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Abstract

To assess the change in the size of the eastern North American monarch butterfly summer

population, studies have used long-term data sets of counts of adult butterflies or eggs per

milkweed stem. Despite the observed decline in the monarch population as measured at

overwintering sites in Mexico, these studies found no decline in summer counts in the Mid-

west, the core of the summer breeding range, leading to a suggestion that the cause of the

monarch population decline is not the loss of Midwest agricultural milkweeds but increased

mortality during the fall migration. Using these counts to estimate population size, however,

does not account for the shift of monarch activity from agricultural fields to non-agricultural

sites over the past 20 years, as a result of the loss of agricultural milkweeds due to the near-

ubiquitous use of glyphosate herbicides. We present the counter-hypotheses that the pro-

portion of the monarch population present in non-agricultural habitats, where counts are

made, has increased and that counts reflect both population size and the proportion of the

population observed. We use data on the historical change in the proportion of milkweeds,

and thus monarch activity, in agricultural fields and non-agricultural habitats to show why

using counts can produce misleading conclusions about population size. We then separate

out the shifting proportion effect from the counts to estimate the population size and show

that these corrected summer monarch counts show a decline over time and are correlated

with the size of the overwintering population. In addition, we present evidence against the

hypothesis of increased mortality during migration. The milkweed limitation hypothesis for

monarch decline remains supported and conservation efforts focusing on adding milkweeds

to the landscape in the summer breeding region have a sound scientific basis.
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Introduction

The eastern migratory population of the monarch butterfly, Danaus plexippus, declined over

80% from 1999 to 2016, as measured by the area (hectares) of trees covered by monarchs at

several overwintering sites in Mexico (based on data in Rendon-Salinas et al. [1]). The Eastern

population summer breeding range is bordered on the west by the eastern portions of Kansas,

Nebraska, South Dakota and North Dakota and extends through the Midwest to the Northeast

and north into lower Canada. The Midwest portion of the summer breeding range has been

identified using stable isotopes as the major contributor to the overwintering pop [2,3]. Plea-

sants and Oberhauser [4] and Flockhart et al. [5] made the case that the decline was due to a

loss of milkweeds, the sole host plant of monarch butterflies, in Midwest corn and soybean

fields due to the use of glyphosate herbicide (the milkweed limitation hypothesis). However,

studies based on long-term data sets of butterfly and egg counts in the Midwest have failed to

detect a population decline [6–9], leading some of these authors [6–8] to conclude that there

has been no decline in the summer population and that the decline seen on the overwintering

sites in Mexico must be due to increased mortality during migration.

Knowledge of the factors responsible for the observed decline in the monarch overwinter-

ing population can inform conservation efforts, and predict the expected response of the popu-

lation to habitat restoration. Analyses seeking to identify those factors require reasonably

credible measures of population size. Credible measures of population size are also needed to

determine the influence of weather, climate and other factors on population size variation. The

most commonly cited index of the size of the eastern migratory monarch population is the

number of hectares with trees covered by monarchs at the overwintering sites in Mexico [1].

This population size is the result of successive generations beginning with one generation in

Texas and Oklahoma that consists of the offspring from adults that have returned from Mexico

and two or more generations from adults that have moved north into the summer breeding

zone [10]. Estimated indices of population size in each of these generations can inform analy-

ses of factors affecting final population size (e.g. [11]).

Butterfly surveys by citizen scientists during the breeding season and portions of the mon-

arch annual migratory cycle have been used as indices of monarch numbers. For example,

annual counts conducted by North American Butterfly Association (NABA) volunteers at

sites throughout North America, and state monitoring networks, especially those in Illinois

and Ohio [12], have provided data used for several studies investigating factors affecting

population size [7–8,11,13]. Similarly, counts of monarch eggs per milkweed stem have been

used as an index of population size. The Monarch Larva Monitoring Project (MLMP) [14]

obtains data from dozens of citizen scientists monitoring patches of milkweeds weekly for

eggs and larvae. Several studies have used the average eggs per stem as an index of population

size [9,15]. A variant on this approach is to multiply the average eggs per milkweed stem by

the number of milkweed stems available on the landscape [4,16]. It should be noted that all

of these methods are indices of population size and not actual estimates of the number of

monarch individuals. Even efforts to convert hectares of butterflies in Mexico to actual num-

ber of butterflies can do no better than identify a limited range of values for butterflies per

hectare [17].

