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Abstract

Selecting core subsets from plant genotype datasets is important for enhancing cost-effec-

tiveness and to shorten the time required for analyses of genome-wide association studies

(GWAS), and genomics-assisted breeding of crop species, etc. Recently, a large number of

genetic markers (>100,000 single nucleotide polymorphisms) have been identified from

high-density single nucleotide polymorphism (SNP) arrays and next-generation sequencing

(NGS) data. However, there is no software available for picking out the efficient and consis-

tent core subset from such a huge dataset. It is necessary to develop software that can

extract genetically important samples in a population with coherence. We here present a

new program, GenoCore, which can find quickly and efficiently the core subset representing

the entire population. We introduce simple measures of coverage and diversity scores,

which reflect genotype errors and genetic variations, and can help to select a sample rapidly

and accurately for crop genotype dataset. Comparison of our method to other core collection

software using example datasets are performed to validate the performance according

to genetic distance, diversity, coverage, required system resources, and the number of

selected samples. GenoCore selects the smallest, most consistent, and most representa-

tive core collection from all samples, using less memory with more efficient scores, and

shows greater genetic coverage compared to the other software tested. GenoCore was writ-

ten in R language, and can be accessed online with an example dataset and test results at

https://github.com/lovemun/Genocore.

Introduction

Selecting core subsets from large collections is an effective strategy to characterize and utilize

genetic resources of crop plants without the requirement of sampling the entire population. This

concept was first proposed by Frankel et al. to select a subset of the data that is representative of
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the whole resource, by removing redundant samples and maximizing genetic diversity [1]. Sev-

eral methods have been developed and recently implemented for core sample selection, such as

MSTRAT [2], PowerCore [3], Core Hunter [4], and Core Hunter II [5].

MSTRAT is a local search method that is based on a maximization strategy to maximize the

richness of samples [2]. It randomly divides the entire sample into two groups, retains acces-

sions to meet the greatest increase diversity criterion, and repeats the process until 30 itera-

tions are completed or the richness no longer increases. Core Hunter I and II are based on an

advanced stochastic local search algorithm implemented by Java [4–5]. Core Hunter II uses a

mixed replica search method that is based on several search methods, including LR Semi Rep-

lica, Local Search Replica, Tabu Search Replica, and Simple Monte Carlo Replica. The first step

in this process involves arbitrary selection of samples to shorten the execution time in com-

mon with MSTRAT. However, application of the default runtime option can vary greatly in

each run in the case of a large dataset, which makes it difficult to decide on a key subset. Kim

et al. developed PowerCore using a modified heuristic search algorithm, A� algorithm, based

on graph theory, which extracts a subgraph while minimizing elements and paths [3]. This

program gives similar results to those obtained with MSTRAT and Core Hunter, but Power-

Core cannot load a large dataset.

In recent years, the numbers of samples and markers available for investigating genetic

diversity has increased to thousands and millions, respectively, owing to the development of

new high-throughout technologies such as 1,536 SNP chip of Illumina GoldenGate assay [6],

Illumina MaizeSNP50 BeadChip [7], Axiom Soybean Genotyping Array [8], high-density rice

array (HDRA, 700k SNPs) [9], Wheat 820k genotyping Array [10], and Axiom Wheat Breed-

er’s Genotyping Array [10]. In order to effectively analyze these datasets with many samples,

a high-performance system and efficient algorithm are required. Some methods are more

focused on analysis of rare alleles than on polymorphisms in order to compensate for the lack

of markers, but rare variants are often removed by filtering according to the minor allele fre-

quency, which is common in genome-wide association studies. We are more focused on com-

mon alleles than rare alleles, because most of features of interests are complex traits. We

concentrated on common alleles to represent the entire sample at best, which helps to increase

the genetic coverage.

In this paper, we present GenoCore, which is implemented in R (version 3.2.5), as a new

method to select a core collection using modified statistical measures related to genetic allele

coverage and diversity. By selecting samples with these measures, it is possible to quickly cover

the entire samples, use less memory, and obtain a consistent final core subset. To compare

GenoCore with other programs (MSTRAT, Core Hunter II, and PowerCore), we applied

example datasets to each program.

Results

Dataset

For comparison, we applied GenoCore, MSTRAT, Core Hunter, and random sampling to

wheat [10], 1.5k rice [6], and 700K rice [9] datasets, respectively. Table 1 provides the following

key information of each dataset: single nucleotide polymorphism (SNP) chip name, marker,

and the number of samples. Datasets of various sizes were tested to check the software for

practicability, computation time, and accuracy, so that the optimal software can be chosen that

offers the best solution for addressing the core collection problem.

