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Abstract

Introduction

Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited heart disease. Next-

generation sequencing (NGS) is the preferred genetic test, but the diagnostic value of

screening for minor and candidate genes, and the role of copy number variants (CNVs)

deserves further evaluation.

Methods

Three hundred and eighty-seven consecutive unrelated patients with HCM were screened

for genetic variants in the 5 most frequent genes (MYBPC3, MYH7, TNNT2, TNNI3 and

TPM1) using Sanger sequencing (N = 84) or NGS (N = 303). In the NGS cohort we analyzed

20 additional minor or candidate genes, and applied a proprietary bioinformatics algorithm

for detecting CNVs. Additionally, the rate and classification of TTN variants in HCM were

compared with 427 patients without structural heart disease.

Results

The percentage of patients with pathogenic/likely pathogenic (P/LP) variants in the main

genes was 33.3%, without significant differences between the Sanger sequencing and NGS

cohorts. The screening for 20 additional genes revealed LP variants in ACTC1, MYL2,
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MYL3, TNNC1, GLA and PRKAG2 in 12 patients. This approach resulted in more inconclu-

sive tests (36.0% vs. 9.6%, p<0.001), mostly due to variants of unknown significance (VUS)

in TTN. The detection rate of rare variants in TTN was not significantly different to that found

in the group of patients without structural heart disease. In the NGS cohort, 4 patients

(1.3%) had pathogenic CNVs: 2 deletions in MYBPC3 and 2 deletions involving the com-

plete coding region of PLN.

Conclusions

A small percentage of HCM cases without point mutations in the 5 main genes are explained

by P/LP variants in minor or candidate genes and CNVs. Screening for variants in TTN in

HCM patients drastically increases the number of inconclusive tests, and shows a rate of

VUS that is similar to patients without structural heart disease, suggesting that this gene

should not be analyzed for clinical purposes in HCM.

Introduction

Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy with

histologic features of cellular hypertrophy, myofibrillar disarray, and interstitial fibrosis. With

a prevalence of 0.2% in the adult population, HCM is the most common inherited cardiac dis-

ease and a major cause of sudden cardiac death (SCD) in young people [1]. The disease has

marked phenotypic variability, and clinical manifestations range from asymptomatic clinical

course to severe heart failure and SCD. The identification of a disease-causing variant in a

patient is crucial for diagnosis confirmation in borderline cases, early management of at-risk

family members, genetic counseling and avoidance of unnecessary follow-up of non-carriers.

The latter, besides doubtless clinical benefit, enables significant health-care costs saving [2–4].

For all these reasons, current guidelines recommend genetic testing in patients fulfilling diag-

nostic criteria for HCM, but the advantages of screening for genes without a definitive evi-

dence of disease association versus more conservative approaches remain to be determined

[5].

Overall, in patients fulfilling HCM diagnostic criteria, genetic testing leads to the identi-

fication of disease-causing genetic variants in 32–78.9% of cases, depending on the clinical

characteristics of the patients, the number of genes studied, and the criteria used for variant

classification [4, 6–19]. Most HCM cases are caused by mutations in genes that encode sarco-

mere proteins [19–21]. Among them, about 85% of pathogenic variants are found in MYBPC3
and MYH7, 10% in cardiac troponin T (TNNT2) and troponin I (TNNI3), up to 2% in TPM1,

and less than 3% in other sarcomere genes (MYL2, MYL3, ACTC1 and TNNC1). For this rea-

son, initial studies using Sanger sequencing in HCM recommended to focus on the 5 principal

sarcomere genes [20]. Recent improvements in DNA-sequencing technologies offer the oppor-

tunity to screen for a larger number of genes in a time and cost-effective manner. However,

this approach also results in an increase of the number of rare genetic variants of unknown sig-

nificance (VUS), which may entail a clinical challenge.

The analysis of a predefined panel of HCM-related genes using Next-Generation Sequenc-

ing (NGS) technologies has emerged as the preferred genetic testing methodology for clinical

purposes in HCM. This approach allows the additional screening for genes that have been pre-

viously proposed to cause a relatively small number of HCM cases (minor genes) and genes
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with a controversial role in the disease (candidate genes) [12, 19, 22]. Moreover, panels can

easily include genes related to metabolic disorders that account for rare cases of unexplained

left ventricular hypertrophy in adults (<5%) but whose identification is of great clinical rele-

vance [5]. Finally, NGS enables the detection of alterations in the number of copies of large

genomic regions, known as Copy Number Variants (CNVs). Recently, two large NGS series

involving the screening for these variants in HCM-associated genes have shown that 0.56–

0.8% of HCM cases may be explained by these large imbalances [23, 24].

The aim of the present study was to determine the prevalence and spectrum of clinically rel-

evant genetic variants in a Spanish cohort of HCM patients and analyze the additional clinical

value provided by the screening for minor and candidate HCM genes and CNVs using NGS.

The value and clinical challenges derived from the screening for variants in TTN were specifi-

cally addressed and compared with an independent cohort of patients without structural heart

disease.

Materials and methods

Study population

The study cohort includes 387 consecutive unrelated Spanish patients with clinical diagnosis

of HCM according to current clinical criteria [5], referred for genetic testing between 2012

and 2016. The study was approved by the ethical committee of Hospital Universitari Dr. Josep

Trueta de Girona (Spain) and conformed to the ethical guidelines of the Declaration of Hel-

sinki 2008. Informed written consent was obtained from all subjects. Patients were recruited at

the Inherited Heart Diseases Units from Hospital General Universitario Gregorio Marañón,

Hospital Universitari Dr. Josep Trueta, Hospital Clı́nic de Barcelona and Hospital Universi-

tario Puerta del Hierro. The mean age at the time of the genetic study was 48±20 years, 255

patients (65.9%) were men and 132 (34.1%) women. Family members of carriers of rare non-

synonymous variants, indels and/or CNVs were invited to undergo genetic analysis. During

the period of the study 180 relatives were referred for genetic testing and were studied by

Sanger sequencing or MLPA.

The detection rate and classification of rare variants in TTN in the HCM cohort was com-

pared with the results obtained in an independent group of 427 unrelated patients without

echocardiographic evidence of structural heart disease (30 healthy subjects, 191 patients with

Brugada syndrome, 138 with long QT syndrome, 20 with catecholaminergic polymorphic ven-

tricular tachycardia, 8 with short QT syndrome, 9 with atrioventricular block, 7 with idiopathic

ventricular tachycardia/ ventricular fibrillation, 5 with atrial fibrillation and 19 with other

arrhythmias).