Here, we focus on Midwest surveys of adult butterflies and eggs and larvae per milkweed

stem and point out a key flaw associated with the interpretation of survey data by several stud-

ies [6–8] that there was no decline in the summer population. The problem with these surveys

is that they are conducted in habitats that are natural or semi-natural areas; agricultural fields

are not included [18]. However, over the two decades that these surveys were conducted,

the milkweeds in agricultural fields have virtually disappeared and the majority of monarch
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reproductive activity has gone from occurring in agricultural fields to non-agricultural areas

[4,16]. We investigate how estimates of population size over time based on surveys in non-

agricultural habitats are affected when milkweeds in agricultural fields disappear and monarch

activity shifts from agricultural fields to the surrounding non-agricultural areas.

Dyer and Forister [19] modelled a hypothetical monarch population that had shifting activ-

ity from Habitat A (agricultural fields) to Habitat B (non-agricultural areas). They concluded

that if there was a population decline it could be detected just by looking at the number of indi-

viduals in Habitat B. However, if the shift from Habitat A to B took place over a small number

of years then detection was more difficult [19]. Although their models indicated that a popula-

tion decline could be detected, the rate of decline observed in Habitat B was much less than the

actual rate of decline used in the model.

Our analysis is based on the premise that on the landscape, at any point in time, the distri-

bution of adult monarchs will mirror the distribution of milkweeds. Empirical support for this

premise comes from Kasten et al. [20] who found that adult monarchs were five times more

likely to be observed in roadside areas with patches of milkweeds than areas without such

patches. In addition, in milkweed patches the number of eggs and larvae per m2 increased

as the number of milkweed stems per m2 increased. Thus, monarchs are more likely to be

observed where there are milkweeds and when there are more milkweeds there is likely to be

more monarch activity. Female monarchs are drawn to patches of milkweed for egg laying and

likely to remain in patches for some time as they choose plants and lay eggs [21–22]. Male

monarchs are also drawn to patches which serve as mating arenas and they remain in patches

for some time patrolling for females [23]. Of course, some monarchs may be found in areas

where there are no milkweeds. Some may be transiting between milkweed patches [12] and

some may be drawn to sites with nectar that have no milkweed. However, the probability of

finding monarchs during the breeding season will be greater in areas with milkweed than in

areas without milkweed.

In this study, we use available data on the change in the proportions of milkweeds in corn

and soybean fields and in non-agricultural habitats to show the consequences of using butter-

fly and egg counts conducted in non-agricultural habitats to estimate changes in total popula-

tion size. Based on the premise of monarchs co-occurring with milkweeds, we posit that the

proportion of monarch activity in each of these habitats will correspond to the proportion of

milkweeds on the landscape in each of these habitats. We use data on milkweed densities in

different habitats and the land cover of those habitats to estimate the proportion of landscape

milkweeds in agricultural and non-agricultural habitats over the last two decades.

Our estimates of how the number of milkweeds in agricultural fields and non-agricultural

areas has changed over time allow us to examine counts of adults and eggs and separate the

effect on those counts due to the shifting proportions of monarch activity in each of the two

habitats from the effect due to population size. We use these corrected counts (with the shifting

proportion effect removed) as a better indicator of population size and examine the trend in

this indicator over time and the degree of correlation with the size of the overwintering popu-

lation. It is important to point out that generating these corrected counts from the shifting pro-

portions of milkweeds does not mean that these estimates of population size will necessarily

have to decline as the number of milkweeds declines. It is possible that the population size

could remain constant if the density of monarchs in the remaining milkweed patches increased

sufficiently.

Lastly, we also examine the hypothesis that increased mortality during migration is respon-

sible for the monarch population decline. If the migration mortality hypothesis is correct we

would expect that summer butterfly or egg counts would be a progressively poorer predictor

of the size of the overwintering population over the last two decades.
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Methods

Our analysis applies to the Eastern population of the monarch butterfly that migrates to

Mexico. We focus on the Midwest portion of the breeding range (the North Central region of

the monarch range as defined by Stenoien et al. [9] and Oberhauser et al. [24]) because isotope

analysis indicates that this is the area from which the majority of butterflies that migrate to

Mexico originate [2,3]. Thus what happens in the Midwest will have a major effect on the size

of the population [4].