Since there is a dataset loading problem, GenoCore is the only software that can incorporate

all datasets, and PowerCore can only read the 1.5k rice dataset; the other software programs

cannot load a high-density SNP-chip such as the 700k rice dataset. We set the default options

GenoCore
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in GenoCore to a delta value of 0.01% and a coverage value of 99%. Since the first step of Core

Hunter and MSTRAT is random sampling, no difference exists from randomly selected sam-

ples. Therefore, we increased the operation time using the runtime option for each method

including random selection. The number of subsets from random sampling strategies is equal

or similar to the number of subsets extracted from GenoCore. We analyzed the performance

of the software using two computers, one running Windows 10 (Intel Core i5-3570K, 3.4 GHz

CPU, 4 GB memory) for PowerCore, and the other running CentOS 6 (64 core AMD Opteron

Processor 6380, 2.5 GHz, with 256 GB of main memory) for Core Hunter, MSTRAT, and

GenoCore.

Comparison

We compared the coverage (CV) [3], modified Rogers (MR) value [11], minimum MR value,

Shannon diversity index (SH) [12], and required memory of GenoCore to those of MSTRAT,

PowerCore, Core Hunter, and random sampling. Each of CV, MR and SH is defined by

CV ¼
1

m

Xm

i¼1

GCi

GEi

; SH ¼ �
Xm

i¼1

pi ln pi

MRxy ¼
1
ffiffiffiffiffiffiffi
2m
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

Xni

j¼1

ðpxij � pyijÞ
2

v
u
u
t

Here, m is the number of markers, pxij is the relative frequency of the j-th allele at the i-th

locus for sample x, pi is the relative reference allele frequency, and GCi
and GEi

are the number

of genotype classes for core collection Ci and entire collection Ei. Genotype class is the set of

possible genotypes of a marker for all samples.

The software with superior core collection would show a higher genetic diversity (SH),

coverage (CV), and genetic distance (MR), and use less hardware and execution time for

improved efficiency.

Fig 1 denotes that the cumulative genetic coverages versus the number of selected samples

in the 1.5k rice (Fig 1A) and wheat (Fig 1B) datasets. This means that core subset by GenoCore

definitely covers the entire samples in fastest time compared with the other methods. Geno-

Core selected the core subset that achieved exactly or closest to 100% coverage, greater or simi-

lar values of MR and SH, and the minimum MR compared to the other methods, as shown in

Tables 2 and 3. In particular, GenoCore showed a large difference in the minimum MR dis-

tance for all datasets, indicating that our method does not select similar genotype samples.

Principal component analysis was conducted to show the distribution of the most informative

variables for the population and location of core samples. Selected core samples by GenoCore

were evenly spread across the population for principal components, PC1 and PC2, for the 1.5k

rice (Fig 2A) and wheat (Fig 2B) datasets. We constructed a Venn diagram to show the com-

mon part of the core collection lists obtained from all software for the rice 1.5k dataset (Fig 3).

Table 1. Datasets.

Dataset SNP Chip # of

markers

# of

samples

Rice 1.5K Illumina GoldenGate Assay 1,536 395

Wheat Affymetrix Axiom 35K SNP array 35,143 556

Rice 700K High Density Rice Assay 700K SNPs 700,001 1,108

https://doi.org/10.1371/journal.pone.0181420.t001

GenoCore
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Fourty-three samples were included for all methods, and 9 samples were uniquely selected in

GenoCore. Fig 3 indicates that subsets from GenoCore, MSTRAT, and PowerCore share 61

samples (76%), but not with Core Hunter (54%). It is believed that diversities from genotypes

will also represent diversities from phenotypes. Thus if we select the most diverse samples

from population, distribution of phenotypes will be very similar to a population. Only our

method could select the core collection for the 700k rice dataset (Table 4). Fig 4 shows that the

entire and core subsets had a similar phenotypic distribution. Hence, GenoCore will represent

subsets from reasonable genotypes and phenotypes diversities.

If there are only thousands of markers, one rare allele could be located within a block of

phenotype-affecting rare alleles. However, high density SNPs and NGS could select multiple

alleles as markers within those blocks. Most of previously developed software are focused on

one of rare markers because of blindness in those blocks. Our approach assumes that we

already know those blocks of rare alleles by high-throughput technologies.

In case that some samples have many minor allele markers, GenoCore properly selects core

collection including those samples. Fig 5 shows that histogram of allele frequency between the

entire and core collection in rice 1.5k and wheat dataset (A is the rice 1.5K dataset and B is the

Fig 1. Increase in coverage values versus number of selected samples for each software. (A) Rice 1.5K dataset, (B) wheat dataset.

https://doi.org/10.1371/journal.pone.0181420.g001

Table 2. Core collection results (rice 1.5K dataset).