Genetic analysis

Total genomic DNA was isolated from blood or saliva samples using Chemagen MSM I (Perki-

nElmer, Germany). All patients were screened for the 5 more frequent sarcomere genes

(MYBPC3, MYH7, TNNI3, TNNT2 and TPM1) (isoforms analyzed are listed in S1 Table). The

first 84 patients underwent Sanger sequencing of these 5 genes and the remaining 303 patients

were studied using expanded NGS panels.

Sanger sequencing. The coding regions and exon-intron boundaries (±10bp) of the 5

main sarcomere genes were amplified by PCR and, after purification, the PCR products were

directly sequenced in both directions using BigDye Terminator v3.1 Cycle Sequencing Kit

(Applied Biosystems, TX, USA). Sequencing products were run on 3130XL Genetic Analyzer

(Applied Biosystems) and analyzed by means of SeqScape Software v2.5 (Life Technologies,

CA, USA).

Minor genes and CNVs in HCM
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NGS. Three hundred and three patients were analyzed with custom NGS panels (55 or 78

genes) including the coding regions and exon-intron boundaries (±10bp) of the most preva-

lent genes associated with inherited cardiac diseases (the 55-gene panel includes the UTR

sequences of some genes). Coordinates of sequence data were based on UCSC human genome

version hg19 (GRCh37). Both NGS panels were developed by Gendiag.exe S.L. and commer-

cialized by Ferrer InCode as SudD inCode1.

Using either panel, we focused on the analysis of 25 genes previously associated or candi-

date for HCM. Reference sequence transcripts listed in S1 Table were analyzed. Only eight sar-

comere genes definitively associated with HCM (MYBPC3, MYH7, TNNI3, TNNT2, TPM1,

ACTC1, MYL2 and MYL3) and genes robustly associated with metabolic diseases that can

mimic HCM (GLA, LAMP2 and PRKAG2) were considered validated genes [22]. The addi-

tional 14 genes (CSRP3, PLN, ACTN2, MYOZ2, MYH6, TNNC1, CAV3, JPH2, LDB3, RYR2,

TCAP, VCL, PDLIM3 and TTN) were classified as candidate genes. Following the criteria

described by Walsh et al. [22], these candidate genes have different levels of evidence for their

association with HCM, with the exception of PDLIM3 and VCL (no supporting evidence), and

RYR2 and TTN (evidence not analyzed). We analyzed separately the additional value and clini-

cal challenges derived from the screening for variants in TTN, due to the limited evidence for

its association with HCM and the high background variation of this gene.

Sample libraries were prepared following the SureSelect XT Target Enrichment System for

Illumina Paired-End Sequencing Library protocol (Agilent Technologies, CA, USA). Indexed

libraries were sequenced in ten-sample pools on a MiSeq platform (Illumina, CA, USA), with

2x75 bp reads length.

An algorithm developed by Gendiag.exe SL was used to process the FASTQ files to obtain

clean BAM files for the subsequent analysis of both SNVs and indels. In brief, the processed

raw reads obtained after sequencing were trimmed and mapped with BWA-MEM [25]. The

output from mapping steps was joined and sorted, and only the uniquely and properly mapped

read pairs were selected. Then the variant call was performed with SAMtools v.1.2 [26],

together with an ad hoc developed script. Both the custom NGS gene panels and the bioinfor-

matics algorithm used for the detection of SNVs and indels had been previously validated in

our center, obtaining a sensitivity of 100% and a specificity of 99.5% (unpublished data). The

identified SNVs and indels were annotated with dbSNP [27], Exome Sequencing Project (ESP)

[28], 1000 Genomes Project [29], Exome Aggregation Consortium (ExAC) [30], Human Gene

Mutation Database (HGMD) [31] and ClinVar [32]. Sanger sequencing was performed to

sequence regions with coverage lower than 30X, as well as to validate the uncommon non-syn-

onymous variants identified. Genetic variants were reported following the recommendations

of the Human Genome Variation Society.

We used a bioinformatics algorithm developed in our laboratory to detect CNVs using

NGS data. The approach focuses on capturing significant differences between the expected

and observed normalized coverage for a given sample in every exon of the genes included in

the NGS panels. Raw coverage is first normalized by the amount of DNA yielded for each sam-

ple in the run. Then the insert size and the low probe affinity bias for targeted regions with a

too high or too low GC content (>75% and<45%, respectively) are corrected. Finally, the

ratio between each sample and a built-in baseline is evaluated. If the ratio falls outside a signal-

to-noise window and is greater or lower than the duplication or deletion cut-offs (0.45 and

-0.8, respectively), the gain or loss is inferred. Each potential CNV was visually reviewed to dis-

card possible false positives due to artefacts caused by samples with enrichment inconsistencies

generated during the library preparation protocol. Sensitivity and specificity of the method

were assessed in an independent cohort including 108 patients with different cardiovascular
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diseases (16 of them with known CNVs and the remaining without this type of rearrange-

ments), and they were 100% and 90.7%, respectively (unpublished data).

Each CNV identified by NGS was validated by an alternative method (Multiplex Ligation-

dependent Probe Amplification -MLPA- or quantitative PCR -qPCR-). MLPA analyses were

performed using commercially available SALSA MLPA probemixes and following manufac-

turer’s instructions (MRC-Holland, Amsterdam, The Netherlands). After the multiplex PCR

reaction, electrophoresis was performed using ABI3130XL Genetic Analyzer with LIZ500 size

standard (both from Applied Biosystems), and results were analyzed using Coffalyser.Net

(MRC-Holland). qPCR analyses were performed with the QuantStudio 7 Flex System using

Power Up Sybr Green master mix (both from Life Technologies), following manufacturer’s

recommendations. Results were analyzed with QuantStudio Real-Time PCR Software v1.2

(Life Technologies).

For precise characterization of the CNVs, the breakpoints were assessed using NGS split-

read data when the breakpoint regions were covered by the NGS panels, and then they were

confirmed by Sanger sequencing. When no split-read data were available, Sanger sequencing

was performed in an attempt to characterize the breakpoints using primers located in the non-

altered regions of the gene of interest.

Summary of NGS data results. In the present study, including all MiSeq runs, the average

call rate achieved at 30x with the custom enrichment gene designs of 55 and 78 genes was

99.7% and 99.8%, respectively. The median percentage of reads overlapping our target regions

was 48% (range 39% to 51%) for the first panel and 66% (range 52% to 69%) for the second

one. The median coverage per sample was 870 (721 to 1069) and 679 (479 to 867), respectively.

