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Abstract

The occurrence of P. verrucosum and ochratoxin A (OTA) were surveyed for 3 and 4 years,

respectively. A total of 250 samples was collected from an average of 30 farms during the

2011, 2012, 2013 and 2014 winter seasons. Most storage bins surveyed were typically 11 m

high round bins made of corrugated, galvanized steel, with flat-bottoms and conical roofs.

Samples of clumped grain contained the most P. verrucosum (p<0.05, n = 10) followed by

samples taken from the first load (n = 24, mean = 147±87 CFU/g) and last load (n = 17,

mean = 101±77 CFU/g). Five grain samples (2.2%) tested positive for OTA, citrinin and

OTB at concentrations of 14.7±7.9, 4.9±1.9 and 1.2±0.7 ng/g, with only three samples

exceeding 5 ng/g. Grain samples positive for OTA were related to moisture resulting from

either condensation or migrating moist warm air in the bin or areas where precipitation

including snow entered the bin. Bins containing grain and clumps contaminated with OTA

were studied in detail. A number of statistically-significant risk factors for OTA contamination

were identified. These included 1) grain clumps accumulated around or directly under man-

hole openings, 2) debris and residue of old grain or grain clumps collected from the bin walls

or left on storage floor and augers and 3) grain clumps accumulated around side doors.

Even when grain enters storage below the 14.5% threshold of moisture, condensation and

moisture migration occurs in hotspots in modern corrugated steel storage bins. Hot spots of

OTA contamination were most often in areas affected by moisture migration due to inade-

quate aeration and exposure to moisture from precipitation or condensation. Further, we

found that the nature of the condensation affects the nature and distribution of small and iso-

lated areas with high incidence of toxin contamination and/or P. verrucosum prevalence in

the grain bins examined.
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Introduction

Winter wheat has become an important crop for Ontario comprising approximately 73% of

Canadian production concentrated in the Southwestern region of the province [1]. In recent

years, an increase in on-farm storage capacity has been seen across wheat-growing areas in the

USA and Canada, due to rising agricultural commodity prices, and increasing farm sizes, facil-

itating infrastructure investments [2]. In Ontario alone, on-farm wheat stocks in December

2011 comprised 41% of the total wheat harvest declining to 14% in March and only 5% in July

[3]. Maintaining grain quality and preventing mycotoxin formation in storage are crucial for

individual farmers and the grain industry in general.

In northern temperate growing areas, ochratoxin A (OTA) is produced by Penicillium verru-
cosum Dierckx during grain storage [4]. OTA often co-occurs with ochratoxin B (OTB) and

citrinin in cereal grains [5]. OTA has been classified as a possible human carcinogen [6]. Dis-

covered in a laboratory culture of Aspergillus ochraceous Wilhelm in 1965, OTA was reported as

a natural contaminant in stored grain destined for animal feed in a maize sample collected in

Iowa, USA [7, 8]. It was detected three years later in a moldy red spring wheat sample collected

in Alberta, Canada [9]. In Ontario, it was first reported in white beans in 1972 and subsequently

in suspect maize and mixed grain samples [10]. Produced by several species of fungi, ochratoxin

is found in several commodities (cereals, raisins, coffee). OTA has been shown to be quite com-

mon in cereals. For example, 37% of 1,907 samples randomly selected from Canadian wheat

domestic and export shipments between 2010 to 2012 contained quantifiable levels of OTA all

below the EU regulation [11]. Small concentrations of OTA were reported in ~40% of wheat-

based breakfast cereal and most pasta samples at the retail level in Canada [12, 13]. In the USA,

52% of breakfast cereal and snacks collected from 2012 and 2013 tested positive for OTA [14].

The major contributors of OTA exposure in the Canadian population, based on consump-

tion rates, are wheat-based foods [15]. In order to reduce its exposure, various countries

including the European Union have set regulations for OTA content in beverages, food and

animal feed [16]. Health Canada has proposed maximum limits for the presence of OTA in

various food commodities including a 5 ng/g maximum level for raw cereal grains and 0.5 ng/

g maximum limits for baby foods and processed cereal-based foods for infants and young chil-

dren [17]. The analysis of cereal-based foods is particularly challenging as the aforementioned

limit approaches our current level of detection (0.3 ng/g) obtained using an LC-MS/MS sys-

tem. The Canadian Food Inspection Agency has already applied the proposed limits through a

market basket survey of cereal-based baby foods resulting in a voluntary product recall in

Ontario in late 2009 [18]. Considering a 2-kg wheat sample from a grain lot, almost all (95%)

of the variability in the analysis of OTA at the ng/g level was due to sampling; the remainder

was due to the analytical and sample preparation steps [19]. Aside from the costs, the extreme

variation of OTA in grain makes analysis of grain leaving farms impractical. This has resulted

in the value chain erring on the side of caution, greatly increasing the likelihood of economic

harm to grain producers. False positives were identified as a major problem of rapid immuno-

assay kits commercially available in Europe for OTA determination in cereals [20]. Samples

that were identified as positive needed to be confirmed using an expensive reference method.

This disadvantage coupled with the heterogeneous nature of OTA in grains has created angst

in the cereal value chain resulting in increased surveillance costs with dubious certainty. Until

more reliable and cost-effective sampling and analytical methods are available, OTA must be

managed in winter wheat through the reduction of risk primarily at the origin of the value

chain, on farm and in storage. Regional [21] and temporal [12] variations in OTA levels in

human blood and cereal products has been observed, respectively, indicating the importance

of multiyear surveillance but data for Canadian grains are scarce.

OTA occurrence in Ontario winter wheat
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Managing the potential contamination of grain with OTA requires an understanding of the

occurrence of OTA-producing fungi as well as the conditions post-harvest and during storage

that are conducive to toxin accumulation in grains. The objectives of the current study were:

1) to conduct an annual survey of post-harvest and on-farm storage conditions related to the

occurrence of P. verrucosum and related mycotoxins in winter wheat grain collected from on-

farm storage; 2) to study the relationship between mycotoxin contamination and P. verruco-
sum occurrence in winter wheat grain; 3) to identify potential critical on-farm storage control

points for P. verrucosum inoculum incidence and mycotoxin accumulation; 4) to identify con-

ditions conducive to OTA accumulation in winter wheat grain on farm and suggest best man-

agement practices from this information.

