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Abstract

In this paper, we propose a software reliability model that considers not only error generation

but also fault removal efficiency combined with testing coverage information based on a

nonhomogeneous Poisson process (NHPP). During the past four decades, many software

reliability growth models (SRGMs) based on NHPP have been proposed to estimate the

software reliability measures, most of which have the same following agreements: 1) it is a

common phenomenon that during the testing phase, the fault detection rate always

changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-

introduction rate. But there are few SRGMs in the literature that differentiate between fault

detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency.

But in practical software developing process, fault removal efficiency cannot always be per-

fect, i.e. the failures detected might not be removed completely and the original faults might

still exist and new faults might be introduced meanwhile, which is referred to as imperfect

debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate,

fault removal efficiency and testing coverage into software reliability evaluation is devel-

oped, using testing coverage to express the fault detection rate and using fault removal effi-

ciency to consider the fault repair. We compare the performance of the proposed model with

several existing NHPP SRGMs using three sets of real failure data based on five criteria.

The results exhibit that the model can give a better fitting and predictive performance.

Introduction

Due to software’s ever-increasing usage and crucial role in safety-critical systems, high-quality

software products are in great demand. However, the failures of safety-critical software may

cause catastrophic loss in life and property. Therefore, software reliability, which is defined as

the probability of failure-free software’s operating in a special usage environment for a special

period of time [1], has become one of the most important customer-oriented characteristics of
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software quality. It is very important to have effective approach to develop reliable software

along with quantitatively estimating the software reliability [2].

Numerous time-dependent SRGMs have been developed to determine the reliability of soft-

ware systems [3–7]. These models are usually divided into two categories: one category refers

to the perfect debugging model, which assume that each time when a failure occurs, the faults

causing the failure are removed instantaneously and no new faults are introduced meanwhile

[2, 3, 8]. Most early developed models belong to this category, such as J-M model [9], G-O

model [3], delayed S-shaped model [10] and infected S-shaped model [8]. The other category

covers the scenario of imperfect debugging, i.e. faults are not always completely eliminated or

new faults could be brought in as part of the fault removal process [11–15, 16].

Meanwhile, imperfect debugging can be further divided into two types: one type is that, the

fault content of the software is not changed, that is, only the originally detected faults are not

removed perfectly without new faults’ birth, i.e. “imperfect fault removal”; on the other hand,

in the scenario of another type of imperfect debugging, the total fault content increases as test-

ing progresses because new faults are introduced to the software system while removing the

originally detected faults, which is called “error generation”. To sum up, in the case of “imper-

fect fault removal”, the total fault number of the software is not changed, but in the case of

“error generation”, the total fault number keeps increasing in the process of fault removing. It

can be clearly seen that, so-called imperfect debugging actually include two meanings, one is

aforementioned “error generation”, the other is aforementioned “imperfect fault removal”.

But most existing imperfect debugging models only consider “error generation” and neglect

“imperfect fault removal”, such as Goel first introduced the conception of imperfect debugging

[11], Ohba and Chou proposed an error generation model [17], Pham and Zhang developed

an imperfect debugging model with the exponential function of error generation [18], Pham

et al. also built a general imperfect debugging model with time-dependent fault content func-

tion [19], Yamada gave two imperfect debugging models assuming the fault content function

to be exponential or liner function of the testing time, respectively [16].

Nevertheless, it has been often reported that the detected faults are removed with an imper-

fect removal efficiency instead of 100%. Usually, fault removal efficiency may be less than

100% (e.g., it may range from 15% to 50% for unit testing, 25% to 40% for integration testing,

and 25% to 55% for system testing) [20]. Until 2003, Zhang et al. first explicitly proposed a

fault removal efficiency model including both “error generation” and “imperfect fault

removal” [21]. Kapur et al. explicitly discussed the modeling approach with consideration of

the presence of “imperfect debugging” and “error generation” [22]. Goel and Okumoto [23]

also developed a similar conception in their Markov model and Kremer [24] proposed a birth-

death process to model software reliability, incorporating both imperfect fault removal and

fault re-introduction.

Recently, many works have been witnessed in this field of building software reliability mod-

els. For example, Wang et al. proposed a comprehensive study to analyze the time dependency

between the fault detection and correction processes, they also developed a joint likelihood

function for the combined fault detection process and fault correction process to estimate the

software reliability model’s parameters [25]. Wang et al. presented an optimal approach

repeatedly implementing the function with exponential distribution to fit a logarithmic differ-

ence between the estimated values and observed values from a software historical fault data set

to improve the software reliability model [26]. Wang et al. applied nonlinear and NHPP

imperfect software debugging model in consideration of the fact that the fault introduction is a

nonlinear process [27]. Wang et al. developed an imperfect software debugging model consid-

ering a log-logistic distribution fault content function, which can capture the increasing and

decreasing features of the fault introduction rate [28]. Pham accounted for the uncertainty of
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operating environments and gave a software reliability model with Vtub-shaped fault-detec-

tion rate [29]. Peng et al. studied the fault detection process (FDP) and fault correction process

(FCP) with the incorporation of testing effort function and imperfect debugging [30].

However, most of the latest models considered “error generation” neglecting the imperfect

fault removal efficiency. Therefore, in-depth and comprehensive consideration of fault

removal efficiency is of great importance to build more precise reliability models.