The 25 and 75 percentiles were 571 and 1099 for the 55 gene design, and 509 and 843 for the

78 gene design.

Criteria for interpretation of SNVs, indels and CNVs

Rare variants (SNVs and indels) were defined as variants with a minor allele frequency (MAF)

<0.002 [19, 33] in the databases dbSNP [27], ESP [28], 1000 Genomes Project [29] and Exome

Aggregation Consortium (ExAC) [30]. We chose this conservative and inclusive cut-off to

ensure the selection of all potentially relevant variants for the subsequent process of individual

variant classification (see below). Additionally, to analyze the impact of the MAF filter applied

on the final number and classification of genetic variants, we compared this approach with a

more restrictive hard filtering recently proposed by Walsh et al., based on the frequency of the

most common pathogenic HCM variant (MAF <0.0001 in ExAC) [22]. Both MAF criteria

were also used to compare the detection rate of rare variants in TTN in HCM patients and

individuals without a structural heart disease.

We used the updated American College of Medical Genetics and Genomics (ACMG) 2015

guidelines for variant interpretation to classify variants in 5 categories: pathogenic (P), likely

pathogenic (LP), VUS, likely benign (LB) or benign (B) [34]. For the assessment of the clinical

significance of previously reported variants we first searched for information in public variant

databases, population cohorts and scientific literature. Then, available clinical, experimental

and computational data were integrated with potential additional information obtained from

the study of the particular family to reach a final clinical conclusion. The strength of the associ-

ation with the disease at the gene-level was classified as strong, moderate, weak, only supported

in functional data or no evidence [22].

Novel variants were defined as variants not previously reported in patients (published liter-

ature, HGMD [31] or ClinVar [32]) and absent from controls in ESP, 1000 Genomes Project

[29], ExAC and Genome Aggregate Database [30]. Novel variants that did not meet strict
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ACMG criteria of pathogenicity (VUS) but exhibited at least one supportive criteria were

denominated novel candidate variants. For this purpose we considered the following criteria:

1) location in a mutational hot spot and/or critical and well-established functional domain, 2)

protein length changes as a result of in-frame deletions/insertions in a nonrepeat region, 3)

missense change at an amino acid residue where a different missense change determined to be

pathogenic has been seen before, 4) cosegregation with disease in�2 affected family members,

or 5) multiple lines of computational evidence support a deleterious effect (probably or possi-

bly damaging/deleterious/disease causing by three in silico prediction tools: PolyPhen-2 [35],

Provean [36] and Mutation Taster [37]).

Finally, if the segregation study of a large family enabled the classification of a variant as LB

(no segregation), such labeling was extrapolated to other index cases with the same genetic var-

iant. In the description of TTN variants, we included their location in the main protein

domains and the percentage spliced in (PSI) of the affected exon (estimation of the percentage

of TTN transcripts that incorporate the mutation) [38], but we did not use this information to

modify the variant classification.

Confirmed CNVs were first compared with published literature and databases HGMD

[31], ClinVar [32], DECIPHER [39], Database of Genomic Variants [40] and ClinGen [41]. If

the CNV (identical after precise characterization) had been previously robustly classified as P/

LP or B/LB, the classification was extrapolated to our case. Novel CNVs were classified as path-

ogenic variants if: 1) it was a deletion in/of a gene where loss of function is a known mecha-

nism of patient’s disease, 2) it was an intragenic in tandem duplication (not involving the last

exon of the gene) in a gene where loss of function is a known mechanism of disease, or 3) it

was a whole gene duplication in a gene for which triplosensitivity is known to cause patient’s

disease.

Statistical analysis

Categorical variables were compared using the chi-square test and two-sided p values<0.05

were considered significant. Specifically, we compared the percentage of patients with rare var-

iants observed after the screening for 25 genes with the percentage obtained when only the 5

main sarcomere genes were analyzed in the same cohort. We also compared the rate of P/LP

variants found using these two different approaches. The same comparison was performed

excluding TTN (set of 24 genes). Contingence tables were built to identify the number of

patients with rare variants in TTN that also carried rare or P/LP variants in sarcomere genes.

The role of the MAF hard filter on the final number and classification of genetic variants was

analyzed comparing the proportions obtained using two different MAFs (<0.002 vs.<0.0001).

We also used both MAF cut-offs to compare the detection rate of rare variants in TTN in

patients with HCM and patients without structural heart disease. The statistical analysis was

performed using R version 3.3.2.

Results

Genetic variants in main sarcomere genes

Overall, including both the Sanger sequencing and the NGS cohorts (n = 387 patients), we

found 187 rare variants in the 5 principal sarcomere genes (MYBPC3, MYH7, TNNI3, TNNT2
and TPM1) in 269 patients (69.5%) (S1 and S2 Tables). After applying the ACMG criteria of

causality, 135 variants were classified as P/LP (72.2%), 41 (21.9%) were considered VUS, and

only 11 (5.9%) were LB. No significant differences in the percentage of rare, P/LP or novel var-

iants in the five main sarcomere genes were observed between the Sanger and the NGS cohorts

(split data are shown in Table 1). The percentage of patients with at least one P/LP variant
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(positive test) was 33.3%. We found 48 novel variants in these sarcomere genes. Among them,

35 were classified as P/LP (Table 2) and 1 as candidate novel variant.

The distribution of the 187 rare variants found in the 5 main sarcomere genes (pooled data

from Sanger sequencing and NGS cohort, 387 patients) and their clinical classification is

shown in Fig 1. We found 114 rare variants in MYBPC3, 48 in MYH7, 11 in TNNT2, 4 in

TNNI3 and 10 in TPM1. As expected, most P/LP variants were found in MYBPC3 (64.2%) and

MYH7 (27%). In accordance with a well-known loss of function mechanism for MYBPC3,

most P/LP variants in this gene (60.2%) were radical variants, whereas missense variants were

the most frequent variants among the other genes. Cascade genetic screening allowed us to

establish the penetrance of 40 P/LP variants: 17 with complete penetrance and 23 with incom-

plete penetrance. One variant was de novo.