Materials and methods

Sample collection and preparation

On-farm storage bin survey. A 3- and 4-year annual survey of the occurrence of P. verru-
cosum and OTA, respectively, targeting on-farm winter wheat storage bins was conducted at

various locations across Southwestern Ontario from 2011 to 2014 (Fig 1).

Farmers that harvest, dry and store their own grain were selected for this study by volun-

teerism in response to an appeal through grain grower organizations (Grain Farmers of

Ontario) and government extension (Ontario Ministry of Agriculture Food and Rural Affairs).

In this study humans were not the subject. Instead, we surveyed agronomic practices for

which a formal ethical review was not required. No personal information on willing partici-

pants was or will be disclosed including GPS coordinates.

Information sheets were completed by each farmer and used to document agronomic, post-

harvest and storage practices. A total of 40, 57, 65 and 70 grain samples were collected from 31,

34, 26 and 29 farms (37, 36, 37 and 40 storage bins) during the 2011, 2012, 2013 and 2014 win-

ter seasons. All samples were collected by field technicians in coordination with each farmer

using standardized protocols (following). In order to establish the potential source of myco-

toxin contamination and to standardize samples across bins, grain samples were classified

based on collection source and timing (before, during and after storage and bin out-loading

onto trucks) as described in Table 1.

The initial aim of this study was to monitor the undisturbed surface of the grain mass before

any grain was removed for shipping (bin out-loading). This was the main source of samples.

For sampling, a cleaned commercial grain probe (extendable to 6 m length, 3 cm diameter, alu-

minum) was inserted to approximately 60-cm depth into the top of the bulk grain surface at

the center of the bin. Around 12 kg of grain was aspirated out through the probe, using a mod-

ified 6.0 HP drum vacuum cleaner with a storage capacity of 45.5L (Shop Vac Corp., Chicago,

IL) and transferred to a new, unused cotton sack (38 cm wide by 71 cm long). The vacuum

was cleaned with methanol, and a methanol-soaked disposable cloth was passed through the

length of the probe several times between each sampling location. In some cases, we arrived at

storage bins where the grain surface was disturbed resulting from unloading or inter-bin grain

transfer during storage. These samples were also collected but considered separately. Another

source of samples was those collected from the first grain leaving bins during the first truck

load taken from the bin (first loads samples) generally taken when the center top of the bin

was inaccessible. These samples were collected by using a dip cup (630 mL) fixed on a pole

inserted into the moving stream of grain at 1 min intervals for 15 min until approximately 12

kg of grain was obtained. The cup was cleaned with methanol between each sampling location.

A further source of samples was those obtained from farm stores when the first load and

perhaps several loads had already been shipped, before we arrived (intermediate load samples).

OTA occurrence in Ontario winter wheat
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Fig 1. Geographic distribution of P. verrucosum (A) and OTA (B) occurrence in winter wheat grain collected from on-farm storage bins across

Southwestern Ontario, Canada. 1Total grain samples collected. Open circles and dots represent individual on-farm storage bin operations. ND: bin

operations where grain tested negative for P. verrucosum and/or OTA. CFU determined by dilution plating on DCYES media with a LOD: 63 CFU/g; OTA,

LOD: 0.3ng/g determined by LC-ESI(+)-MS/MS.

https://doi.org/10.1371/journal.pone.0181239.g001

Table 1. Classification of grain samples based on collection source and timing (before, during and after storage and bin out-loading).

Source Type Description Timing P. v OTA

(grain out-loading) 2011–132 2011–143

before during after N4 n5 (%)5 N4 n5 (%)5

UntoSuched

surface

Static From the centre top of bins left untouched during storage X 83 22 (26.5) 108 3 (2.8)

Disturbed surface Static From the centre top of bins where grain had been partially

removed during storage

X 18 3 (16.7) 29 0 (0.0)

First loads Dynamic From the first grain augered out of the bin X 24 6 (25.0) 40 1 (2.5)

Intermediate

loads

Dynamic Aggregated grain samples from the auger collected during out-

loading

X 20 2 (10.0) 24 0 (0.0)

Last loads Static From the top of grain piles from the last loaded wagon X 17 4 (23.5) 31 1 (3.2)

Total grain samples1 162 37 (22.2) 232 5 (2.2)

Grain crumps Static Moldy grain clumps found inside the bins X 10 7 (70.0) 18 10 (55.6)

1Total grain samples collected;
2samples collected from 2011–2013 were tested for P. verrucosum using dilution plating on DCYES media with a LOD: 63 CFU/g;
3samples collected from 2011–2014 were analyzed for OTA using a LC-ESI(+)-MS/MS system, LOD: 0.3ng/g;
4N: total number of sample collected;
5n: positive samples and (%) of positive samples.

https://doi.org/10.1371/journal.pone.0181239.t001
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These samples were taken as described above. Finally, in some cases we were only able to sam-

ple from the last load leaving the bin. In this situation samples were collected from the top of

the last loaded grain wagon or truck (last load samples) in the same way grain was collected

from the surface of the bin. During the last three years of the survey, whenever grain clumping

was observed in the bin after shipping, grain was also collected directly from clumps, and the

clump location and conditions were documented. Additionally, each time a grain or grain

clump sample tested positive for OTA, the storage bin was studied in detail with emphasis on

measuring OTA, OTB and citrinin relative occurrence at different location in the bin. A total

of 6 storage bins were sampled for grain clumps found near manhole opening and door

frames, debris and old grain found in augers, on floor and on walls and grain collected from

different areas in the bin.