Moreover, researchers have suggested that the accuracy of SRGMs can be further improved

by considering the influence of some real issues happening during the testing process [31–33].

Testing coverage is considered as one of the most important factors.

Testing coverage is a good metric for identifying the effectiveness and completeness. Many

time-dependent testing coverage functions (TCFs) have been proposed in terms of different

distributions, such as Logarithmic-exponential (L-E) [34], S-shaped [35], Rayleigh [36], Wei-

bull & Logistic [37] and Lognormal [38]. Based on different TCFs, software reliability models

have also been developed to express the relationship between testing coverage and the cumula-

tive detected faults, such as Beta, Hyper-exponential (H-E) [33], L-E [34], Rayleigh model [36],

and some other coverage-based SRGMs [33,35,37].

In this study, we propose a model considering not only error generation, but also imperfect

fault removal efficiency incorporating testing coverage. The rest of the paper is organized as

follows. In Section 2, we give a brief overview of NHPP and the assumptions for the proposed

model, then present the establishment of the proposed model, and several existing SRGMs

are also presented. In Section 3, we state two parameter estimation methods and five

criteria for models’ performance comparison. In Section 4, we compare the descriptive and

predictive performance of this model with several existing NHPP SRGMs on three representa-

tive failure data sets, together with the sensitivity analysis. Finally, we draw the conclusions in

Section 5.

Software reliability modeling

Basic assumptions

The model presented in this paper is based on NHPP, which is utilized to describe the failure

phenomenon during the testing phase. The counting process {N(t), t� 0} of NHPP is shown

as follows:

PfNðtÞ ¼ ig ¼
½mðtÞ�i

i!
e� mðtÞ; i ¼ 0; 1; 2 . . . ð1Þ

The mean value function m(t) is given as follows:

mðtÞ ¼
Z t

0

lðuÞdu ð2Þ

where λ(u) is the fault intensity function.

The proposed model is based on the following assumptions:

1. Software faults’ occurrence and removal follow NHPP.

2. The software failure rate at any time is a function of fault detection rate and the number of

faults remaining in the software at that time. The fault detection rate can be expressed by
c0ðtÞ

1� cðtÞ; c(t) is the percentage of the code that has been examined up to time t, c0(t) is the deriv-

ative of the testing coverage function.
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3. When a software failure is detected, an immediate debugging starts, and either (a) the total

number of faults is reduced by one with probability p, or (b) the total number of faults

remains the same with probability 1-p.

4. During the fault repair process, whether the fault is removed completely or not, new faults

are introduced with a probability constant α.

Model development

Let c(t) represent the percentage of the code that has been covered up to time t. Here c(t) refers

to any kind of coverage, e.g. statement coverage, branch coverage, C-use coverage and P-use

coverage etc. Obviously, c(t) is an increasing function of testing time t. Usually, it increases very

fast from the beginning of software testing process as more test cases are executed to examine

the software; after some certain time point, the testing coverage’s increasing rate becomes flat

and less because less testing coverage happens to realize the residual fault detection [35]. Thus,

a concave or S-shaped function may be used to model the testing coverage function. Appar-

ently, (1-c(t)) denotes the percentage of the code that has not been examined by test cases up to

time t. The derivative of testing coverage function, c0(t), denotes the coverage rate. Thus, the

function c0(t)/(1-c(t)) is recommended to be used to denote the fault detection rate [35, 37],

which has been taken as the common assumption by SRGMs considering testing coverage.

Based on the above assumptions, the mean value function considering both fault removal

efficiency and testing coverage can be got by solving the following differential equation:

dmðtÞ
dt
¼ b

c0ðtÞ
1� cðtÞ

½aðtÞ� pmðtÞ� ð3Þ

where a(t) represents the fault content function of the software, β is proportionality constant,

pis the fault removal efficiency, which means p% percentage of detected faults can be removed

successfully during the developing process, m(t) denotes the expected fault number detected

up to time t, and pm(t) is the expected fault number that can be eliminated completely, so

[a(t)-pm(t)] represents the expected remaining fault number presented in the software at time

t. It should be noted that, when β = 1 and p 6¼ 1, the proposed model has the same form as

which is recommended in [21]. When β 6¼ 1 and p = 1, we can get the same form recom-

mended in [22]. Existing models generally assume that p equals to 100% [18].

From Assumption 4, the total fault number function a(t), is a linear function of the

expected fault number detected up to time t. That is,

aðtÞ ¼ aþ amðtÞ ð4Þ

where a denotes the initial fault number presented in the software system before testing starts

and α> 0.

Substituting a(t) from Eq (4) into Eq (3), and solving it in terms of the initial condition that

at t = 0, m(t) = 0, we can obtain

mðtÞ ¼
a

p � a
1 �

1 � cð0Þ
1 � cðtÞ

� �ða� pÞb
" #

ð5Þ

where c(0) refers to the testing coverage function when t = 0.