We identified several sarcomere variants previously associated with other cardiomyopathies

(S2 Table). Among P/LP variants, MYH7_p.R249G has been previous described in association

with left ventricular non-compaction cardiomyopathy (LVNC) [42], and MYH7_p.T1019N in

association with both dilated cardiomyopathy (DCM) and HCM [43, 44]. Additionally, cas-

cade screening for the pathogenic variant TNNT2_p.E163del found in one HCM index case

showed that 1 of the 3 genotype-positive relatives had HCM but the other 2 had a LVNC

phenotype.

Rare genetic variants identified in the NGS cohort

The screening for 25 genes in the NGS cohort showed 401 rare variants, but 3 variants were

not confirmed by Sanger sequencing (false discovery rate = 0.75%). Therefore, 398 confirmed

variants were reported in 231 patients. In comparison with the screening for only the 5 main

sarcomere genes, the percentage of patients with non-benign variants was significantly higher

Table 1. Rare variants (MAF <0.002) in the 5 most frequent sarcomere genes, 25 genes associated with or candidate for HCM and 24 genes (same

panel excluding TTN).

Main Sarcomere Genes 25 Gene Panel 24 Genes (excluding TTN)

Pooled Data Sanger cohort NGS cohort NGS cohort NGS cohort

Patients n 387 84 303 303 303

Positive test n (%) 129 (33.3) 30 (35.7) 99 (32.7) 111 (36.6) 111 (36.6)

Positive test or novel candidates n (%) 130 (33.6) 30 (35.7) 100 (33.0) 121 (39.9) 115 (38.0)

Test with non-bening variants(1) n (%) 163 (42.1) 35 (41.7) 128 (42.2) 220 (72.6)* 171 (56.4)*#

Inconclusive test n (%) 34 (8.8) 5 (6.0) 29 (9.6) 109 (36.0)* 60 (19.8)*#

Number of rare variants 187 39 148 398 235*#

Pathogenic n (%) 68 (36.4) 14 (35.9) 54 (36.5) 57 (14.3)* 57 (24.3)*#

Likely Pathogenic n (%) 67 (35.8) 16 (41.0) 51 (34.5) 60 (15.1)* 60 (25.5)#

VUS n (%) 41 (21.9) 6 (15.4) 35 (23.6) 243 (61.1)* 97 (41.3)*#

Benign/Likely Benign n (%) 11 (5.9) 3 (7.7) 8 (5.4) 38 (9.5) 21 (8.9)

Novel variants 48 10 38 110* 61#

Pathogenic/Likely Pathogenic n (%) 35 (72.9) 9 (90) 26 (68.4) 29 (26.4)* 29 (47.5)#

Novel Candidate variants 1 (2.1) 0 1 (2.6) 27 (24.5)* 7 (11.5)#

VUS (excluding candidate variants) n (%) 11 (22.9) 1 (10) 10 (26.3) 51 (46.4)* 24 (39.3)

Benign/Likely Benign n (%) 1 (2.1) 0 1 (2.6) 3 (2.7) 1 (1.6)

(1) All rare variants excluding benign and likely benign variants. n: number; NGS: next generation sequencing; VUS: variant of unknown significant.

*p<0.05 vs. analysis of 5 genes (MYBPC3, MYH7, TNNI3, TNNT2 and TPM1) in the NGS cohort.
#p<0.05 vs. panel including 25 genes.

https://doi.org/10.1371/journal.pone.0181465.t001
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(72.6% vs. 42.2%, p<0.001). Among them, 117 variants in 111 patients (36.6%) were classified

as P/LP (Table 1). The proportion of patients with a positive test was not significantly different

to the proportion found when screening for only the 5 main sarcomere genes (Table 1). The dis-

tribution of the 398 rare variants in the 25 genes in the NGS cohort and their clinical classifica-

tion is shown in Fig 2. All genes except CSRP3, LDB3, MYOZ2 and PLN showed at least one

rare variant. The classification of the novel variants identified in this cohort is shown in Fig 3.

In 99 patients who did not have rare variants in the 5 main sarcomere genes the screening

for minor and candidate genes identified 250 rare variants. Among them, 12 patients carried

P/LP variants. Most of these P/LP variants were found in validated minor sarcomere genes

(ACTC1, MYL2 and MYL3) and genes related to metabolic diseases (GLA and PRKAG2) (Figs

2 and 4). The lack of definitive association with HCM implied that most rare variants found in

candidate genes did not meet enough standardized ACMG criteria to be considered P/LP.

However, at the individual variant level, we identified 2 unrelated HCM patients with the vari-

ant TNNC1_p.A8V, which has been previously reported in at least 7 additional unrelated

HCM patients, is absent in control population (ExAC), and has functional studies supportive

Table 2. Novel pathogenic/likely pathogenic variants found in validated sarcomere genes.

Gene cDNA Aminoacid Exon Type Probands

MYBPC3

c.323delC p.108Lfs*51 3 Frameshift 1

c.313dupG p.A105Gfs*8 3 Frameshift 1

c.572G>T p.W191L 5 Missense 1

c.1421_1424delAGTG p.E474Vfs*13 16 Frameshift 1

c.1471delG p.V491Wfs*3 17 Frameshift 1

c.2190delC p.K731Rfs*23 23 Frameshift 2

c.2329dupG p.A777Gfs*56 24 Frameshift 2

c.2591delT p.F864Sfs*15 25 Frameshift 1

c.2512G>T p.E838* 25 Nonsense 1

c.2724_2725delCTinsGCTGTA p.Y908* 26 Nonsense 1

c.2603-2A>G 26 Splice site 2

c.2905+2T>C 27 Splice site 1

c.3066dupC p.N1023Qfs*28 29 Frameshift 2

c.3190+5G>C 29 Intronic 1

c.3182_3190+4delAGGTTGTTGGTGC 29 Long indel 1

c.3020G>A p.W1007* 29 Nonsense 2

c.3190+2T>C 29 Splice site 1

c.3328delA p.M1110Wfs*79 30 Frameshift 3

c.3620_3623dupGCCC p.K1209Pfs*34 32 Frameshift 1

c.3719T>A p.I1240N 33 Missense 1

MYH7

c.530C>G p.T177S 6 Missense 1

c.920C>G p.P307R 11 Missense 2

c.1207C>G p.R403G 13 Missense 1

c.1580C>T p.P527L 16 Missense 1

c.2596T>C p.S866P 22 Missense 1

TNNT2

c.311C>A p.A104E 9 Missense 1

TNNI3

c.602T>C p.M201T 8 Missense 1

https://doi.org/10.1371/journal.pone.0181465.t002
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of a damaging effect. The findings of our cohort may help to increase the supportive evidence

for enrichment of this infrequent variant in HCM cases.