In the first year of the survey, individual grain samples were split into 10 and 2 kg fractions

using a continuous splitter, placed into two new unused cotton sack and shipped to the Cana-

dian Grain Commission’s Grain Research Laboratory and University of Guelph Laboratory

Services, respectively, for independent determination of OTA contamination by LC-MS/MS.

Ground and homogenized samples were sent back to our laboratory in Ridgetown for further

mycotoxin analysis and mycological determination. Samples from the second and third years

were analyzed in Ridgetown. All samples were transported on the same day of collection, eval-

uated for visual insect damage, mold presence and moisture content measured with a

Motomco Automatic Grain Moisture Meter (Model 919), and then stored in an air ventilated

cold room at 2˚C and 40–50% RH until analysis. The 12-kg grain samples were blended for 5

min using a clean electric stainless steel cement mixer. Twenty 100-g portions were removed

from the rotating mixer to form a 2-kg composite sub-sample. The entire sub-sample was then

ground into 3 portions using a Romer sub sampling mill (Model 2A, Romer Labs., Union,

MO). One portion was ground further to a particle size of less than 850 microns using a M2

Stein mill (Fred Stein Lab, Inc., Atchinson, KS). A 100-g sub-sample was conserved in a

500-mL wide-mouthed polypropylene bottle sealed with screw cap for mycotoxin analysis.

Two 0.5-g sub-samples were conserved in separate 50- mL centrifuge tubes for P. verrucosum
determination.

Mycological analysis

P. verrucosum isolation, quantification and identification. Preliminary studies were

made to select an optimal medium for isolation of P. verrucosum from grain samples. The final

choice was Dichoran chlorotetracycline yeast sucrose glycerol media (DCYES: 20 g of yeast

extract, 150 g of sucrose, 20 g of agar, 0.5 g of MgSO4, 0.05 g of chloramphenicol, 0.002 g of

dichloran, 0.05 g of chlorotetracycline, 0.01 g of ZnSO4, and 0.005 g of CuSO4 per liter) [22].

DCYES plates had sufficient growth (>2 mm in diameter) in 6 d which was faster compared to

the other recommended media (10–14 d) with a water activity (aw) of 0.9930 ± 0.003 (mea-

sured in triplicate in 10-day-old cultures using an AquaLab 4TE-DUO, Decagon Devices Inc.,

USA). Plates were incubated in the dark at 25˚ for 7 d. Three strains of P. verrusosum (no,

medium-, and high- OTA producers with strain numbers C27-1, C924-2 and C258-1, respec-

tively) were used for method validation and were obtained from the Canadian Grain Commis-

sion, Winnipeg, Manitoba.

P. verrucosum colony-forming units (CFU/g sample) were estimated from ground grain

and debris samples by serial dilution plating. This approach was tested using a winter wheat

sample collected from the first bin that had grain tested positive for OTA in our 2011 on-farm

storage survey. After plating (see below), presumptive isolates of P. verrucosum were counted

based on colony morphology (terracotta to reddish-brown on reverse). Randomly selected

OTA occurrence in Ontario winter wheat
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colonies were tested for the production of OTA and citrinin by thin layer chromatography

(TLC) based on TEF (toluene/ethyl acetate/90% formic acid, 5/4/1, v/v/v) and CAP (chloro-

form/acetone/2-propanol, 85/15/20, v/v/v) eluting solutions using a silica gel C18 pre-coated

aluminum backed plates with fluorescent indicator UV254 (Macherey-Nagel, Duren, Ger-

many), and observed under a 365 nm UV light [23]. All 3 P. verrucosum standard strains pro-

duced citrinin and two produced OTA. For further verification, LC/MS-MS analysis for OTA,

citrinin and OTB was conducted on colonies positive for OTA and/or citrinin as determined

by TLC. The first 7 cultures evaluated produced OTA, citinin and OTB were sent to the Agri-

culture and Agri-Food Canada Laboratory in Ottawa for identification of P. verrucosum. This

was done using sequence-specific-primer-PCR methods targeting the β-tubulin gene using

Bt2a and Bt2b primers [24] as described by Samson et al, 2004 [25]. They reported that all cul-

tures were authentic P. verrucosum and given the following ID: numbers KAS 4254, KAS 4255,

KAS 4256, KAS 4257, KAS 4259, KAS 4260 and KAS 4262. The genome of KAS 4260 has been

fully sequenced and the colony has been deposited by Dr. Keith Seifert in the Canadian Collec-

tion of Fungal Cultures (accession number DAOM 242724) located at the Eastern Cereal and

Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario.

The final protocol modified in our study was as follows: two 0.5-g ground subsamples, from

each sample described above were diluted 1:100 (w/v) in double-distilled water by shaking for

30 min in separate 50-mL sterile polypropylene centrifuge tubes. A 200-μL suspension was

spread uniformly on the surface of DCYES media contained in a sterile 100-mm disposable

petri dish, using a sterile glass stir rod, and the inoculated dishes were kept for approximately 7

d in darkness at room temperature. Each sub-sample was replicated four times resulting in 8

replications per sample. The number of presumptive P. verrucosum colonies appearing on

plates was counted yielding a detection limit of 63 CFU/g. In some cases, if plates appeared

over grown with colonies of other fungal species, hindering the growth of P. verrucosum, the

sample was re-plated at increasing dilution factors to a maximum of 1:1000000 (w/v) or

625000 CFU/g. For mycotoxin profiling, up to 5 colonies per sample were selected randomly

and transferred to DCYES media and grown for another 10 d for qualitative and quantitative

mycotoxin profiling using TLC and/or LC-MS/MS. Quantitative levels of OTA, OTB and citri-

nin were produced by all 5 presumptive isolates randomly isolated from each sample. Thereaf-

ter presumptive colonies were considered as P. verrucosum.