Our analysis is based on estimating the change in the proportion of milkweeds on the land-

scape in agricultural fields and non-agricultural areas in the Midwest over the last two decades.

This estimate requires information on milkweed densities in those two types of habitats and

the amount of area covered by each. For milkweed density we only have information begin-

ning in 1999 [25] so, although the analyses of Inamine et al. [6] and Ries et al. [5] begin in

1993, we have begun our analysis in 1999. Milkweed densities are based on state-wide surveys

in Iowa conducted in 1999 [25] and 2009 [26] in corn and soybean fields and in non-agricul-

tural habitats such as roadsides and CRP (Conservation Reserve Program) land, but excluding

forested land (see S1 Table for non-agricultural habitat categories). Although other estimates

of milkweed density exist for specific habitats such as roadsides [20] or natural areas [27], only

the Iowa data cover all relevant habitat types, so we have used Iowa data for consistency. The

Iowa surveys measured the area covered by milkweeds (m2) per hectare. We converted area to

milkweed stems/ha using factors of 1.62 stems/m2 in corn and soybean fields [28] and 1.95 in

non-agricultural areas [5]. Milkweed density in the non-agricultural areas measured in 1999

and 2009 did not change significantly, so we assume that milkweed densities in non-agricul-

tural areas have remained constant, as was also found for non-agricultural areas in Illinois sur-

veyed since 1997 [27]. However, milkweed densities in agricultural fields in Iowa declined 97%

between 1999 and 2009 [25,4]. An Illinois study [27] estimated a 94% decline in milkweeds in

agricultural fields over this period. To estimate the rate of change in milkweed density in agri-

cultural fields over the years, we use data from milkweed patches within agricultural fields

monitored in Iowa from 2000 through 2008. The decline over time fit an exponential decay

function [28] so we used an exponential decay function intersecting the 1999 and 2009 survey

milkweed density data points to estimate the rate of decline in agricultural field milkweeds

[28].

Ideally, we would like to know the total number of milkweed stems in different habitats

over time across the Midwest monarch range. However, we only have milkweed density infor-

mation for Iowa. We assume, as did Pleasants and Oberhauser [4] and Pleasants [16,28], that

milkweed densities in the different habitats in Iowa are similar to the densities in those habitats

in other parts of the Midwest within the monarch range. Certainly we expect that the change

in milkweed density in fields in Iowa, which are dominated by corn and soybeans, is similar to

that of agricultural fields throughout the Midwest [27], for which 92% of agricultural land is

also in corn and soybean production [29]. In addition, the adoption of herbicide-tolerant vari-

eties of corn and soybeans and the use of glyphosate herbicide has been similar throughout the

Midwest to the point where they now comprise >90% of corn and soybean plantings [30].

To estimate the number of milkweeds in agricultural and non-agricultural habitats we com-

bined milkweed density information with information on the area of different milkweed-suit-

able habitat types using Iowa land use data [29,31–32] (S1 Table). This estimate assumes that

land use in Iowa is similar to that of the Midwest monarch range. The proportion of the milk-

weed-suitable landscape covered by different habitat types is not exactly the same for the Mid-

west as for Iowa [28]. However, the proportion of milkweeds in agricultural fields in Iowa at

the beginning of the sampling period in 1999 is similar to that for the Midwest as a whole
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(73% vs 63% [28]). As additional support for using Iowa data as a proxy for the Midwest, Plea-

sants and Oberhauser [4] and Pleasants [16,28] showed that the estimate of the summer popu-

lation size based on Iowa milkweed abundances in conjunction with egg density data from the

Monarch Larva Monitoring Project [14] was a strong predictor of the size of the overwintering

population.

To estimate the proportion of monarch activity associated with agricultural and non-agri-

cultural habitats we need to know the relative utilization of the milkweeds in those two types

of habitats. To do this, we must account for the fact that, on a per stem basis, there are more

eggs per milkweed stem in agricultural fields than in non-agricultural areas. Pleasants and

Oberhauser [4] found that over a 4-year period, egg density in agricultural fields was, on aver-

age, 3.9 times higher than in non-agricultural areas, suggesting that monarchs will be found in

agricultural fields above what would be expected based solely on the number of milkweeds.