The expanded genetic study identified 72 novel variants out of the 5 more frequent genes.

On the other hand, the number of VUS drastically increased with the screening of 25 genes

(23.6% vs. 61.1%, p<0.001). Most of the additional VUS were TTN variants (97.9% of them

missense). Accordingly, the number of inconclusive tests also increased (9.6% vs. 36.0%,

p<0.001) (Table 1).

Effect of MAF cut-off on the number and classification of rare variants. Using a ExAC

MAF <0.0001 we identified 308 variants in 205 patients (67.7%) from the NGS cohort. This

Fig 1. Classification of rare variants in MYBPC3, MYH7, TNNI3, TNNT2 and TPM1 (pooled data from Sanger sequencing and NGS cohorts).

https://doi.org/10.1371/journal.pone.0181465.g001
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cut-off filtered out 28 of the 39 LB variants and 59 of the 241 VUS with MAF<0.002. However,

the rate of inconclusive studies did not significantly change (31.7% vs. 36.0%, p = 0.26). Three

LP variants in 3 different patients were missed (MYBPC3_p.V771M in two patients and

TNNT2_p.R278C in another one). Although there is enough supporting evidence to consider

both variants as LP, published data suggest incomplete penetrance and a mild effect in isola-

tion. Complete analysis with MAF <0.0001 is provided in S3 Table. The effect of the different

MAF cut-offs on the number and distribution of variants according to the gene-level associa-

tion with the disease is presented in Fig 4.

Fig 2. Classification of the rare variants found in the 25 genes screened in the NGS cohort.

https://doi.org/10.1371/journal.pone.0181465.g002
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Identification of multiple variants: Compound and double heterozygotes. Overall, con-

sidering only the 8 validated sarcomere genes and excluding LB variants, 14 patients carried

two variants. In 6 cases we found 2 P/LP variants, and in 8 cases one P/LP variant in combina-

tion with one VUS. Six patients had two variants in MYBPC3 (1 was a compound heterozygote,

while in the remaining cases we cannot discard the possibility of both variants being located in

the same allele), 1 patient had two variants in MYH7, and 7 patients were double-heterozygous

for validated sarcomere genes. In the NGS cohort, 105 patients had more than one non-benign

variant. After excluding TTN from analysis, 38 patients had multiple non-benign variants.

Detection rate of TTN variants in HCM and comparison with patients

without structural heart disease

TTN variant classification and filtering. We found 163 rare variants in TTN in 117

patients, 49 novel and 114 previously described in clinical and/or population databases. After a

Fig 3. Classification of the novel variants identified in the NGS cohort.

https://doi.org/10.1371/journal.pone.0181465.g003
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careful revision of published data and family studies, 17 variants were classified as LB (15 pre-

viously reported and 2 novel variants). In particular, segregation studies allowed us to classify

the variant as LB in 8 families. The remaining 146 variants in 108 patients were classified as

VUS (28 patients had 2 additional VUS, and 5 had 3 VUS). Fifty-eight patients also carried var-

iants in the main sarcomere genes, classified as P/LP in 40 cases. In an attempt to select the

VUS in TTN with a higher potential clinical significance we focused on 20 novel candidate var-

iants found in 18 patients in which three in silico tools consistently predicted a deleterious

effect (Table 3). Fourteen of these variants were found in 13 patients who also carried variants

in sarcomere genes (9 patients had a P/LP variant and 4 a VUS). Only 6 of these filtered TTN
variants in 5 patients were found in cases without variants in the main sarcomere genes.

Comparison with patients without structural heart disease. The number of HCM

patients with non-synonymous rare variants in TTN (38.6% with MAF <0.002 and 29% with

MAF <0.0001) was not significantly different to the group of patients without evidence of

structural heart disease (39.3% with MAF <0.002, and 26% with MAF <0.0001) (p>0.3 for

both case-control comparisons) (Table 4). The detection rate of VUS and novel variants was

also similar (Table 4). A detailed description of the TTN variants analyzed in this cohort is pro-

vided in S4 Table.

With respect to the total number of TTN variants, filtering with MAF <0.002, the percent-

age of LB variants was higher in the group of patients without structural heart disease, and the

relative percentage of novel variants was lower. However, considering only variants with MAF

<0.0001, the percentage of novel variants was not significantly different. The location of the

variants in the protein and the percentage of variants located in constitutive exons (PSI = 100)

were similar in both groups when using MAF <0.0001 (Table 4). Applying the same step-wise

Fig 4. Distribution of rare variants according to gene-level supporting evidence, ACMG clinical classification and minor allele frequency filtering.

https://doi.org/10.1371/journal.pone.0181465.g004
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algorithm in the non-structural cohort we found 17 novel VUS consistently predicted as dele-

terious, 3 of them non-sense variants located in the A-band, I-band and M-band, respectively

(S4 Table). The detection rate of patients with this type of selected novel variants was not sig-

nificantly different between HCM patients and patients without structural heart disease.

Identification, characterization and classification of CNVs

Screening for CNVs in our NGS cohort revealed that 4 out of the 303 patients had a validated

CNV in one of the 25 genes analyzed (1.3%). Twelve additional signals were detected but they

were not validated by MLPA or qPCR (false discovery rate = 75%). Among confirmed CNVs,

2 patients had deletions involving MYBPC3 gene, and 2 patients had a deletion of the entire

coding region of the PLN gene. According to our criteria for interpretation of CNVs, all of

them were considered pathogenic variants.

CNVs in MYBPC3. One case (P168) had a deletion of the entire exon 27 (Fig 5. Panel A),

and the other one (P259) had a deletion spanning from exon 4 to exon 12 (Fig 5. Panel B). Both

deletions were confirmed by MLPA. No split-read data were available for the establishment of the

rearrangement breakpoints of these cases, but both CNVs could be precisely characterized by

Sanger sequencing: c.2737+148_2905+40del727insG for P168 and c.406+69_1091-1154del5654

for P259. None of the deletions has been previously described.

The case P168 also carried two previously reported variants in MYBPC3 (p.V771M –classi-

fied as LP–and p.A522T –classified as LB–), and a VUS in TTN. The case P259 also carried two

missense variants in TTN: p.E2055K (classified as LB) and p.R25906C (classified as VUS).

Table 3. Novel variants of unknown significance in TTN gene that are deleterious according to multiple in silico predictors.