The software reliability function based on the NHPP is shown as follows:

Rðx=tÞ ¼ e� ½mðtþxÞ� mðtÞ� ð6Þ

where m(t) is given by Eq (5).
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A new model with testing coverage

Substituting different testing coverage function c(t) into Eq (5), we can get different mean

value function m(t) correspondingly. As mentioned above, the testing coverage’s increasing

rate maybe shows a varying trend which firstly increases then decreases. That is, the testing

coverage function may show an S-shaped varying trend which is suitable to be described by an

S-shaped curve. The inflection S-shaped function is one representative S-shaped function

which is flexible and applicable in many cases and has been applied into modeling software

reliability [8], so here the following function is used to describe the testing coverage:

cðtÞ ¼
Að1 � e� rtÞ

1þ ce� rt
ð7Þ

where A denotes the maximum percentage of testing coverage, r is the shape parameter and c
is the scale parameter. Clearly, when t = 0, c(0) = 0.

Substituting Eq (7) into Eq (5), we can get the mean value function as follows:

mðtÞ ¼
a

p � a
1 �

1þ ce� rt

ð1 � AÞ þ ðcþ AÞe� rt

� �ða� pÞb
" #

ð8Þ

It should be noted that both error generation and fault removal efficiency as well as testing

coverage are all combined into the proposed model. Table 1 gives a summary of several exist-

ing NHPP models and the proposed model.

Parameter estimation methods and model comparison criteria

Theoretically, once the analytical expression for m(t) is derived, the parameters in m(t) can be

estimated by using the maximum likelihood estimation (MLE) method or the least square esti-

mation (LSE) method. MLE is one of the most useful techniques for deriving estimators

because comparing to other estimation methods the maximum likelihood estimates are

Table 1. Summary of the software reliability models and their mean value functions.

No. Model name Mean value function (m(t))

1 G-O model[3] m(t) = a(1 − e−bt) a(t) = a b(t) = b

2 Delayed S-shaped model[10] m(t) = a(1 − (1 + bt)e−bt) a(t) = a bðtÞ ¼ b2 t
1þbt

3 Inflection S-shaped model[8] mðtÞ ¼ að1� e� btÞ
1þbe� bt a(t) = a bðtÞ ¼ b

1þbe� bt

4 HD/G-O model[39] mðtÞ ¼ ln½ðea � cÞ=ðeae� bt � cÞ�

5 Yamada exponential model[10] mðtÞ ¼ að1 � e� gað1� e� bt ÞÞ a(t) = a b(t) = γαβe−bt

6 Yamada Rayleigh model [10] mðtÞ ¼ að1 � e� gað1� e� bt2=2ÞÞ a(t) = a bðtÞ ¼ gabte� bt2=2

7 Yamada imperfect 1 model[16] mðtÞ ¼ ab
aþb ðe

at � e� btÞ a(t) = aeαt b(t) = b

8 Yamada imperfect 2 model[16] mðtÞ ¼ að1 � e� btÞð1 � a

bÞ þ aat a(t) = a(1 + αt) b(t) = b

9 P-Z(1997) model[18] mðtÞ ¼ 1

ð1þbe� btÞ ðcþ aÞð1 � e� btÞ � ab
b� a
ðe� at � e� btÞ

� �
a(t) = c + a(1 − e−αt)bðtÞ ¼ b

1þbe� bt

10 Fault removal model (2003)[21]
mðtÞ ¼ a

p� b
1 �

ð1þaÞe� bt

1þae� bt

� �c
bðp� bÞ

( )

a(t) = βm(t)bðtÞ ¼ c
1þae� bt

11 SRGM-3 model (2011) [22]
mðtÞ ¼ a

1� a
1 � 1þ bt þ b2 t2

2

� �
e� bt

� �pð1� aÞ
h i

a(t) = a + αm(t)FðtÞ ¼ 1 �
X2

i¼0

ðbtÞi

i!

 !

e� bt

12 Proposed model
mðtÞ ¼ � a

a� p 1 � 1þce� rt

ð1� AÞþðcþAÞe� rt

� �ða� pÞb
� �

a(t) = a + αm(t)cðtÞ ¼ Að1� e� rtÞ
1þce� rt bðtÞ ¼

c0 ðtÞ
1� cðtÞ

https://doi.org/10.1371/journal.pone.0181524.t001
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consistent and asymptotically normally distributed as the sample size increases [40]. However,

sometimes the estimations may not be obtained by MLE especially under some conditions

where m(t) is too complex, thus we need turn to LSE. So here we use both MLE and LSE meth-

ods to estimate the models’ parameters.

Maximum likelihood estimation (MLE)

Since all the failure data are expressed in the form of pairs (ti, yi) (i = 1,2,. . ., n; 0< t1 < t2 <

� � �< tn), where yi is the cumulative number of faults detected in time (0, ti], basing on the defi-

nition of NHPP, the likelihood function is given as follows:

L ¼
Yn

i¼1

ðmðtiÞ� mðti� 1ÞÞ
yi � yi� 1

ðyi� yi� 1Þ!
e� ðmðtiÞ� mðti� 1ÞÞ ð9Þ

The logarithmic form of the above likelihood function is given as follows:

lnL ¼
Xn

i¼1

fðyi� yi� 1ÞlnðmðtiÞ� mðti� 1ÞÞ� ðmðtiÞ� mðti� 1ÞÞ� lnððyi� yi� 1Þ!Þg ð10Þ

By taking derivatives of Eq (10) with respect to each parameter in m(t), and setting the

results equal to zero, we can obtain equations for the proposed model as follows:

@ ln L
@a
¼
@ ln L
@a
¼
@ ln L
@p
¼
@ ln L
@b
¼
@ ln L
@c
¼
@ ln L
@r
¼
@ ln L
@A

¼ 0 ð11Þ

After solving the above equations simultaneously, we can obtain the maximum likelihood

estimates of all parameters for the proposed model.