Thus, to determine the expected amount of monarch activity in agricultural fields, we multi-

plied the number of milkweeds in this habitat by 3.9 to produce what we refer to as “milkweed

resource”; for non-agricultural areas we simply use the number of stems as a measure of milk-

weed resource. The relative amounts of “milkweed resource” in agricultural and non-agricul-

tural habitats will determine the proportion of expected activity. We have also considered

apportionment of activity based on the number of milkweeds alone as a more conservative

estimate of the shift in monarch activity.

We examined two scenarios for how butterfly or egg counts outside of agricultural fields

would respond as monarch activity in fields decreased. In Scenario 1, we let the overall popula-

tion remain constant while population activity shifted out of fields into non-agricultural areas,

testing the assertion that the summer population has remained relatively constant over the

years [6–9]. In Scenario 2, we let the overall population decline at the same rate as the decline

in the total milkweed resource while the shift out of fields occurred. Scenario 2 corresponds to

the hypothesis that milkweed availability limits monarch population size [4]. For both scenar-

ios we use the proportion of the total milkweed resource found outside of fields as an indicator

of the proportion of the monarch population found outside of fields.

Knowing the proportion of monarch activity in agricultural and non-agricultural habitats

allows us to correct butterfly or egg counts to better reflect the actual population size. At any

point in time t the total population Nt is equal to Nag + Nnon-ag, whereNag is the number of but-

terflies or eggs in agricultural fields and Nnon-ag is the number in non-agricultural habitats. We

can use the butterfly or egg counts as an index of Nnon-ag. The proportion of the total popula-

tion in non-agricultural habitats Pnon-ag is equal to Nnon-ag / Nt. We estimate Pnon-ag from the

number of milkweeds in non-agricultural habitats relative to the total amount of milkweed

resource. While this estimate is approximate, given the limitations described above, it is based

on biologically reasonable assumptions. Substituting butterfly or egg counts for Nnon-ag we can

solve for Nt viz:

Nt ¼ Nnon‐ag=Pnon‐ag:

We can then ask whether this corrected index of population size is correlated with the size

of the overwintering population, and whether it declines over time and at the same rate as the

decline in the overwintering population.

To test the hypothesis that increased mortality during migration was causing the decline in

the size of the overwintering population we compared the corrected butterfly count in each

year with the size of that year’s overwintering population. The increased migration mortality

hypothesis would predict that the summer population count would be a progressively poorer

predictor of the overwintering hectares from 1999 to 2014. Thus, the residuals from the
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regression of corrected butterfly counts and overwintering hectares should be positively corre-

lated with year (the residuals should be larger for more recent years). As a further test, we

examined the rate of change in the summer population numbers with those in the overwinter-

ing population. The increased mortality hypothesis would predict that the decline would be

steeper for the overwintering population than the summer population. To make this compari-

son we put both trend lines on the same scale so each data set was normalized to a mean of 0

and a standard deviation of 1.

For displaying regressions, we calculated the 95% confidence interval around the fitted line

of each regression. These confidence limits reflect the uncertainty in the relationship between

the covariate and response, but not the uncertainty in the calculation of the variable itself. For

example, NABA counts are an index of uncertain precision which is not included in the regres-

sions. All calculations were conducted in R 3.3 [33].

For this analysis we used the Midwest NABA data presented by Inamine et al. [8] and for

eggs per stem we used Midwest MLMP data [9], with the removal of values from individual cit-

izen scientists that were outliers (>2 standard deviations from the mean in a particular year)

and values for agricultural habitats that were collected in only one year (2000) (Table 1). For

the size of the population in Mexico, we used overwintering hectares as measured by Rendon

et al. [1] with corrections as indicated in Taylor [34] (Table 1). We did not use data from

before 1999 because 1999 is the first year for which data are available on the number of milk-

weeds in agricultural fields and other habitats. It should be noted that milkweed decline in

agricultural fields was already underway at this point because glyphosate-tolerant crops were

introduced in 1996. In 1999, 56% of soybeans and 8% of corn was glyphosate-tolerant [30].

Table 1. Data on Midwest adult monarch butterfly counts, Midwest eggs per milkweed stem and area of the overwintering population in Mexico

from 1999 to 2014. The first two measures are presented in their original form and then the corrected version.