Mycotoxin analysis

Chemicals and reagents. Methanol, acetonitrile and water of LC-MS grade were obtained

from J.T. Baker (Phillipsburg, NJ, USA). Ammonium formate and formic acid of LC-MS

grade, and glacial acetic acid and ammonium acetate of HPLC grade, were purchased from

Fisher Scientific (Oakville, ON, Canada). OTA, OTB and citrinin standard solutions and iso-

tope-labelled internal standard U-[13C20]-Ochratoxin A (U-[13C20]-OTA) were purchased

from Biopure (Tlln, Austria) and dissolved in acetonitrile. All other reagents were of analytical

grade and obtained from Fisher Scientific (Oakville, ON, Canada).

Extraction from grain. A 100-g sub-sample was placed in a 500-mL wide-mouthed poly-

propylene bottle with screw cap and extracted with 400 mL of acetonitrile/water/acetic acid

(79/20/1, v/v/v) by shaking for 90 min using a MAX Q 2000 Thermo Scientific rotary shaker

(Sulyok et al., 2006). The extract was transferred to a polypropylene centrifuge tube, spun for 2

min at 3000 rpm in a centrifuge with a radius of 15 cm. A 75-μL aliquot of supernatant was

transferred to a 10-mL glass vial, dried down using a Pierce Reacti-VapTM III machine at

40˚C, reconstituted in 150 μL of acetonitrile/water (50/50, v/v) solution and then transferred

to a 400-μL glass vial insert in a 2-mL amber glass vial. The reconstituted sample extract was

OTA occurrence in Ontario winter wheat
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spiked with U-[13C20]-OTA internal standard to a concentration of 1 ng/mL. A 50-μL aliquot

was then injected into the HPLC system, with an eluent flow rate of 1 mL/min. Eluent from

the HPLC was then split by a 50:50 flow splitter, and 25 μL was introduced to the ESI-MS/MS.

Extraction from mycelium. Fungal mycelium mass was added to acetonitrile/water/ace-

tic acid (79/20/1, v/v/v) extraction solvent in a ratio of 1:4 (w/v), respectively, and then homog-

enized with a Fisher Scientific Pulsing Vortex Mixer for 5 min. A 100-μL sample was added to

900-μL methanol/water/acetic acid (10/79/1, v/v/v) solution, centrifuged for 2 min at 3000

rpm. A 500-μL aliquot of supernatant was transferred into a test tube, evaporated, reconsti-

tuted with 1000 μL of an acetonitrile/water (50/50, v/v) solution, then transferred to a 400-μL

glass vial insert in a 2-mL amber glass vial, and a 25-μL aliquot was introduced to the LC-MS/

MS. The reconstituted sample extract was spiked with U-[13C20]-OTA internal standard to a

concentration of 1 ng/mL.

Mycotoxin determination. OTA, OTB, and citrinin detection and quantification were

performed with an Ionics EP 10+ modified API 365 triple quadrupole mass spectrometer

(LC-MS/MS; AB SCIEX, Concord, ON) system equipped with an electrospray ionization (ESI)

source. The Agilent 1100 Series HPLC system consisted of a G1312A binary pump, G1316A

thermostat column oven, G1322A degasser (Agilent Technologies, Santa Clara, CA), and a

HTC Pal autosampler (CTC Analytics, Zwingen, Switzerland) equipped with a 100-μL injec-

tion syringe. A 150-mm Gemini C18 reverse phase column with 4.6-mm internal diameter (i.

d.), and particle size of 5 μm fitted with a C18 4x3-mm i.d. security guard cartridge (Phenom-

enex, Torrance, CA) were used to complete separation [26]. Eluent A contained 5 mM of

ammonium formate, and 0.1% formic acid in water. Eluent B contained 100% acetonitrile.

Separations were conducted at a flow-rate of 1mL/min using 100% eluent A for the first 2 min

followed by a linear gradient from 0 to 100% of eluent B over the next 12 min, then a hold time

of 3 min at 100% B and finally linearly changed back to 100% eluent A over 10 sec and re-

equilibrated at 100% A for an additional 50 sec. The total run time for each sample was 18

min. ESI-MS/MS was performed in multiple-reaction-monitoring (MRM) mode in positive

polarity. The instrument settings were as follows: source temperature 550˚C, nitrogen curtain

gas 80 psi, nebulizer gas setting 8, collision gas setting 2, and ionization voltage 5000V. The

nitrogen gas of 99% purity was supplied by a Source 5000 Tri Gas Generator (Parker Balston,

Haverhill, MA).

Analytical performance. The parameters used in the detection and quantitation of OTA,

OTB and citrinin were obtained via direct infusion of (6 ng/μL) solutions at 10 μL/min into

the ESI-MS/MS. Potentials producing the most intense response to their respective toxins

were selected for the method (Table 2).

The method was validated for wheat and maize matrices. Concentrations were determined

by using matrix-matched calibration curves at 7 concentration levels from 0.06 to 4.00 ng/mL

in addition to a double blank (matrix extract) and a blank (matrix extract with IS) samples. U-

[13C20]-OTA internal standard, (1 ng/mL) was used in this study to compensate for variation

of signal intensities due to matrix effect [27]. Instrument control, parameter optimization, data

collection and peak integration were performed using Analyst 1.5 software (Applied Biosys-

tems, Foster City, CA). LOD and LOQ were calculated as the mean height of the noise signal

obtained for the blank plus 3 and 10 times their standard deviation around the analyte reten-

tion time, respectively [28]. LOD and LOQ were 0.3, 0.5, 0.6 ng/g and 0.8, 1.1, 1.4 ng/g for

OTA, OTB and citrinin, respectively. Percentage of recovery for each toxin was determined by

spiking, in triplicates, 2.5 ng of analytical standards to 5 g of finely ground clean grain samples

and allowing them to evaporate and equilibrate with the matrix for 3 days at 40˚C in darkness

before extraction. Recovery of OTA, OTB and citrinin spiked at 0.5 ng/g was 104%, 88% and

105%, respectively (Table 2).
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Statistical analysis

All data were analyzed using SAS 9.4 software (SAS Institute Inc, Cary, NC). Data were tested

for normality with the Shapiro-Wilk test (PROC UNIVARIATE). The CFU data of P. verruco-
sum from the 2011–2013 survey of on-farm stored winter wheat grain were transformed to ln