Least square estimation (LSE)

LSE is based on minimizing the sum of the squared distance from the best fit line and the

actual data points. The sum of the squared distance is given as follows:

Q ¼
Xn

i¼1

ðyi� mðtiÞÞ
2

ð12Þ

By taking derivatives of Eq (12) with respect to each parameter in m(t), and setting the

results equal to zero, we can obtain equations for the proposed model as follows:

@Q
@a
¼
@Q
@a
¼
@Q
@p
¼
@Q
@b
¼
@Q
@c
¼
@Q
@r
¼
@Q
@A
¼ 0 ð13Þ

After solving the above equations simultaneously, we can obtain the least square estimates

of all parameters for the proposed model.

Criteria for models’ descriptive power comparison

Here we use four criteria to examine the descriptive performance of SRGMs. The first criterion

is the mean value of squared error (Mean Square-Error, MSE), which is defined as follows

[41]:

MSE ¼
1

n � N

Xn

i¼1

ðyi � m̂ðtiÞÞ
2

ð14Þ

where n is the number of observations, m̂ðtiÞ is the estimated value of cumulative fault number

SRGM considering fault removal efficiency, error generation and testing coverage
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up to time ti according to the fitted mean value function, i = 1,2,. . .,n. N represents the number

of parameters used in the model.

In practice, when comparing the performance of models with different numbers of parame-

ters, it is always considered unfair to simply compare the performance of models owning more

parameters with others owning fewer parameters without giving any penalty to those models

with more parameters. So it should be noted that here MSE value considers the penalty term

with respect to the degrees of freedom when there are many parameters and assigns a larger

penalty to a model with more parameters. Thus, more parameters, more penalty will be given;

so lower value of MSE indicates better goodness of fit.

The second criterion which is used to examine the fitting power of SRGMs is correlation

index of the regression curve equation (R2), which is expressed as follows:

R2 ¼ 1 �

Xn

i¼1

ðyi � m̂ðtiÞÞ
2

Xn

i¼1

ðyi � �yÞ2
ð15Þ

where �y ¼ 1

n

Xn

i¼1

yi. Therefore, the more R2, the better is the model’s performance.

The third criterion which is used to evaluate the performance of SRGMs is adjusted R2

(Adjusted_R2), which can be expressed as follows:

Adjusted R2 ¼ 1 �
ð1 � R2Þðn � 1Þ

n � P � 1
ð16Þ

where the value of R2 in the right side of Eq (16)is shown as Eq (15) and P represents the num-

ber of predictors in the fitted model. Therefore, the more Adjusted_R2, the better is the model’s

goodness-of-fit. Here the penalty with respect to the number of model’s parameter is also

considered.

The four criterion is AIC, which measures the ability of a model to maximize the likelihood

function that is directly related to the degrees of freedom during fitting and defined as follows:

AIC ¼ � 2log Lþ 2N ð17Þ

where L is the value of likelihood function at its maximum, N represents the number of param-

eters used in the model. The lower value of AIC indicates better goodness-of-fit.

It should be noted that AIC takes the degrees of freedom into consideration by assigning a

larger penalty to a model with more parameters. The number of parameters are also consid-

ered in MSE and Adjusted_R2, where a larger penalty will be assigned to a model with more

parameters.

Criteria for models’ predictive power comparison

Here we use SSE criterion to examine the predictive power of SRGMs. SSE is the sum of

squared error, which is expressed as follows [42]:

SSE ¼
Xn

i¼m

ðyi � m̂ðtiÞÞ
2

ð18Þ

Assume that by the end of testing time tn, totally yn faults have been detected. Firstly we use

the data points up to time tm-1(tm-1 < tn) to estimate the parameters of m(t), then substituting

the estimated parameters in the mean value function yields the prediction value of the

SRGM considering fault removal efficiency, error generation and testing coverage
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cumulative fault number m̂ðtmÞ by tm (tm < tn), ym is the actual number of faults detected by

tm. Then the procedure is repeated for several values of ti (i = m + 1, m + 2, . . . n.) until tn.

Therefore, the less SSE, the better is the model’s performance.

Model analysis with real application

Here we examine the performance of the proposed model compared to several existing NHPP

models basing on three representative data sets.

Monitor and control system data

The first data set is large in size and collected from testing a real monitor and control system

(Data Set 1, DS-1) [43], which has been widely used in many studies, such as [42]. The details

are recorded in Table 2 and the time unit is day. There are totally 481 faults observed within

111 days. All data points are used to fit the models and estimate the models’ parameters.

Here the model parameters estimated by both LSE and MLE are given in Table 3, respec-

tively. MSE values, R2 values and Adjusted R2 values are obtained basing on the parameters

estimated by LSE method and AIC values are given basing on parameters estimated by MLE

method.

Table 2. Failure data of DS-1.

