experiment 0.28< fg< 0.74 and one can say that the state of the

material is rather a nanofoam than a liquid. This is the reason why the refractive index strongly

deviates from that of liquid. With the increase of the voltage amplitude the Faraday current

becomes larger and the volume fraction of gas increases. At U = 12 V this fraction apparently

reaches its maximal value fg = 0.74 because short-lived microbubbles start to appear in the sys-

tem, which explode with well audible sound. This effect was described earlier [35] for the elec-

trodes of a similar geometrical shape but made from copper and having a slightly larger size.

The appearance of short-lived microbubbles was explained there by coalescence of many NBs

due to their dense packing. The present work supports this conclusion.

Electrically controlled cloud of bulk nanobubbles in water solutions
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In the optical lever experiment the Faraday current IF� 2 mA was much smaller than in

the optical distortion experiment, where IF� 60 mA. In the former case we have found much

smaller gas fraction fg� 0.01 than in the latter one. It clearly demonstrates that the density of

NBs in the cloud is defined by the Faraday current as one could expect for an electrochemical

process.

Conclusions

In this paper we visualized a cloud of NBs using different experimental techniques. The most

important property of the cloud is that in spite of a significant gas content it does not scatter

visible light demonstrating absence of objects with a size larger than λ/π, where λ = 600 nm is

a typical wavelength of light. At the same time it has a significantly different refractive index,

which is smaller than the index of the surrounding liquid. The cloud can be roughly repre-

sented as a hemispherical segment based on the electrodes and having the diameter two times

larger than the external diameter of the electrodes.

When the voltage pulses are applied to the electrodes the cloud is growing with a rate

defined by the electrochemical current but then it reaches a steady state. The latter is explained

as a balance between new bubbles produced by the current and the bubbles merging and dis-

appearing in the combustion reaction. When the pulses are switched off the cloud disappears

for less than a second. This process is controlled only by merging of the bubbles.

Here we demonstrated that the cloud of bulk NBs can be very dense and it can be controlled

electrically. The density of the cloud is defined by the Faraday current. It can be important for

applications ranging from cleaning to applications in microfluidic devices.

Supporting information

S1 Fig. Upper boundary of the cloud. Signal of “Up” segment as a function of Y-coordinate

for four different beam distances from the substrate. The signal is going down fast when the

vertical distance is larger than 800 μm.

(JPG)

S2 Fig. Calibration curves. Signal on the PD segments “Up” and “Down” versus the position

of the laser spot on the PD surface. Coordinate “0” corresponds to the center of the PD. The

curves are used as the calibration curves.

(JPG)

S3 Fig. Scattering on microbubbles. Raw signal of the vibrometer (velocity) for a very high

driving voltage U = 18 V averaged over a period of 5 μs. The left panel (a) shows the response

to 2500 pulses triggered at t = 0. The signal jumps up and down in the beginning and at the

end of the series. No scattering on microbubbles is observed. Similar raw signal but of smaller

magnitude, corresponds to Fig 6 in the main text. The right panel (b) shows the signal for a

longer series of 4000 pulses. Distinctive spikes appear due to scattering on microbubbles, two

of them are indicated by the arrows.

(JPG)

S1 Video. Optical distorsion of the electrodes. Video was recorded at U = 10 V and f = 200

kHz without a glass floating above the electrodes. The frame rate is 60 fps and the frame size is

1920 × 1080 px. The video with a glass floating above the electrodes is looking very similar and

is available on the request. The corresponding voltage and current are shown in Fig 2 in the

main text.

(AVI)
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S2 Video. Differential interference contrast of the cloud. File was recorded at U = 8 V and

f = 400 kHz at a frame rate of 30 fps. The frame size is 1280 × 1024 px. The voltage is modulated

by the sawtooth profile with a period of 5 s.

(AVI)

S3 Video. Differential interference contrast, orthogonal polarization. The same as S2 Video

but the splitting prism was rotated 90˚ in comparison with S2 Video. The color gradient from

green to red is due to small inclination of the sample.

(AVI)

S1 Appendix. Derivation of Eqs (3) and (4).

(PDF)
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