Patient ID cDNA Aminoacid Exon PSI Domain Variants in sarcomere genes in the same patient(1)

44 c.78293C>T p.T26098I 275 100 A-band Pathogenic: MYBPC3 c.1505G>A p.R502Q

52 c.62924A>T p.D20975V 275 100 A-band Pathogenic: MYBPC3 c.1624G>C p.E542Q

53 c.81646G>T p.V27216F 283 100 A-band Likely pathogenic: MYBPC3 c.2724_2725delCTinsGCTGTA p.Y908*

60 c.89236A>G p.K29746E 297 100 A-band VUS Novel: MYBPC3 c.631G>A p.D211N

66 c.85081G>A p.A28361T 288 100 A-band Pathogenic: MYBPC3 c.162delG K54Nfs*13

66 c.93829T>C p.Y31277H 307 100 M-band Pathogenic: MYBPC3 c.162delG K54Nfs*13

71 c.78293C>T p.T26098I 275 100 A-band Pathogenic: ACTC1 c.889G>T p.A297S

95 c.8920A>G p.M2974V 38 100 I-band Likely Pathogenic: MYH7 c.2608C>T p.R870C

98 c.758C>T p.T253I 6 100 Z-disc None

98 c.70579C>G p.P23527A 275 100 A-band None

101 c.51661G>A p.D17221N 250 100 A-band VUS Novel: TNNC1 c.121C>A p.L41M

104 c.40364C>T p.S13455F 205 100 A-band None

108 c.46801C>A p.P15601T 231 100 A-band VUS Novel: TPM1 c.632C>T p.A211V

112 c.90118A>G p.R30040G 300 100 A-band None

146 c.89159C>G p.P29720R 296 100 A-band None

170 c.16069C>T p.P5357S 65 6 I-band Likely pathogenic: TNNT2 c.857G>A p.R286H

189 c.72563G>C p.R24188T 275 100 A-band Likely pathogenic: MYL3 c.427G>A p.E143K

217 c.72098G>C p.G24033A 275 100 A-band Pathogenic: MYBPC3 c.2308G>A p.D770N

245 c.37807G>C p.G12603R 195 100 I-band VUS: TNNI3 c.304G>A p.A102T

260 c.47179C>T p.P15727S 232 100 A-band None

PSI: percent of splice in.

In bold: patients with 2 different novel variants in TTN.
(1) additional information available in S2 Table.

https://doi.org/10.1371/journal.pone.0181465.t003
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Cascade genetic testing in this family showed that the deletion from exon 4 to exon 12 cosegre-

gated with the disease in one affected relative; this patient also carried the variant TTN_p.

R25906C but not the variant TTN_p.E2055K (S2 Table).

Table 4. Detection rate and classification of variants in TTN in patients with hypertrophic cardiomyopathy and patients without structural heart

disease.

HCM (N = 303) Non-structural (N = 427)

MAF <0.002 MAF <0.0001 MAF <0.002 MAF <0.0001

Patients

with Rare Variants in TTN 117 (38.6) 88 (29.0) 168 (39.3) 111 (26.0)

with VUS in TTN 108 (35.6) 86 (28.4) 146 (34.2) 111 (26.0)

with Novel Variants in TTN 42 (13.9) 42(13.9) 50 (11.7) 50 (11.7)

TTN variants 163 109 274 151

Likely Benign 17 (10.4) 3 (2.8) 63 (23.0)* 0 (0.0)

VUS 146 (89.6) 106 (97.2) 211 (77.0)* 151 (100)*

Novel 49 (30.1) 49 (45.0) 58 (21.2)* 58 (38.4)

Novel VUS deleterious in silico 20 (12.3) 20 (18.3) 17 (6.2)* 17 (11.2)

Truncating variants(1) 0 (0.0) 0 (0.0) 3 (1.1) 3 (2.0)

In consitutive Exons (PSI = 100) 123 (75.5) 81 (74.3) 230 (83.9)* 124 (82.1)

Location in protein

A band 97 (59.5) 66 (60.6) 190 (69.3)* 98 (64.9)

I band 45 (27.6) 32 (29.4) 64 (23.4) 42 (27.8)

M band 13 (8) 8 (7.3) 17 (6.2) 10 (6.6)

Z disk 8 (4.9) 3 (2.8) 3 (1.1)* 1 (0.7)

HCM: hypertrophic cardiomyopathy; MAF: minor allele frequency in ExAC; PSI: percent of splice in; VUS: Variant of unknown significance.
(1) Truncating: Nonsense, frameshift or canonical splicing.

* p<0.05 non-structural vs. HCM using the same MAF filter.

https://doi.org/10.1371/journal.pone.0181465.t004

Fig 5. Cases with confirmed CNVs. NGS results, schematic representation of the breakpoints and precise characterization by Sanger sequencing of (A)

the deletion of exon 27 of MYBPC3 (P168, brown sample in the graph), (B) the deletion spanning from exon 4 to exon 12 of MYBPC3 (P259, turquoise

sample in the graph), and (C) the well-characterized PLN deletion (blue sample in the graph). (D) NGS results are shown for the non-characterized PLN

deletion (orange sample in the graph).

https://doi.org/10.1371/journal.pone.0181465.g005
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CNVs in PLN. In both cases, the deletions involved the entire coding region of the PLN

gene and were confirmed by qPCR using the pair of primers 5’CTCAACAAGCACGTCAAAA
GC3’ and 5’GCATCACGATGATACAGATCAGC3’. None of the patients had any uncommon

SNP or indel. The first patient had a deletion of 7936bp, involving a portion of the first intron

and the second exon of the gene (Fig 5. Panel C). The deletion was identified with the 55-gene

panel, which included the UTR regions for this gene. The breakpoints could be identified

using NGS split-read data, and were confirmed by Sanger sequencing. The precise description

of the rearrangement was c.1-7587_159+190del7936. Such rearrangement has not been previ-

ously described. The second deletion of PLN was detected with the 78-gene panel, which does

not include the UTR regions (Fig 5. Panel D). The rearrangement could not be further charac-

terized using neither split-read data nor Sanger sequencing, but most probably is different

from the one diagnosed in the other patient, as widening the coding region coordinates 500bp

upstream and downstream the deletion signal was still present, and Sanger sequencing with

the same pair of primers did not amplify any fragment. Overlapping rearrangements have not

been previously described in HGMD, but there are several overlapping deletions described in

DGV [40], DECIPHER [39], ClinGen [41] and ClinVar [32]. The variant found in DGV is a

deletion of 58Kb involving the genes CEP85L and PLN, and the variants found in the other

databases are larger and have been found in patients with congenital abnormalities.