Butterfly counts Eggs per stem overwinter

year NABA1 corrected2 counts3 corrected4 hectares5

1999 256 1066 0.263 1.097 8.97

2000 150 475 0.136 0.430 2.83

2001 308 742 0.461 1.111 9.36

2002 166 329 0.171 0.339 7.54

2003 193 329 0.244 0.417 8.50

2004 59 88 0.127 0.190 2.19

2005 163 221 0.228 0.310 5.91

2006 338 423 0.360 0.450 6.87

2007 266 313 0.339 0.399 4.61

2008 170 193 0.254 0.288 5.06

2009 185 204 0.194 0.214 1.92

2010 307 330 0.349 0.375 4.02

2011 140 148 0.309 0.325 2.89

2012 170 176 0.218 0.227 1.19

2013 42 43 0.095 0.098 0.67

2014 99 101 0.215 0.220 1.13

1 from [8];
2 NABA count /non-agricultural proportion;
3 from [9];
4 eggs per stem count /non-agricultural proportion;
5 from [1] with corrections from [34];

https://doi.org/10.1371/journal.pone.0181245.t001
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Results

To quantify the effect of sampling done only in non-agricultural areas on population size esti-

mates, we first quantified the shift in the proportion of milkweed, and thus monarch activity,

in agricultural and non-agricultural habitats. From 1999 to 2014, the number of milkweeds

in agricultural fields in Iowa declined by 99.4% as a result of the use of glyphosate herbicide

(Table 2). Non-agricultural milkweeds increased 20% from 1999 to 2007. This resulted from

increased enrollments in the Conservation Reserve Program (CRP), which converted cropland

into non-agricultural habitat [32]. However, this was followed by a similar percentage decline

in non-agricultural milkweeds from 2008 to 2014 due to the reversal of CRP enrollments [32]

and the loss of grassland to crops because of the high demand for corn resulting from the

Renewable Fuel Standard Program begun in 2007 [35]. Overall, the total number of milkweed

stems declined 46% from 1999 to 2014, and because an initial increase in non-agricultural

milkweeds was followed by a decrease of similar magnitude, virtually all of this loss occurred

in agricultural fields. Accounting for the higher use of agricultural milkweeds by monarchs,

the total milkweed resource declined 76% from 1999 to 2014 (Table 2). Table 2 also shows the

expected change in the proportion of milkweeds in each of the two types of habitat which cor-

responds to the change in monarch activity. In 1999, 76% of monarch activity would have

been in agricultural fields whereas, by 2007, 85% of monarch activity would have been in non-

agricultural areas (Table 2). Therefore, from 1999 to 2007, the proportion of the population

observed in areas where NABA butterfly or eggs per stem counts were conducted would have

changed dramatically.

The effect of taking butterfly or eggs per stem counts in non-agricultural habitats as an indi-

cator of population size can be appreciated by comparing two scenarios. We focus on butterfly

counts, but because both adult butterfly counts and eggs per stem measure monarch activity

Table 2. Change in the number of milkweed stems and milkweed resource in agricultural fields and non-agricultural habitats from 1999 to 2014 for

Iowa (stems and milkweed resource in millions).

Agricultural fields Non-agricultural Total Total Proportion of resource

year stems resource1 stems stems resource2 ag non-ag

1999 172.0 671 211.1 383 880 0.76 0.24

2000 123.5 482 221.6 345 702 0.69 0.31

2001 87.1 340 240.0 327 579 0.59 0.41

2002 62.2 242 245.7 308 488 0.50 0.50

2003 44.9 175 247.2 292 422 0.42 0.58

2004 32.1 125 248.3 280 373 0.34 0.66

2005 22.9 89 250.4 273 340 0.26 0.74

2006 16.3 64 254.1 270 318 0.20 0.80

2007 11.7 46 256.3 268 302 0.15 0.85

2008 8.5 33 241.7 250 275 0.12 0.88

2009 6.1 24 232.0 238 256 0.09 0.91

2010 4.3 17 225.8 230 243 0.07 0.93

2011 3.1 12 228.0 231 240 0.05 0.95

2012 2.3 9 226.3 229 235 0.04 0.96

2013 1.6 6 215.4 217 221 0.03 0.97

2014 1.1 4 206.9 208 211 0.02 0.98

1 Milkweed resource in agricultural fields = agricultural stems × 3.89 (factor by which the eggs/stem exceeds eggs/stem in non-agricultural habitats)
2 Total milkweed resource = agricultural milkweed resource + number of non-agricultural stems