(x+1) prior to analysis. The PROC MIXED module with the PARMS statement and the NOI-

TER option was used to implement restricted maximum likelihood (REML) to estimate vari-

ance components [29]. Sources of variation included year and farm location nested within

years as random effects, and sample source, wheat classes, bin capacity, weeks in storage and

grain moisture content at sampling as fixed effects. To reduce small sample bias, the degrees of

freedom of the fixed effects F-test were adjusted for statistical dependence using the Kenward

—Roger method. All tested interactions that were not statistically significant were not included

in the final model. Multiple regressions were performed with the PROC REG procedure of

SAS. The influence of potential on-farm storage control points on OTA, OTB and citrinin inci-

dence was studied on 6 farms with grain and/or grain clumps positive to OTA. Mycotoxin

data generated were transformed to ln(x+1) prior to analysis. PROC MIXED was used to

implement REML estimates of variance components as described above. Sources of variance

included farm location as random effect, and control points in storage and grain out-loading

as fixed effects. Main effects were compared using a Tukey-adjusted pairwise comparison with

p<0.05 considered significant. Unless otherwise stated arithmetic means of non-transformed

data ± standard error (SE) are reported.

Results

On-farm storage bin Survey

Grain sources and characteristics. A total of 59 unique farms were surveyed during

2011–2013. Of these, 72% indicated spraying triazole fungicide for controlling Fusarium head

blight during wheat heading, 13% also applied strobilurin fungicides for foliar diseases early in

the season at 4th leaf and/or flag leaf stage of development. Approximately, 67%, 30% and 3%

of harvested grain originated from fields following a zero-tillage, minimum tillage and both

Table 2. HPLC-ESI-MS/MS optimized instrument parameters and recovery (%), repeatability (SD%), LOD and LOQ of OTA, OTB and citrinin spiked

in winter wheat flour.

Parameter Unit OTA OTB citrinin OTA 13C20
1

tR2 (min) 12 11.1 11.6 12

Precursor ion3 (m/z) 404.2 [M+H]+ 370.1 [M+H]+ 251.1 [M+H]+ 424.2 [M+H]+

DP3 (V) 44 37 22 44

Product ion3 (m/z) 239.0/358.0 205.1/103.0 191.0/205.2/233.1 250.0/377.3

CE3 (V) 34/20 32/76 33/33/33 31/19

CXP3 (V) 17/36 17/17 17/17/17 33/34

Recovery ±SD4 % 104±5 88±7 105±4

Linearity range5 ng/g 0.1–4.0 0.1–4.0 0.1–4.0

LOD±SD5 ng/g 0.3±0.1 0.5±0.2 0.6±0.1

LOQ±SD5 ng/g 0.8±0.3 1.1±0.4 1.4±0.3

1Internal standard;
2 Retention times obtained from 4 ng/mL solutions injected into the HPLC;
3Determined by direction infusion of 6 ng/mL toxin solutions in a 50/50 Eluent A/B mixture; Quantifier ion data in bold;
4Recovery was determined by spiking mycotoxins at 0.5ng/g and equilibrated for 3 days at 40˚C before extraction (n = 3);
5Matrix-matched calibration curve (n = 6) was employed to determine level of detection (LOD) and quantitation (LOQ).

https://doi.org/10.1371/journal.pone.0181239.t002
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zero and minimum tillage, respectively. The relationship between pre-harvest and agronomic

factors is the subject of a future paper.

Most (77%) of the samples collected from bins were of the soft red winter wheat (SRW)

class followed by, soft white winter wheat (SWW, 7%), hard red winter wheat (HRW, 5%),

durum (3%), and blends of different classes (8%). The distribution of winter wheat classes in

our survey reflects the average area planted with soft red winter wheat, hard red winter wheat

and soft white winter wheat in Ontario during the time of this study, which were 83%, 11%

and 6%, respectively [30]. Mean grain moisture content at harvest, as reported by farmers, was

15.3%, 14.5% and 13.6% with 51%, 41% and 11% grain samples having a moisture content

>14.5% resulting in 16%, 8%, and 11% of farmers using wet grain holding tanks to hold the

grain before it was dried for storage in the 2010, 2011 and 2012 cropping season, respectively.

In this study, no relationship was found between moisture content measured at harvest by the

farmer and P. verrucosum incidence found in harvested grain (n = 131, p = 0.7075, r2 = 0.0011)

or moisture content measured at sampling after storage (n = 120, p = 0.9264, r2 = 0.0001).

Grain moisture content at sampling was significantly higher in samples taken from the sur-

face of untouched bins (p<0.05, n = 81, mean ± SE = 13.9±0.2%) than aggregated samples

taken from the auger during bin out-loading (n = 20, mean = 12.6±0.2%). No difference in

moisture content was found between those samples collected from the first (n = 24,

mean = 12.9±0.2%) and last (n = 17, mean = 13.4±0.4%) loads and those collected from dis-

turbed surface (n = 18, mean = 13.3±0.4%) (Fig 2B).

Storage bin characteristics. Of the 83 unique storage bins surveyed during 2011–2013,

most (98%) were round bins made of corrugated, galvanized, steel with flat-bottoms and

coned roofs with a median capacity of 300 MT (approx. 7 m diameter x 9 m eave height or

11m overall height). All steel bins had aerated flooring equipped with aeration fans, roof ports

for top filling, top and bottom man-access doors, bottom unloading ports and ventilation at

Fig 2. Distribution by sample source of P. verrucosum (A) and moisture content at sampling (B) found in Ontario winter wheat grain and grain

clump stored in on-farm bins and collected from 2011 to 2013. CFU of P. verrucosum determined by dilution plating on DCYES media; LOD: 63 CFU/

g. Means followed by the same letter in the column are not statistically different (Tukey at P<0.05).

https://doi.org/10.1371/journal.pone.0181239.g002
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the eaves. Two of the bins sampled were concrete grain silos. Most (63%) of the bins were

smaller with a capacity of less than 400 MT. The remaining 21%, 11%, and 5% of bins had

capacities of 1600 MT, 3200 MT and 5000 MT, respectively.