Discussion

In this study, we report the results of the genetic screening of 387 unrelated Spanish patients

clinically diagnosed with HCM. Using NGS, we focus on the additional diagnostic value of

screening for minor and candidate genes for HCM, and expose a comprehensive study of

CNVs. Our data show that screening for these genes and CNVs in HCM patients identifies the

genetic cause of the disease in a small number of cases, but this approach does not increase the

global detection rate. The screening for variants in TTN in HCM patients shows a high number

of VUS and increases the rate of inconclusive test. In an independent cohort without structural

heart disease, we have found a number and classification of rare variants in TTN similar to

that found in HCM patients; adding evidence against the role of this gene in HCM.

Detection rate and clinical classification of rare variants

In the present study, the analysis of the most frequent sarcomere genes (MYBPC3, MYH7,

TNNI3, TNNT2 and TPM1) in patients with HCM identified a potentially relevant variant in

42.2% of the patients. Applying recommended criteria for clinical classification, P/LP variants

were identified in only one third of the patients. The screening for additional sarcomere genes

and other known and putative HCM genes using a 25-gene NGS panel showed potentially rele-

vant variants in about two thirds of the patients, but identified an additional P/LP mutation in

a small number of patients, without significantly increasing the percentage of patients with a

positive test. Although some initial studies using Sanger sequencing reported a detection rate

of pathogenic variants of 63% [7, 20], most studies have reported rates below 50% [6, 8, 9, 11,

13–18]. The detection rate in recent NGS studies including different additional genes range

from 32% to 78.9% [4, 12, 17, 19, 44–52]. This huge variation is most likely due to selection

bias in these studies, differences in the clinical characteristics of the patients included and,

importantly, the different criteria applied for the classification of genetic variants. As exten-

sively recognized, NGS offers a high reliability [44, 47], so the sequencing process itself does

not justify the differences in the reported yields.

Interestingly, the percentage of patients with P/LP variants found in our study is in agree-

ment with the largest published NGS series in patients with HCM, which includes more than
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2900 unrelated HCM patients (with genetic screening involving from 10 to 51 known or puta-

tive HCM genes) [4]. The criteria for the assessment of genetic variants used in their study was

similar to the ACMG classification followed in the present study. It has been recognized that

this strict classification may result in a larger proportion of variants being considered VUS

[34], but the main purpose of this tool is to guide clinical decisions, which must be always

based on strong supporting evidence. Nevertheless, we recognize that these restrictive clinical

classifications do not fulfill the requirements of a research study to identify new disease-caus-

ing variants, especially when genes with a non-definitive association with the disease are

included. For this reason, an additional effort to weight the evidence of pathogenicity during

the assessment of novel candidate variants identified by NGS should be attempted.

Genetic spectrum of the disease. In agreement with most series [4, 7–9, 14, 15, 17], our

study shows that MYBPC3 is the gene with a higher proportion of P/LP variants, followed by

MYH7. While MYH7 variants are almost exclusively missense (in our cohort all of them),

MYBPC3 is characterized by a significant incidence of radical variants [3, 4]. Overall, considering

only the 8 validated sarcomere genes, the 3.6% of our patients carried two non-benign variants,

which is consistent with published data [17, 20]. The screening for additional candidate genes

using NGS increased the proportion of carriers of multiple non-benign variants to 34.7%, mostly

due to the existence of rare missense TTN variants. It has been demonstrated that the presence of

multiple pathogenic variants in the 8 validated sarcomere genes may confer a more severe form of

disease with a higher incidence of adverse outcomes including heart failure and sudden death

[53]. However, the clinical significance of the presence of multiple variants in the remaining genes

is unknown and this information should not currently be used for prognostic purposes.

Variants of unknown significance and role of TTN

While the screening for 25 genes provides a definitive diagnostic in particular cases without P/

LP variants in the main sarcomere genes, the proportion of cases with VUS increases exponen-

tially. These VUS represent nowadays a major clinical challenge, as proper genetic diagnosis

and genetic counseling cannot be provided. In the assessment of VUS, the study of large pedi-

grees for segregation analyses and in vitro assays may provide useful information, but these

studies are not possible or feasible in most cases.

Current available data are not enough to support pathogenicity of novel variants in candi-

date genes, but the absence in controls and the existence of consistent computational data sup-

porting a deleterious effect should be taken into consideration to undertake segregation and/

or functional studies. It is important to underlie that variants in candidate genes should not be

used for clinical purposes, such as genetic counseling or cascade screening testing. However,

reporting and carefully addressing them are necessary steps for the improvement of genetic

diagnosis in HCM. Additionally, scientific literature and databases should be periodically

searched for new information to reclassify these variants.

In the present study, the drastic increase of VUS in the NGS cohort is mainly due to the

analysis of TTN, which is the gene with the largest coding sequence in the human genome.

Whereas the pathogenic role of truncating variants in TTN has been demonstrated for DCM

[54], the frequency of these radical variants in patients with HCM is similar to that found in

control populations [54], and the pathogenic role of TTN missense variants is unknown [55].

In the present study we show that the number and classification of missense variants in TTN is

not significantly different in patients with HCM and patients without structural heart disease.

Even the rate of occurrence of novel variants that are consistently predicted as deleterious by

in silico tools is not significantly different between both cohorts. Moreover, whereas a potential

modifier role of selected missense TTN variants cannot be definitively ruled out, the finding of
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a high proportion of rare TTN variants in patients with variants in sarcomere genes increases

the concerns about their actual pathogenic role. Altogether, these data may advice against the

inclusion of this gene in clinical HCM panels.

Role of CNVs in HCM

To date, the role of CNVs in patients with HCM is a relatively unexplored field. The first CNV

in a patient with HCM was reported in 1992 and consisted of a 2.4Kb deletion in MYH7, which

was identified by Southern blotting, analyzing restriction fragment length polymorphisms [56].

A second patient with HCM and two CNVs in MYBPC3 was reported in 2009 [57]. Since then,

few series studying CNVs in HCM patients have been published, and most studies have evalu-

ated only 1 or 2 genes [58–63]. The search for single-exon deletions by long-range PCR in

MYH7 in a cohort of 150 patients did not identify CNVs [58]. Three studies that performed

MLPA of MYBPC3 (and in some cases TNNT2) reported a detection rate for CNVs of 0% (0/

108) [59], 1% (1/100) [60] and 1.4% (1/72) [61]. Interestingly, the CNV identified in the last two

studies was an identical MYBPC3 large deletion involving several exons (starting in the intron

27 and ending 485 bp after the MYBPC3 stop codon). Three other cases with CNVs in MYBPC3
have been reported, but detailed information of each case is not available [62, 63].