https://doi.org/10.1371/journal.pone.0181245.t002
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only in non-agricultural areas we expect them to behave similarly. In fact, the two measures

are highly correlated (R2 = 0.72, F1,14 = 38.85, β = 0.0095, p = 0.00003). In Scenario 1, the mon-

arch summer population remains constant over time as the activity shifts from agricultural to

non-agricultural areas. If the summer population was truly constant, as Ries et al. [7] and Ina-

mine et al. [8] asserted, we should see a larger number of butterflies in non-agricultural areas

as an increasing fraction of the population shifts to non-agricultural areas (Fig 1a). Neither the

NABA nor eggs per stem counts from 1999 to 2014 show an increase over time as expected if

the population was constant under Scenario 1 (Table 3, rows 2 and 3). In Scenario 2, the popu-

lation declines as agricultural milkweeds disappear, along with a shift in activity from agricul-

tural fields to non-agricultural areas (Fig 1b), as would be expected under the milkweed

limitation hypothesis. In Scenario 2, counts increase somewhat from 1999 to 2007 and

decrease thereafter. If Scenario 2 was actually the case then regressions would show no trend

over time. This is what was found by Ries et al.[7] and Inamine et al. [8] (Table 3, rows 2 and

3). They misinterpreted this lack of a trend as indicating no change in population size.

Our estimates of the year-to-year change in the proportion of the milkweeds in non-agri-

cultural habitats, allow us to disentangle the contribution to counts due to the observed pro-

portion of the population from that due to the actual size of the population. These corrected

counts (Table 1) should better reflect the size of the population. Corrected NABA counts and

corrected eggs per stem counts now show a significant negative trend over time (Table 3, rows

4 and 5, and Fig 2a and 2c), mirroring the negative trend in the size of the overwintering popu-

lation. Corrected NABA counts and corrected eggs per stem counts are significantly positively

correlated with the size of the overwintering population (Table 3, rows 7 and 9, Fig 2b and 2d)

and the correlation is improved over uncorrected counts (Table 3, rows 6 and 8).

We used the higher density of eggs on stems in agricultural fields as an indicator that the

activity in fields was greater than the number of stems there would suggest. However, our

results are not dependent on having multiplied the number of agricultural milkweeds by 3.9 to

create a measure of “milkweed resource”. If we simply use the number of stems in agricultural

and non-agricultural habitats to determine shifting proportions, the corrected NABA counts

are still correlated with the size of the overwintering population (R2 = 0.58, F1,14 = 19.43, β =

0.019, p< 0.001) and show in accordance with the milkweed limitation hypothesis a decreas-

ing trend over the years (R2 = 0.35, F1,14 = 7.68, β = -14.9, p = 0.015).

To determine the extent to which the decline in the summer population accounts for the

decline in the overwintering population we can compare the rates of decline for both. These

rates are statistically indistinguishable (Fig 3); the rate for overwintering ha = -0.157 (95%

conf. -0.077 to -0.237) and for the corrected NABA counts = -0.154 (95% conf. -0.072 to

-0.236). Similarly, the rates of decline for milkweed resource and overwintering hectares are

also indistinguishable (Fig 3); milkweed resource decline rate = -0.186 (95% conf. -0.129 to

-0.242), lending support to the milkweed limitation hypothesis as the driver of both the sum-

mer population and the overwintering population decline. Further corroboration of the milk-

weed limitation hypothesis comes from the positive relationship between the number of

milkweed stems and milkweed resource and overwintering hectares (Table 3, row 10 and 11)

and the highly positive relationship between the index of monarch production in each year

(milkweed resource × eggs per stem) and overwintering hectares (Table 3, row 12) as was

examined by Pleasants and Oberhauser [4].