Day No. Cumulative faults Day No. Cumulative faults Day No. Cumulative faults Day No. Cumulative faults

1 5 29 254 57 448 85 473

2 10 30 259 58 451 86 473

3 15 31 263 59 453 87 475

4 20 32 264 60 460 88 475

5 26 33 268 61 463 89 475

6 34 34 271 62 463 90 475

7 36 35 277 63 464 91 475

8 43 36 290 64 464 92 475

9 47 37 309 65 465 93 475

10 49 38 324 66 465 94 475

11 80 39 331 67 465 95 475

12 84 40 346 68 466 96 476

13 108 41 367 69 467 97 476

14 157 42 375 70 467 98 476

15 171 43 381 71 467 99 476

16 183 44 401 72 468 100 477

17 191 45 411 73 469 101 477

18 200 46 414 74 469 102 477

19 204 47 417 75 469 103 478

20 211 48 425 76 469 104 478

21 217 49 430 77 470 105 478

22 226 50 431 78 472 106 479

23 230 51 433 79 472 107 479

24 234 52 435 80 473 108 479

25 236 53 437 81 473 109 480

26 240 54 444 82 473 110 480

27 243 55 446 83 473 111 481

28 252 56 446 84 473

https://doi.org/10.1371/journal.pone.0181524.t002
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ĉ
¼

4
8
3
:6

â
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It can be seen that compared to all models using MSE, R2 and Adjusted R2 criteria, the pro-

posed model displays the smallest MSE value, the largest R2 value and Adjusted_ R2 value at

239.4231, 0.9899 and 0.9894, respectively. Although the inflection S-shaped model also fits

well, its values are still larger or smaller than those of the proposed model. Though the AIC

value of the proposed model is not the smallest one among all models, that is, the value of AIC

at 647.31 is a little bigger than those values of the inflection S-shaped model, the delayed S-

shaped and the P-Z model. But this value is not very bigger than the smallest value of the

inflection S-shaped model at 641.8546, the value of the delayed S-shaped model at 644.0284

and P-Z model’s value of 645.8532, as well very less than the value of the Yamada exponential

model at 727.8002. So we can deduce that the descriptive power of our proposed model is bet-

ter than those of other models.

Moreover, some additional information can be acquired from the estimation values of the

parameters given by the proposed model. For instance, in the context of LSE method, the fault

removal efficiency is 64.43%, which is less than the average value according to [20] (The range

of the fault removal efficiency was from 45% to 99% with the average value of 72%). Therefore,

more resources should be allocated to enhance the efficiency of the fault removal. Moreover,

the fault removal probability on per failure is 0.6443 which is a lower value, and the fault intro-

duction rate is 0.2301 which is not a very low value. That means if those models neglecting

imperfect debugging are used, more deviation will be introduced. The initial fault content is

estimated to be 408, together with 0.2301 fault introduction rate and 481 total detected faults,

then the expected number of total detected faults is 519. Thus, at 111 days, which is the

assumed stopping time point, there are still 38 faults latent in the software. The fault introduc-

tion rate is 0.2301, i.e., 1 fault will be introduced when 4 faults are removed on average. So

more testing training should be given to the testers and their testing skill should be improved

greatly.

Fig 1 depicts the testing coverage function of the proposed model based on the parameters

estimated by LSE according to DS-1, the changing trend of the testing coverage over time

shows the aforementioned trend, i.e. first it increases very fast at the beginning of testing pro-

cess, then after some certain time point, the testing coverage’s increasing rate becomes flat and

less. Fig 2 shows the fault detection rate over time of DS-1. It is clearly shown that the fault

detection rate shows a varying trend which firstly increases and then decreases with an S-

shaped varying trend. The fitting comparison of all models for DS-1 is graphically illustrated

in Fig 3. In terms of Fig 3, it can be seen that the proposed model fits the actual data better

than all other models.

Tandem computer data

In this section, we examine models using another data collected from Tandem Computers

Release #1 (Data Set 2, DS-2) [2], which has also been widely used in many studies, such as

[7,42,44]. DS-2 is small in size and the failure data are tabulated in Table 4 with time unit

week. There are totally 100 faults detected within about 20 weeks. All data points are used to fit

the models and estimate the models’ parameters.

As the same as in the first case study, we also use both LSE and MLE to estimate the models’

parameters recorded in Table 5. MSE, R2 and Adjusted R2 values are calculated on the parame-

ters obtained by LSE method and AIC values in the context of MLE method.

It can be seen that compared to all models using the MSE, R2 and Adjusted R2 criteria, the

proposed model displays the smallest MSE value, the largest R2 value and Adjusted_R2 value,

the values are 8.8385, 0.9929 and 0.9897, respectively. Although the inflection S-shaped model

also fits well, its values 10.5647, 0.989, 0.9877 are still larger or smaller than those of the

SRGM considering fault removal efficiency, error generation and testing coverage
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proposed model. Though the AIC value of the proposed model is not the smallest one com-

pared to the ones of the inflection S-shaped model and G-O model, it is still not very bigger

than them and much smaller than other models’ values. So we can deduce that the proposed

model performs comparably better than those of other models in goodness-of-fit behavior.