The frequency of aeration for the wheat stored in bins in this study varied from 0, 2, 4 and

>6 events in 9%, 17%, 7% and 67% of bins, respectively. Three main aeration periods were

reported: 85% were aerated immediately after grain in-loading from harvest; 78% during cool

(<15˚C) and dry (<60% HR) days in summer and 89% in winter when air temperature out-

side were below freezing (<-1˚C) and dry (<60% HR), respectively.

Sample source. Grain samples were classified by two main characteristics: 1) sampling

type (either dynamic performed during grain movement at fixed intervals or static when sam-

pling was targeted to specific areas in the bins and wagons) and; 2) sample timing (either sam-

pled before, during and after bin out-loading). Six sample categories were identified including:

samples from untouched surface, disturbed pile surface, first load, intermediate loads and last

load which made up 47%, 13%, 17%, 10% and 13%, respectively, of a total of 232 grain samples

collected during the 2011–2014 survey. Only 18 moldy grain clumps were collected inside the

storage bins during the same period. Table 1 summarizes the type and number of samples col-

lected and found positive for P. verrucosum and OTA during the 2011–2013 and 2011–2014

surveys, respectively.

P. verrucosum incidence in grain and grain clumps

The incidence of P. verrucosum was expressed as number of colony-forming units found per

gram of grain sample (CFU/g). Samples containing fewer than 63 CFU/g (lower detection

limit) were considered negative. The distribution of the samples testing positive for P. verruco-
sum incidence across the geographic area surveyed is shown in Fig 1A.

In the 2011–2013 survey, a total of 40, 57 and 65 grain samples were collected from 31, 34,

and 26 farms or 37, 36 and 37 storage bins during the 2011, 2012 and 2013 winter season of

which 28%, 25% and 18% were positive for P. verrucosum at a mean±SD incidence of 383±410,

326±325 and 373±480 CFU/g, respectively. A total of 10 grain clumps was also collected during

the 2012 and 2013 winter season of which 7 were positive for P. verrucosum at a mean±SD con-

centration of 7782±17163 CFU/g. The highest concentration of P. verrucosum was found in a

4-kg grain clump sample (49792 CFU/g) collected after grain out-loading near a manhole

opening where condensation occurred on the inner side of the metal manhole causing mold

growth on the stored wheat, particularly in the grain surface below the opening. All grain

(n = 3) and clump (n = 2) samples that tested positive for OTA had an incidence of P. verruco-
sum greater than 1000 CFU/g.

There was no difference in the presence of P. verrucosum between farms (F = 0.83, dfn = 52,

dfd = 33, p = 0.7299) and years (F = 0.83, dfn = 2, dfd = 33, p = 0.4453) (Table 3). Analysis of var-

iance for a reduced model shows that the presence of P. verrucosum in grain was affected by

where the sample was sourced in the storage bin (F = 5.13, dfn = 5, dfd = 74, p = 0.0004) fol-

lowed by moisture content in the grain measured at sampling (F = 4.24, dfn = 8, dfd = 47,

p = 0.0007), weeks in storage (F = 3.52, dfn = 14, dfd = 47, p = 0.0006) and to a lesser degree

storage bin capacity (F = 1.71, dfn = 17, dfd = 47, p = 0.0751). Wheat classes did not affect P. ver-
rucosum incidence (F = 0.05; dfn = 4, dfd = 74, p = 0.9958) (Table 3).

Regression analyses revealed only a very weak relationship between P. verrucosum inci-

dence (CFU/g) and moisture content measured at sampling (n = 160, p = 0.0068, r2 = 0.0454),

and no relationship with weeks in storage (n = 172, p = 0.1709, r2 = 0.0110) or storage bin

capacity (n = 166, p = 0.4314, r2 = 0.0038). Two-dimensional scatter plots show that grain and

grain clump samples positive for P. verrucosum tended to be found in grain stored for longer
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periods of time (Fig 3A), with varying degrees of moisture content at sampling (Fig 3B) and

collected from smaller storage bins (Fig 3C).

Significant differences appeared when the data were classified according to where the sam-

ple was sourced in the bin (Fig 2). Samples from grain clumps contained more P. verrucosum
(p<0.05, n = 10, mean±SE = 5447±4932 CFU/g) followed by samples taken from the first load

(n = 24, mean = 147±87 CFU/g) and last load (n = 17, mean = 101±77 CFU/g) augered out of

the bins than those samples collected from untouched (n = 83, mean = 81±23 CFU/g) and dis-

turbed (n = 18, mean = 63±39 CFU/g) grain surfaces and intermediate loads (n = 20,

mean = 10±5 CFU/g) (Fig 2A).

Grain clumps varied in size from 2–4 kg and were usually found around or directly under

manholes, door frames or ice cones on grain surface. These micro pockets of contaminated

grain clumps present a significant risk to the value chain particularly for grain milled for infant

food. As water leaks or ice thaws it seeps down sides of bin walls and settled in low spots or on

floor creating big areas of grain clamping along its path (Table 4). Sampling these clumps was

difficult so only debris and old grain found attached to the walls were collected after grain out-

loading and included in this analysis (Table 5).

Because of the low thermal conductivity of grains [31], these clumps were usually restricted

to small localized areas without affecting the entire bulk. However, free water caused grain

aggregation and even clumping along bin walls forming hang-ups (Table 4). Grain bins tested

positive for OTA were studied in details and samples were taken from debris originated from

this adherent material (hang-ups) sticking to walls and analyzed for OTA, OTB and citrinin

(Table 5).