The first comprehensive study that searched for CNVs in multiple genes in a large group of

HCM patients was published in 2015 by Lopes et al. [23]. They analyzed 19 HCM-related or

candidate genes by NGS in 505 patients and detected 4 CNVs (0.8%): 1 deletion in MYBPC3, 1

deletion in PDLIM3, 1 duplication of the entire TNNT2 gene, and 1 duplication in LMNA.

Deletions were considered LP variants, while duplications were considered VUS. Recently,

Ceyhan-Birsoy et al. screened 708 HCM patients for CNVs using a NGS panel including 18

HCM-related (or putative) genes or 46 genes covering the full spectrum of cardiomyopathies,

and detected CNVs in 4 of them (0.56%): a duplication in MYOZ2; a deletion in MYBPC3; a

whole gene duplication of NEXN; and a whole gene duplication of GLA, LAMP2, EMD and

TAZ (patient with trisomy X) [24]. Only the deletion of MYBPC3 was classified as pathogenic.

In the present study, to further elucidate the role of CNVs in HCM we screened 303 HCM

patients for CNVs in 25 genes associated with or candidate for HCM. Among them, we de-

tected 4 CNVs (1.3% of our patients). Two CNVs were novel deletions in MYBPC3, one of

them involving exon 27 and the other one ranging from exon 4 to exon 12. Both CNVs were

classified as pathogenic variants, as radical variants in MYBPC3 are a well-known cause of

HCM [4]. Interestingly, the first patient also harbored one LP variant and one LB variant in

MYBPC3 (p.V771M and p.A522T, respectively), and a VUS in TTN. As no family members

were available, we were not able to determinate if the MYBPC3 variants were located in the

same allele. To the best of our knowledge, this kind of complex genotype in MYBPC3 has

not been reported before. A previous study in 113 patients designed to search for CNVs in

MYBPC3 in HCM patients carrying one pathogenic point variant did not identify any large

rearrangement [61]. Our study demonstrates that even in patients with a LP variant in a main

sarcomere gene, the screening for CNVs may add valuable information.

The other two rearrangements identified in our study were deletions of the entire coding

region of PLN gene. Such PLN deletions were classified as pathogenic variants, because the

patients only have a single functional copy of the gene, and reduction of the expression of PLN
(due to nonsense and promoter pathogenic variants) has been previously associated with the

development of HCM [64, 65]. These patients did not harbor any other P/LP variant that

could explain the HCM phenotype.

The CNV prevalence in our cohort (1.3%) is not significantly different to that reported by

Lopes et al. [23] (0.8%, p = 0.4630) and Ceyhan-Birsoy et al. (0.56%, p = 0.2144) [24]. These
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data suggest that large rearrangements explain a small number of cases that do not carry SNVs

and indels, and in selected cases can be part of complex genotypes in combination with vari-

ants in sarcomere genes.

Limitations

Only the protein-coding and flanking intronic regions of known or putative HCM genes were

analyzed, and some HCM cases may be explained by pathogenic variants in non-coding regions

or other genes. In fact, during the enrollment period of this study new genes that were not

included in the cardiomyopathy panels used, such as FLNC [66] or FHL1 [67], have been associ-

ated with HCM. Additionally, the inclusion in the HCM panels of genes related to other inherited

diseases that involve left ventricular hypertrophy (i.e. Pompe disease, amyloidosis, mitochondrial

cardiomyopathies or rasopathies) could also increase the diagnosis of some unexplained cases.

The two steps process used for discovery and validation of CNVs showed a high false discovery

rate, but this finding might be at least partially related to the inclusion of signals with low quality

score in the validation step, in an attempt to minimize the rate of false negatives in a clinical sce-

nario. Even using this low threshold, the number of CNV signals identified is small and their vali-

dation does not significantly impact the total cost of genetic testing in the whole sample.

Conclusion

Only a small percentage of HCM cases without point mutations in the 5 principal sarcomere

genes are explained by pathogenic variants in minor or candidate genes for HCM or CNVs,

but their identification is of major clinical relevance and can be easily performed by widely

available NGS techniques. Screening for TTN in HCM patients drastically increases the num-

ber of inconclusive tests, and provides a rate of rare variants similar to that found in patients

without structural heart disease, suggesting that this gene should not be analyzed for clinical

purposes in HCM patients.

Supporting information

S1 Table. Isoforms analysed of the 25 known or candidate HCM genes included in the cus-

tom NGS panels.

(XLSX)

S2 Table. Genetic variants with ExAC MAF <0.002 identifed in 387 consecutive unrelated

Spanish patients with hypertrophic cardiomyopathy.

(XLSX)

S3 Table. Rare variants (MAF <0.0001) in the 5 most frequent sarcomere genes, 25 genes

associated with or candidates for HCM and 24 genes (same panel excluding TTN).

(XLSX)

S4 Table. Nonsynonymous variants in TTNwith ExAC MAF <0.002 identifed in 427 con-

secutive unrelated Spanish patients without structural heart disease.

(XLSX)

Acknowledgments

The authors acknowledge Instituto de Salud Carlos III (ISCIII). The CIBERCV is an initiative

of the ISCIII, Spanish Ministry of Economy and Competitiveness.

Minor genes and CNVs in HCM

PLOS ONE | https://doi.org/10.1371/journal.pone.0181465 August 3, 2017 18 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181465.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181465.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181465.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0181465.s004
https://doi.org/10.1371/journal.pone.0181465


Author Contributions

Conceptualization: Irene Mademont-Soler, Jesus Mates, Raquel Yotti, Catarina Allegue,

Oscar Campuzano, Ramon Brugada.

Data curation: Jesus Mates, Anna Iglesias, Bernat del Olmo.

Formal analysis: Irene Mademont-Soler, Jesus Mates, Raquel Yotti, Bernat del Olmo.

Funding acquisition: Raquel Yotti, Oscar Campuzano, Francisco Fernandez-Aviles, Ramon

Brugada.

Investigation: Irene Mademont-Soler, Jesus Mates, Alexandra Pérez-Serra, Monica Coll,
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