Moreover, some additional information can be acquired from the estimation values of the

parameters given by the proposed model. For instance, in the context of LSE method, the fault

removal efficiency is 82.48%, which is slightly higher than the average value according to [20],

indicating the skill level of the testing team is beyond the average level. The initial fault content

is estimated 59, and the fault introduction rate is 0.5148, the expected total number of faults

detected is 110. Thus, at 20 weeks, which is the assumed stopping time point, there are still

about 10 remaining faults present in the software. This means that some faults still remain in

the software at the end of the testing phase. The fault introduction probability is 0.5148, i.e., on

average, 1 fault will be introduced when 2 faults are removed on average. So more testing train-

ing should be given to the testers and their testing skill should be improved greatly.

Fig 1. Testing coverage of DS-1.

https://doi.org/10.1371/journal.pone.0181524.g001
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The testing coverage function of the proposed model based on the parameters estimated by

LSE according to DS-2 is graphically illustrated in Fig 4, the changing trend of the testing cov-

erage over time also shows the aforementioned trend. Fig 5 depicts the fault detection rate

over time of DS-2. It shows that the fault detection rate displays a non-increasing S-shaped

trend with different decreasing rate at different phase, firstly its decreasing rate changes from

flat to more, then the fault detection rate decreases from fast to slow. The fitting comparison of

all models for DS-2 is graphically illustrated in Fig 6. It can be seen that the proposed model

fits the actual data better than all other models.

PL/I database application

In this section, we examine models using another data cited from Ohba (Data Set 3, DS-3) [5],

which has also been widely used in many studies, such as [22,45,46]. The failure data are given

Fig 2. Fault detection rate of DS-1.

https://doi.org/10.1371/journal.pone.0181524.g002
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Fig 3. The fitting results of SRGMs compared with actual data for DS-1.

https://doi.org/10.1371/journal.pone.0181524.g003

Table 4. Failure data of DS-2.

Testing time

(weeks)

CPU

(hours)

Cumulative

faults

Testing time

(weeks)

CPU

(hours)

Cumulative

faults

1 519 16 11 6539 81

2 968 24 12 7083 86

3 1430 27 13 7487 90

4 1893 33 14 7846 93

5 2490 41 15 8205 96

6 3058 49 16 8564 98

7 3625 54 17 8923 99

8 4422 58 18 9282 100

9 5218 69 19 9641 100

10 5823 75 20 10000 100

https://doi.org/10.1371/journal.pone.0181524.t004
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â
¼

9
9
9
:5

b̂
¼

0
:0

7
6
8
5

ĝ
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â
¼

0
:5

1
1
4
.8

4
3
8

0
.9

8
5
4

0
.9

8
2
7

â
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ĝ
¼

3
8
:8

3
â
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â
¼

1
2
7
:7

b̂
¼

0
:0

2
0
0
3

ĝ
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â
¼

1
:5

8
9
e
�

0
8
b̂
¼

0
:1

7
2
1
ĉ
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â
¼

5
8
:3

â
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in Table 6 with time unit week. There are totally 328 faults detected within about 19 weeks. All

data points are used to fit the models and estimate the models’ parameters.

Here we only use MLE to estimate the models’ parameters recorded in Table 7. MSE, R2,

Adjusted R2 and AIC values are all calculated on the parameters obtained by MLE.

It can be seen that compared to all models using the MSE, R2, Adjusted R2 and AIC criteria,

the proposed model displays the smallest MSE value and AIC value, the largest R2 value and

Adjusted_R2 value, the values are 93.8861, 203.3359, 0.9943 and 0.9906, respectively. That is to

say, we can deduce that the proposed model performs the best among all models in goodness-

of-fit behavior.

Moreover, some additional information can be acquired from the estimation values of the

parameters given by the proposed model. For instance, the fault removal efficiency is 60%,

which is below the average value according to [20], indicating the skill of the testing team

should be improved. The initial fault content is estimated 628, and the fault introduction rate

Fig 4. Testing coverage of DS-2.

https://doi.org/10.1371/journal.pone.0181524.g004
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is 0.5, the expected total number of faults detected is 792 at 19 weeks. Thus, at 19 weeks, which

is the assumed stopping time point, there are still about 464 remaining faults present in the

software. This means that many faults still remain in the software at the end of the testing

phase. The fault introduction probability is 0.5, i.e., on average, 1 fault will be introduced when

2 faults are removed on average. So more testing training should be given to the testers and

their testing skill should be improved greatly.

The testing coverage function of the proposed model based on the parameters estimated by

MLE according to DS-3 is graphically illustrated in Fig 7, the changing trend of the testing cov-

erage over time also shows the aforementioned trend. Fig 8 depicts the fault detection rate

over time of DS-3. It shows that the fault detection rate displays an S-shaped trend firstly

increasing and then decreasing with different decreasing rate at different phase, e.g. firstly its

decreasing rate changes from flat to more, then the fault detection rate decreases from fast to

slow. The fitting comparison of all models for DS-3 is graphically illustrated in Fig 9. It can be

seen that the proposed model fits the actual data better than all other models.

Fig 5. Fault detection rate of DS-2.

https://doi.org/10.1371/journal.pone.0181524.g005
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Fig 6. The fitting results of SRGMs compared with actual data for DS-2.

https://doi.org/10.1371/journal.pone.0181524.g006

Table 6. Failure data of DS-3.