We can a make a direct test of the Inamine et al. [8] hypothesis that increased mortality dur-

ing migration is the reason for the decline seen on the overwintering grounds. If there was

increased mortality during migration, the size of the summer population should be a progres-

sively poorer predictor of the size of the overwintering population. If we take the corrected

NABA counts as an indicator of population size this would predict that the residual variation
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Fig 1. a,b. Expected shape of the relationship between butterfly counts made in non-agricultural

habitats through the years under two scenarios. a) Scenario 1: the monarch population is constant from

1999 to 2014; b) Scenario 2: the monarch population is declining along with the decrease in milkweed

resources on the landscape. The size of the butterfly population is normalized to begin at 1.0 in each case. For

each scenario the expected count at any time is equal to the proportion of the population that is in the non-

agricultural habitat times the population size.

https://doi.org/10.1371/journal.pone.0181245.g001
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in the relationship between population size and overwintering hectares should increase by

year, with larger residuals for more recent years. However, the residual variation is not corre-

lated with year (R2 = 0.09, F1,14 = 1.43, p = 0.25). In addition, the rate of decline in the summer

population using corrected NABA counts is identical to the rate of decline in the overwintering

population (Fig 3). The increased mortality hypothesis would predict that the decline in the

overwintering population should be steeper than the decline in the summer population.

Discussion

By failing to take into account the loss of milkweeds in agricultural fields and the shift in the

proportion of the population present in agricultural fields and non-agricultural areas, adult

butterfly counts or counts of eggs per stem in non-agricultural areas alone will arrive at a mis-

leading picture of changes in monarch population size. If the monarch population is actually

declining, as documented by data from the overwintering colonies, these counts will first

increase then decrease (Scenario 2), thus failing to produce a trend over this entire period and

leading to an improper inference that the population has remained constant. Correcting for

that shifting proportion produces a population size index that exhibits a downward trend over

time and is correlated with overwintering population size.

The loss of milkweeds in agricultural fields was nearly completed by 2006, so counts made

from 2007 to 2014 are not as subject to the problem of shifting proportions. In fact, uncor-

rected NABA counts from 2007–2014 show a decline by year (R2 = 0.48, β = -24.08, F1,6 = 5.60,

p = 0.05) as do uncorrected eggs per stem, although the latter is not significant (R2 = 0.31, β =

-0.019, F1,6 = 2.72, p = 0.15). Ries et al. [7] analyzed Illinois Butterfly Monitoring Network

(IBMN) summer butterfly counts and found no trend from 1999 to 2006 but a significant

decline from 2006 to 2014. Stenoien et al. [9] examined monarch egg densities in non-agricul-

tural areas and found an increase from 1997 to 2006 and a decrease from 2007 to 2014. Simi-

larly, Saunders et al. [11, 13] showed a decline in monarch numbers in Illinois Butterfly

Monitoring Network numbers from 2004–2013, but not from 1994–2003. Although counts

since 2007 do not have the problem of shifting proportions there are other issues with these

counts, including non-random and non-spatially balanced collection of data [18]. Efforts

are currently underway to eliminate these problems by establishing a long-term monitoring

program for monarchs using random sampling throughout the range and across the habitat

Table 3. Regression relationships between variables and year and between variables and overwintering hectares (OW ha).

Response Predictor β F1,14 R2 p

1 OW ha year -0.465 17.83 0.56 0.0009

2 NABA year -6.069 1.74 0.11 0.2080

3 Eggs per stem year -0.002 0.18 0.01 0.6800

4 NABA corrected year -40.530 16.32 0.54 0.0122

5 Eggs per stem corrected year -0.041 11.26 0.45 0.0047

6 OW ha NABA 0.022 9.42 0.40 0.0083

7 OW ha NABA corrected 0.008 17.06 0.55 0.0010

8 OW ha Eggs per stem 16.421 5.80 0.29 0.0304

9 OW ha Eggs per stem corrected 7.790 19.55 0.58 0.0006

10 OW ha Log(num milkweed stems) 12.409 15.80 0.53 0.0014

11 OW ha Log(milkweed resource) 4.635 11.94 0.46 0.0039

12 OW ha Log(annual production)1 4.091 36.77 0.72 <0.0001

1 Production in any year = milkweed resource × eggs per stem for that year

https://doi.org/10.1371/journal.pone.0181245.t003
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Fig 2. a) Corrected NABA counts vs Year, R2 = 0.54, p = 0.01; b) Overwintering hectares vs corrected NABA

counts R2 = 0.55, p = 0.001; c) Corrected Eggs per stem vs Year, R2 = 0.45, p = 0.005; b) Overwintering hectares vs

Corrected eggs per stem, R2 = 0.58, p < 0.001.

https://doi.org/10.1371/journal.pone.0181245.g002
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types associated with monarch activity, with regularly scheduled visits to count eggs, larvae

and adults.