Software # of

samples

MR Min. MR SH CV

GenoCore 79 0.63968 0.31785 7.7815 100

Core Hunter 79 0.64239 0.10717 7.8155 98.252

MSTRAT 79 0.63339 0.10610 7.7361 98.677

PowerCore 80 0.63337 0.30438 7.8010 100

Random 79 0.61619 0.13179 7.7485 84.202

Raw data 395 0.61614 0.04793 7.7572 100

https://doi.org/10.1371/journal.pone.0181420.t002

GenoCore
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wheat dataset). Our method is based on sampling with common alleles, but the result core sub-

set of GenoCore still has a similar distribution for allele frequency of entire samples. Therefore,

GenoCore selects core collection controlling the minor allele frequency.

The input file size, computation time, and used memory used for each method are summa-

rized in Tables 5 and 6. The file sizes are different among the methods due to the file formats

used to represent multi-alleles. The required memory for each dataset was 4 GB for Core

Hunter, and was 80–700 MB for GenoCore, MSTRAT, PowerCore, and random sampling.

Although PowerCore used the least amount of memory (80 MB), the runtime was relatively

long. By contrast, GenoCore not only used less random access memory but also took less time

to execute the procedure.

Core Hunter and MSTRAT conduct random sampling at the first step; therefore, the execu-

tion time will be reduced for a smaller dataset, and the results are more consistent with other

software. However, these methods have low reproducibility using the default runtime option

for large datasets; that is, the selected core samples are quite different for each trial. S1 Fig is a

boxplot for the frequency of selected core samples by 100 replicates for each method using the

default option in wheat dataset. MSTRAT and Random methods show a low frequency across

Table 3. Core collection results (wheat dataset).

Software # of

samples

MR Min MR SH CV

GenoCore 65 0.61065 0.30199 11.1482 99.018

Core Hunter 65 0.60400 0.25343 11.1257 96.429

MSTRAT 65 0.54568 0.21763 10.9978 89.692

Random 65 0.54070 0.20502 10.9858 88.153

Raw data 556 0.51715 0.10548 10.9053 100

https://doi.org/10.1371/journal.pone.0181420.t003

Fig 2. Principal component analysis. (A) Rice 1.5K dataset, (B) wheat dataset.

https://doi.org/10.1371/journal.pone.0181420.g002

GenoCore
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the selected samples and Core Hunter has a wide spread distribution. The variation in Core

Hunter is larger than other methods because it may have stopped the optimization process by

the runtime option after random sampling. The higher values the runtime option, the lower

the variation. To keep the dispersion close to zero, the runtime option must be more than

twice the GenoCore calculation time. However, the frequency of selected core samples by Gen-

oCore is 100 for all replicates. This means that GenoCore provides a consistent core collection

for both a low-density SNP chip dataset and a high-density dataset, and even selects the key

subset at a faster rate. We could select narrower differences of subsets from those runs if we

increase random sampling times in Core Hunter.

Materials and methods

To develop a new core collection algorithm, we considered two measures that is simple, fast,

and consistent to apply to a large dataset. Genotype data is a m × n matrix that rows are m sam-

ples, columns are n genetic markers, and the type of genotype consists of the four nucleotide

bases (A, C, G, and T) or numeric values (representing zygosities for example, 0, 1, 2). Since

some samples may have missing genotypes due to experimental errors, these genotypes can be

treated as ‘ambiguous’. So, in the first step, candidate samples which have minimum count of

missing genotypes are selected and then we calculate the statistical measure of the coverage

score for j-th sample, denoted by Cj. This score means the representativeness of the sample

Fig 3. Venn diagram (rice 1.5K dataset).

https://doi.org/10.1371/journal.pone.0181420.g003

Table 4. Core collection results and system resources (rice 700K dataset).

Software Input file size Used memory # of

samples

CV Runtime

GenoCore 1.6 Gb 53 Gb 62 99.000 7 h 15 min

https://doi.org/10.1371/journal.pone.0181420.t004

GenoCore
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and is defined by

Cj ¼

P
i2Nj

figij

nðNjÞ

where figij
is the genotype frequency gij for the i-th marker and j-th sample, Nj is the set of non-

missing genotype markers in sample j, and n(Nj) is the number of elements in Nj. A sample

Fig 4. Phenotype density (rice 700K dataset).

https://doi.org/10.1371/journal.pone.0181420.g004

Fig 5. Histogram of allele frequency (rice 1.5k dataset). This is an allele frequency for reference allele of entire and core samples. A and B are the

rice 1.5K and wheat dataset, respectively. They have similar distribution.

https://doi.org/10.1371/journal.pone.0181420.g005

GenoCore
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with high coverage score have more highly genotype frequency markers than other samples.

This makes it possible to select samples that have the more common alleles. For this reason, we

select the sample having the highest score that makes the pre-defined coverage CV increasing.