Testing time (weeks) Cumulative faults Testing time (weeks) Cumulative faults

1 15 11 233

2 44 12 255

3 66 13 276

4 103 14 298

5 105 15 304

6 110 16 311

7 146 17 320

8 175 18 325

9 179 19 328

10 206

https://doi.org/10.1371/journal.pone.0181524.t006
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Table 7. Comparison of SRGMs’ descriptive power for DS-3.

Model

No.

Model Name MLE Method

Model Parameter Estimation Results MSE R2 Adjusted_ R2 AIC

1 G-O model â ¼ 513:1 b̂ ¼ 0:05365 248.2227 0.9785 0.9758 220.7602

2 Delayed S-shaped model â ¼ 359:9 b̂ ¼ 0:2126 211.0699 0.9817 0.9794 222.3754

3 Inflection S-shaped model â ¼ 355:1 b̂ ¼ 0:2129 b̂ ¼ 3:629 114.7818 0.9906 0.9888 205.0108

4 HD/G-O model â ¼ 513:1 b̂ ¼ 0:05365 ĉ ¼ 0:08779 263.7371 0.9785 0.9742 222.7602

5 Yamada exponential

model
â ¼ 826:7 b̂ ¼ 0:02387 ĝ ¼ 0:2190 â ¼ 6:332 287.1442 0.9780 0.9718 226.1432

6 Yamada Rayleigh model â ¼ 469:4 b̂ ¼ 0:01403 ĝ ¼ 0:3685 â ¼ 3:538 346.2307 0.9735 0.9660 247.8212

7 Yamada imperfect 1

model
â ¼ 513:1 b̂ ¼ 0:05365 â ¼ 1:0e � 10 263.7372 0.9785 0.9742 222.7602

8 Yamada imperfect 2

mode
â ¼ 513:1 b̂ ¼ 0:05365 â ¼ 1:0e � 10 263.7366 0.9785 0.9742 222.7602

9 P-Z model â ¼ 1:0e � 10 b̂ ¼ 0:2129 ĉ ¼ 355:1 â ¼ 5:634e � 05 b̂ ¼ 3:629 131.1790 0.9906 0.9870 209.0108

10 Fault removal model â ¼ 321:9 â ¼ 100:0 b̂ ¼ 0:1312 p̂ ¼ 0:9836 ĉ ¼ 5:403 b̂ ¼ 0:01765 110.8502 0.9927 0.9890 204.6694

11 SRGM-3 model Â ¼ 372:7 â ¼ 0:1408 b̂ ¼ 5:108 p̂ ¼ 0:01854 215.7341 0.9835 0.9788 215.9364

12 proposed model â ¼ 628:2 â ¼ 0:5 ĉ ¼ 0:1781 p̂ ¼ 0:6 b̂ ¼ 0:058 ĝ ¼ 0:6193

Â ¼ 0:9999

93.8861 0.9943 0.9906 203.3359

Notes: The bold numbers mean the result of the best SRGM in this column.

https://doi.org/10.1371/journal.pone.0181524.t007

Fig 7. Testing coverage of DS-3.

https://doi.org/10.1371/journal.pone.0181524.g007
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Comparison of models’ predictive power

In order to validate the performance of the proposed model’s predictive power, we divide the

above three data sets into two parts. For DS-1, we use the first 80% of data points to estimate

the models’ parameters, then use the remaining data to compare the models’ predictive power.

Fig 8. Fault detection rate of DS-3.

https://doi.org/10.1371/journal.pone.0181524.g008

Fig 9. The fitting results of SRGMs compared with actual data for DS-3.

https://doi.org/10.1371/journal.pone.0181524.g009
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Table 8 gives both SSE values in the context of LSE and AIC values in the context of MLE,

respectively. It shows that the proposed model provides the lowest value of SSE (533.3269) and

the smallest value of AIC (599.7586), which are both far less than other models’ values. For

example, the proposed model is followed by the inflection S-shaped model with an SSE value

of 2774.2 and the P-Z model with an SSE of 2814.9, which are approximately 5 times as large

as that of the proposed model. Meanwhile, the Yamada exponential model displays an AIC

value of 685.9234 and the Yamada imperfect 1 model gives an AIC of 683.8968, which are

approximately 1.15 times as large as that of the proposed model.

For DS-2, we use the first 90% of data points to estimate the models’ parameters, then use

the remaining data to compare the models’ predictive power. Here we also use both LSE and

MLE methods to estimate the models’ parameters. In terms of SSE values listed in Table 8,

the proposed model still offers the smallest values of SSE at 2.6775 and 0.7418, though

followed by the delayed S-shaped model with an SSE of 3.5409 and the Yamada Rayleigh

model with an SSE of 1.6944, which are only 2 times as large as that of the proposed model,

but other models have very larger SSE values from 3 times to 1672 times as large as that of the

proposed one.

For DS-3, we use the first 95% of data points to estimate the models’ parameters, then use

the remaining data to compare the models’ predictive power. Here we only use MLE method

to estimate the models’ parameters. From Table 8, it can be seen that the proposed model pro-

vides both the lowest value of SSE (0.2231) and the smallest value of AIC (199.7570).

Therefore, according to these results listed in Table 8, we can conclude that the proposed

model provides better prediction performance.