OTA incidence

OTA was analyzed in from total of 232 grain samples collected from 90 storage bins belonging

to 61 farms during a 4-year survey carried out in Southwestern Ontario. Grain samples were

collected from untouched surface of the grain mass (n = 108, 47%), disturbed surfaces (n = 29,

13%), first loads (n = 40, 17%), intermediate loads (n = 24, 10%) and last loads (n = 31, 13%),

respectively (Table 1). Of these, only 5 samples tested positive for OTA, citrinin and OTB at a

Table 3. Analysis of variance for reduced model of the distribution of P. verrucosum inoculum found

in grain and grain clumps (CFU/g) collected in winter 2011–2013 from on-farm storage bins located in

Ontario, Canada.

Fixes effect* dfn dfd F Pr > F

Farms 52 33 0.83 0.7299

Years 2 33 0.83 0.4453

Sample source 1 5 74 5.13 0.0004

Wheat classes 2 4 74 0.05 0.9958

Bin capacity (MT) 3 17 47 1.71 0.0751

Moisture at sampling (%) 4 8 47 4.24 0.0007

Weeks in storage 14 47 3.52 0.0006

*Data transformed before analysis [ln(X+1)].
1Sample source: untouched surface (48%), disturbed surface (10%), first loads (15%), intermediate loads

(11%), last loads (10%), grain clumps (6%);
2Wheat classes: Soft red winter wheat (77%), hard red winter wheat (5%), soft white winter wheat (7%),

Durum (8%), Blend (8%);
3Bin capacity: divided in 24 intervals ranging from 100 to 5000 metric tons (MT);
4Moisture content was not determined in grain clumps

https://doi.org/10.1371/journal.pone.0181239.t003
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Fig 3. Distribution of P. verrucosum CFU/g found in grain and grain clumps by weeks in storage (A), moisture content at sampling (B) and on-

farm bin size (C) collected in winters 2011–2013. Each gray dot and asterisk represents one grain or grain clump sample, respectively. Bin capacity in

metric tons (MT). The dotted line at around 1000 CFU/g separates the OTA positive samples from negative ones. Percentage moisture content (%) was

not determined in grain clump samples.

https://doi.org/10.1371/journal.pone.0181239.g003

Table 4. P. verrucosum colony counts (CFU/g), mycotoxin occurrence (ng/g) and aeration practices associated with OTA positive grain samples

found during the 2011–2014 on-farm storage survey of Ontario winter wheat.

Sampling Moisture (%) at Mycotoxins (ng/g) P. v Contributing factors*

dd/

mm/yy

DIS Source Harvest* Sampling OTA OTB citrinin (CFU)

1) 02/

20/14

207 Untouched

surface1
14.5 17.4 44.9 0.6 11.5 4514 No aeration protocol reported. Surface of the grain bulk frozen

under a snow cone. Chaff and grain clumps positive for OTA were

also found alongside the door, manhole, auger and floor.

2) 02/

09/11

209 Untouched

surface1
15.0 15.7 15.0 4.0 5.0 1014 Aeration when air temperature is cold with low humidity. Water

dripping from downspout due to condensation reported.

3) 02/

22/12

222 Last loads3 16.0 13.4 7.4 0.7 3.3 1313 Non-aerated bin. Sample from top of the wagon (last grain flowing

out of the bin) was positive for OTA. The toxin was also found in the

residue left on the floor after out loading.

4) 03/

25/13

253 First loads2 14.0 12.1 4.9 0.7 4.7 2450 Aerated every 6 weeks. Water leak observed from the manhole

opening to wall and into the grain. Grain from the top centre of the

bin negative for OTA.

5) 02/

26/14

216 Untouched

surface1
13.5 14.4 1.2 0.0 0.1 369 Aerated twice. Grain sample collected from south side under a snow

cap. As ice thawed water seeped down sides of bin walls and

settled in low spots. Grain clumps positive for OTA found along the

wall, manhole, side door and floor.

CFU of P. verrucosum (P.v.) were determined by dilution plating on DCYES media (LOD: 63 CFU/g). OTA OTB and citrinin were determined by LC-MS/MS

with a LOD of 0.3, 0.5 and 0.6 ppb, respectively; DIS: days in storage.

*Aeration practices as reported by farmers. Grain sample collection:
1Just before out-loading,
2from the first grain streaming out,
3on top of the wagon after out-loading was completed.

Untouched surface: grain samples taken from the centre top of undisturbed bins about 0.3 m below the surface.

https://doi.org/10.1371/journal.pone.0181239.t004
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mean±SE level of 14.7±7.9, 4.9±1.9 and 1.2±0.7 ng/g, respectively with a mean incidence of P.

verrucosum of 1,932±728 CFU/g (Table 4). The mean ratio of OTA:OTB was 12:1 ranging

from 4:1 to 75:1. In our samples, OTA:citrinin co-occurred at the mean ratio of 3:1 ranging

from 1:1 to 12:1.

OTA-positive samples (LOD>0.3ng/g) were from 5 independent bins from 5 different

farm locations comprising 2.2% of the total grain samples taken with only 3 samples (1.3% of

the total grain samples taken) had OTA concentrations exceeding the EU regulation. Disre-

garding isolated grain clumps, no noticeable visual difference was observed between grain

samples contaminated by OTA at various concentrations and visible growth by P. verrucosum
(Fig 4).

OTA incidence in on-farm storage bins

The five bins containing grain contaminated with OTA and one bin with a grain clump found

positive for OTA were studied in greater detail (supplementary information S1 Table). All bins

were located on different farms. No difference was found between on-farm bins (dfn = 5, dfd =

24) and OTA (F = 0.36, p = 0.8949), OTB (F = 0.70, p = 0.6495), and citrinin (F = 3.52,

p = 0.578) levels (Table 5). A total of 10 grain clump, found near manhole opening and door

frames; 11 debris and old grain samples, found in augers, on floor or attached to walls; and 16

grain samples from different areas in the bin were collected. OTA was found in all clump and

debris samples (n = 21) and in only 31% (n = 5) of grain samples collected. OTA, citrinin and

OTB co-occurred in 77% of positive samples (n = 20). OTB was not detected in 6 samples

whereas OTA and citrinin co-occurred in all positive samples.