Because samples with identical coverage scores have the same or similar genotypes, choosing

all of these samples reduces the time to total procedure, but it does not help to increase the

genetic coverage. Therefore, if more than two samples have the same score, then diversity

score is calculated for those samples and we select a sample with the minimum score to select

one of those. Nevertheless, it remains samples after above steps, then the core sample is ran-

domly selected. The diversity score means the variability for j-th sample, indicates a degree

that contains common alleles, and is defined by

Dj ¼

P
i2Nj
ðfigij
� CjÞ

2

nðNjÞ

The coverage and diversity scores measure the extent to which the sample covers the popu-

lation and the genetic diversity for each sample. For each step, GenoCore selects a sample that

is the most representative of the dataset and repeats the process until the coverage reaches

100% (or user can choose the percentage) or the coverage-increasing rate (difference between

the coverage of i-th step and (i-1)-th step) reaches a user-defined threshold (default value is

0.01%). In the case that there are large number of markers or genetically similar samples, the

more samples are selected, the lower coverage-increasing rate is.

Choosing a random sampling at the first stage and optimizing the core subset may be a

good choice if there are only thousands of marker. However, when the number of markers

increase to hundreds of thousands, it takes a lot of time and resources to obtain the core subset

after random sampling and the results may vary whenever we calculate. It could give low

reproducibility, and not easy to get consistent results from multiple runs. Since we use two

simple statistical measures, the coverage and diversity scores, and each iteration reduces the

size of data matrix by removing the selected sample and genetically identical samples, our

method is capable of fast computation after a lot of iterations. If you have only small number

of markers from tandem repeats or restriction fragments, GenoCore may not give better

results. However, it will give optimized and consistent subsets for high-density markers.

Discussion

The key subset from the population is important because this makes experimental cost and

time to decrease, but there are a few software for this. In this study, we use an intuitive

Table 5. System resources (rice 1.5K dataset).

Software Input file size Runtime Used memory

GenoCore 1.1 Mb <1 min 0.2 Gb

MSTRAT 2.8 Mb <1 min 0.7 Gb

PowerCore 1.1 Mb 5 min, 40 sec 0.08 Gb

Core Hunter 2.8 Mb <1min 4.2 Gb

https://doi.org/10.1371/journal.pone.0181420.t005

Table 6. System resources (wheat dataset).

Software Input file size Runtime Used maximum memory

GenoCore 39 Mb 10 min 1.6 Gb

MSTRAT 130 Mb 10 min 9.7 Gb

Core Hunter 130 Mb 26 min 14 Gb

https://doi.org/10.1371/journal.pone.0181420.t006

GenoCore
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approach to select a core collection from large, diverse genetic datasets. We define two statis-

tics, the coverage score and diversity score (see Materials and Methods), that are simple and

have computational advantage for large datasets. They represent that the average and variance

genotype frequency of the sample for all markers. As a result, GenoCore chooses a sample with

more common and less variated alleles rather than a sample including a very rare allele when

there are millions of markers.

To assess the performance of our method, we use three real datasets (wheat 35k [10], rice

1.5k [6] and rice 700k [9]), three core collection programs (MSTRAT [2], Core Hunter [4],

and PowerCore [3], and three measurements. The newly defined coverage score makes the

genetic coverage of core subsets to increase faster than other methods (Fig 1) and the diver-

sity score is to correct the bias that can occur in the selection of focusing common alleles.

Therefore, the minor allele frequency of our result is similar to that of the entire population

(Fig 5). We conduct the principal component analysis to evaluate the position of core collec-

tion in the PCA plot of entire samples and confirm that the result of GenoCore is suitably

spread (Fig 2). Our method shows a similar or better values for MR, minMR, SH, and CV

when compared to the other programs (Tables 2 and 3). Especially, GenoCore has a biggest

minMR, this means that the minimum genetic distance between samples in the core collec-

tion is the largest. Nevertheless, this does not make the results of GenoCore quite different

from those of other methods.

One of the goals in developing new algorithm is to minimize system resource and to be able

to calculate for a large dataset, for example, high-throughput array data and whole genome

sequencing data. Our method requires less memory and execution time compared to the other

core collection software (Tables 5 and 6). Other program cannot be executed for another large

dataset, for example, 700k rice SNP chip, 180k soybean SNP chip [8] and whole genome

sequencing data (data is not shown). Only GenoCore can be used for large datasets such as

high-density SNP arrays and next-generation sequencing, because it is written with R statisti-

cal language, which is flexible and has efficient memory. GenoCore can be downloaded from

https://github.com/lovemun/Genocore and includes an example.

Supporting information

S1 Fig. Boxplot for reproducibility using 100 replicates.
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