Sensitivity analysis

Here we conduct the sensitivity analysis to study each parameter’s impact on the robustness of

the proposed model, in which one parameter is changeable, while the other parameters are set

to their fixed values. Due to limited space, here we only give the results based on DS-1 and DS-

2, the same conclusion can be obtained on DS-3, too. Fig 10(a)–10(g) show the sensitivity of

Table 8. Comparison of SRGMs’ predictive power for DS-1, DS-2 and DS-3.

Model No. Model Name 80% OF DS-1 90% OF DS-2 95% OF DS-3

LSE MLE LSE MLE MLE MLE

SSE(prediction) AIC SSE(prediction) SSE(prediction) SSE(prediction) AIC

1 G-O model 6.7713e+04 681.8968 127.7521 19.6070 73.0257 209.8042

2 Delayed S-shaped model 3.5343e+03 612.0752 3.5409 3.5409 10.7484 217.4616

3 Inflection S-shaped model 2.7742e+03 607.7088 69.2427 11.8312 13.9427 199.8602

4 HD/G-O model 6.7713e+04 683.8968 127.7521 19.6070 73.0261 211.8042

5 Yamada exponential model 6.0381e+04 685.9234 129.9145 20.3747 67.0656 213.8376

6 Yamada Rayleigh model 3.4667e+05 631.7 8.3464 1.6944 3.7106 244.3408

7 Yamada imperfect 1 model 6.7713e+04 683.8968 127.7523 19.6065 73.0260 211.8042

8 Yamada imperfect 2 model 5.7234e+04 683.8968 127.7522 19.6074 73.0266 211.8042

9 P-Z model 2.8149e+03 611.6886 69.2427 11.8312 13.9429 203.8602

10 Fault removal model 1.9332e+04 618.0582 38.6916 19.6069 1.0408 201.4796

11 SRGM-3 model 1.1495e+04 630.9322 4.4774e+03 859.1574 49.2648 207.0564

12 proposed model 533.3269 599.7586 2.6775 0.7418 0.2231 199.7570

Notes: The bold numbers mean the results of the best SRGM in this column.

https://doi.org/10.1371/journal.pone.0181524.t008
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parameters A, α, α, β, p, c and r in the proposed model based on DS-1 respectively. From

Fig 10(a)–10(g), it can be seen that the cumulative number of detected faults will be apparently

changed with the expected number of initial fault number α, fault introduction rate α, the fault

removal efficiency p, the probability constant β, the maximum testing coverage percentage A,

scale parameter c and shape parameter r changing accordingly. Thus, parameters A, α, α, β, p, c
and r are all influential parameters in the proposed model. Fig 11(a)–11(g) also show the simi-

lar results for DS-2. So these parameters can be regarded as influential parameters in the pro-

posed model.

Fig 10. The sensitivity analysis of the parameters of the proposed model for DS-1. (a) Dependence of Parameter A (DS-1) (b) Dependence of

Parameter a (DS-1) (c) Dependence of Parameter α (DS-1) (d) Dependence of Parameter β (DS-1) (e) Dependence of Parameter c (DS-1) (f)

Dependence of Parameter p (DS-1) (g) Dependence of Parameter r (DS-1).

https://doi.org/10.1371/journal.pone.0181524.g010
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Conclusions

In this paper, an imperfect debugging model NHPP-based is developed to incorporate both

error generation and imperfect fault removal efficiency, together with considering inflected S-

shaped testing coverage to denote the fault detection rate function. Comparisons of this model

with several other existing NHPP models have been presented in detail. In addition, three

widely used failure data sets are provided for validating the goodness-of-fit and predictive per-

formance of the proposed model. Moreover, five comparison criteria are used to evaluate

model performance and the results conclude that the proposed model can fit and predict bet-

ter. Thus, the results obtaining from the proposed model are encouraging. Furthermore, the

Fig 11. The sensitivity analysis of the parameters of the proposed model for DS-2. (a) Dependence of Parameter A (DS-2) (b) Dependence of

Parameter a (DS-2) (c) Dependence of Parameter α (DS-2) (d) Dependence of Parameter β (DS-2) (e) Dependence of Parameter c (DS-2) (f)

Dependence of Parameter p (DS-2) (g) Dependence of Parameter r (DS-2).

https://doi.org/10.1371/journal.pone.0181524.g011
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sensitivity analysis displays that parameters A, α, α, β, p, c and r are influential parameters in

the proposed model.

The limitations for the proposed model are analyzed as follows:

1. In our experiments, quantity and kind of fault data sets seem to be limited. To be well-

known, using more data sets and more kinds of data sets can give more effective demon-

stration for the model’s performance. However, we used only three real-world data sets to

validate the model’s performance. Thus, fault data sets in quantity and more kinds are

needed in the future work to give a more in-depth validation.

2. The proposed model assumes the fault removal efficiency to be a constant to simplify the

model’s mathematical derivation and calculation. But in practical software debugging pro-

cess, the fault removal efficiency may be changed dependent on time because it depends on

many factors such as the skill of the testing team, the complexity of software system, the

testing strategy and the testing environment etc. Thus, the fault removal efficiency may take

some kinds of complicated function forms, e.g., a time dependent function rather than a

constant. Therefore, more forms of fault removal efficiency function should be studied in

the future research.
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