Not all butterfly or eggs per stem counts require a correction factor. Counts from Texas and

Oklahoma in the spring when monarchs returning from Mexico are breeding should be fairly

Fig 3. Regression of normalized values of overwintering hectares, corrected NABA counts and milkweed resource vs year. Corrected

NABA counts vs year, R2 = 0.53, p = 0.001, β = -0.1541; OW ha vs year, R2 = 0.56, p < 0.0001, β = -0.1572; Milkweed resource vs year, R2 = 0.78,

p < 0.0001, β = -0.1856;

https://doi.org/10.1371/journal.pone.0181245.g003
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accurate as is. This is because these areas consist mainly of pasture and rangeland and have

almost no corn and soybean production [31]. Thus, they have not experienced the loss of milk-

weeds as seen in Midwest agricultural fields and the consequent shift in activity into non-agri-

cultural areas. Estimates of the size of the Northeast portion of the monarch population based

on counts should also be fairly accurate because these areas have minimal corn and soybean

production [31].

The correction factors that we use are only an approximation. They are not based on exten-

sive sampling of milkweeds in all habitats over time throughout the Midwest. In the future, we

may have better data on milkweed densities in different habitats over a wide geographic area

but we will not be able to go back in time and determine the change in milkweed densities in

agricultural fields. We have used the best data available to estimate the change in milkweed

density in agricultural fields.

The NABA counts and eggs per stem counts, when corrected to remove the shifting propor-

tion effect to better estimate population size, are correlated with the size of the overwintering

population and show a decreasing trend over the years as does the overwintering population

size. Consequently, there is no need to invoke a possible post-summer mortality factor to

explain a disconnect between summer and winter population sizes; there is no disconnect.

Furthermore, the hypothesis that was raised to account for the apparent disconnect, namely

increased mortality during migration, is not supported.

The significant positive relationship between overwintering hectares and three measures of

milkweed availability, namely, the number of milkweed stems, milkweed resource, and annual

egg production (Table 3) provides direct evidence that the declining availability of milkweed

resources is the driver of the decline in the size of the overwintering population [4,5]. It is not

surprising that the loss of milkweeds has had an effect on the monarch population; indeed, it

would be surprising if the loss of 46% of the milkweeds on the landscape, or 76% of the milk-

weed resource, did not have an effect. It is important to understand the mechanism by which

milkweed resource limitation affects population size. The classic model of how diminishing

resources influences population size involves density-dependent mortality with the crowding

of individuals into the remaining habitat. While there is lower larval survivorship with higher

egg density [5,36] the magnitude of this effect is not sufficient to account for the population

decline [36]. More importantly, eggs per stem has not increased over time [9] meaning that

higher egg densities and higher larval mortality cannot be responsible for the population

decline. Instead, it is hypothesized that the effect of milkweed limitation on population size is

mediated through reduced fecundity of monarch females that must find patches of milkweed

in an increasingly milkweed-barren landscape. It has been estimated that at least a billion milk-

weed stems have been lost since 1999, mostly from herbicide use in fields but some from land

conversion to crops and development [28]. Not only has the number of milkweeds been

reduced on the landscape, the distribution of milkweeds on the landscape has changed [37].

Fifty percent of agricultural fields once had milkweeds [26]; these are now milkweed deserts

resulting in an estimated 23.5 million hectares (58 million acres) devoid of milkweeds [28].

Zalucki and Lammers [38] and Zalucki et al. [39] provide models for how these empty areas

within the milkweed landscape increase female search time and decrease female monarch real-

ized fecundity, thus reducing the support capacity of the available milkweeds.

The conclusion that the summer population has not changed based on butterfly counts [6–

8] led these authors to suggest that conservation efforts should be redirected from putting

milkweeds on the landscape to providing resources for migrating monarchs. We do not dis-

pute the need to engage in conservation efforts during all phases of the migratory cycle of

monarchs (see also [24]), but our analysis shows that milkweed limitation during summer

breeding is the major driver of monarch decline and there is no evidence that there has been
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increasing mortality during migration. Thus, at a time when federal and state agencies and

local groups and individuals are making major efforts to plant milkweeds, it is imperative that

the science behind these efforts be clear. The results presented here provide evidence that such

restoration efforts are the best way to increase the size of the monarch population.
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