Discussion

Southwestern Ontario accounts for 73% of Canadian winter wheat production [1]. According

to data collected from Statistic Canada [3], a 10-fold increase in the amount of wheat grain

stored in December occurred in the last 15 years, growing from 0.1Mt in 1997 to approxi-

mately 1.0Mt in 2011 (Fig 5).

Approximately 44% and 11% of on-farm stored grain was kept until March and July of the

following year, respectively. The current survey of on-farm storage was conducted from mid-

December to the second week of April each year in 6 counties (Chatham-Kent, Middlesex,

Lambton, Perth, Essex and Huron) where approximately 50% of the total winter wheat grain

in the province was produced. [1].

Free standing cylindrical bins, made by bolting sections of corrugated galvanized steel, are

the most common storage structure in Ontario. Typically, after drying the grain to straight

grade (14.5% moisture content), farmers in Ontario use natural-air drying as a cost-effective

method to reduce temperature gradient and moisture migration in storage bins to prevent the

formation of hot spots and spoilage. Natural-air drying occurs when the relative humidity of

the outside air is below the equilibrium moisture content of the grain. For instance, if wheat is

aerated with outside air at 15˚C or 0˚C and 60% HR the equilibrium moisture content will be

12.4% and 13.5%, respectively [32]. Although, a flat-bottom bin equipped with a fully perfo-

rated floor above a plenum provides a uniform air distribution through bulk grain [33], debris,

residue of old grain and fines accumulating in the space below the aerated floor can restrict or

divert airflow risking the formation of non-aerated or stagnant zones with high moisture con-

tent [34].

The headspace over the grain bulk inside these bins experience large temperature and rela-

tive humidity fluctuations because of big surface area on the roofs of these bins and solar radia-

tion. Even in small bins temperature gradients can induce slow convection currents causing
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grain moisture migration to the top center region in winter [35]. This movement of moisture

can stimulate fungal growth resulting in aggregation of grains forming bridges across the top

of the bin content [36]. Spoilage can often occur on the center top area of the bulk grain sur-

face due to: a) insufficient aeration generating temperature gradients, moisture migration,

condensation; and/or b) upward air movement through warm grain in cold weather causing

under roof condensation that drips on top of the grain surface [33, 37].

A total of 18 hard clumps of spoiled grain with noticeable mold growth was collected during

the 4 years of this survey, 10 of those were positive for OTA, citrinin and OTB with a mean±SE

level of 207.1±108.3, 30.4±16.5 and 25.7±12.8 ng/g, respectively. The mean ratio of OTA:OTB

and OTA:citrinin concentration were 8:1 and 7:1 ranging from 3:1 to 576:1 and 1:1 to 104:1,

respectively. Although all clumps were collected from top and bottom man-access doors

where free moisture from precipitation or condensation resulted in spoilage and heating, only

56% of samples were positive for toxins produced by P. verrucosum (Table 5). In the clumps,

after the initial heating, different species interact, compete and dominate simultaneously and

in succession until the clumps cool down and fungal growth declines [31]. The fungi prevailing

at different stages in the development of the clump will depend on the inoculum, moisture

(water activity) and when grain is moist, gas composition [38]. The condition in which P.

Fig 4. Winter wheat grain naturally contaminated with OTA at 0.0, 1.2, 4.9, 7.4, 15.0, 44.9 ng/g and collected during the 2011–2014 on-farm

storage survey of Ontario winter wheat.

https://doi.org/10.1371/journal.pone.0181239.g004
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verrucosum will dominate and the extent of OTA contamination, in the clump and in the area

adjacent to it, requires further study. The distribution of OTA contamination in clumps was

highly heterogeneous.

No sample collected from intermediate loads (aggregated grain samples collected from the

auger during grain out-loading) or from disturbed surfaces (where grain had been partially

removed during storage) tested positive for OTA. Grain samples (12 kg) positive for OTA

were all from highly localized areas related to moisture translocation or migration resulting in

condensation in the bin or areas where free moisture from precipitation including snow

entered the bin. The main contributing factors to P. verrucosum growth and OTA accumula-

tion in each sample are described, in decreasing level of concentration, as follows (Table 4): 1)

A SWW sample (44.9 ng/g; 4514 CFU/g) collected from the top center under a snow cone of a

non-aerated bin with an untouched frozen surface; 2) SRW sample (15.0 ng/g; 1014 CFU/g)

collected from the top centre area of an undisturbed bin. In this bin, aeration was performed

when air temperature was cold with low humidity resulting in water dripping from the in-

loading grain downspout due to condensation from warm damp air rising through the grain

mass. In winter, condensation dripping above the high moisture area of the bin (top center)

might trigger spore growth that could lead to OTA accumulation. Improving air flow in stor-

age bin roof vents [39] or blocking the gravity spouts during winter should prevent the escape

of moist air through gravity downspouts; 3) A SRW sample (7.4 ng/g; 1313 CFU/g) collected

Fig 5. Winter wheat production and fluctuation of on-farm grain stocks held in Ontario, Canada from

July 1997 to December 2012. Data acquired from Statistics Canada from 1997–2012. Source: Annual Field

Crop Reporting Series, Stock of principal field crops.

https://doi.org/10.1371/journal.pone.0181239.g005
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from the top of the wagon representing the last grain flowing out of a non-aerated bin. Due to

grain flow dynamics during unloading most of this grain came from the bottom of the bin,

which would have included grain in the corners of the bin where the floor meets the wall; 4) A

SRW/SWW blend sample (4.9 ng/g; 2450 CFU/g) collected from the first load coming out of a

bin aerated every 6 weeks. Due to a funnel pattern that occurs during grain unloading much of

this grain came from the top of the mass flowing through a center channel formed inside the

grain mass [40, 41]; 5) A SWW sample (1.2 ng/g; 369 CFU/g) collected from south side of an

untouched surface under a snow cap in a twice aerated bin. The snow came through the vents

and the south exposure created opportunities for heating and melting that provided water

activity conducive to the growth of P. verrucosum and OTA production.

Typically, during grain out-loading a funnel flow pattern occurs when discharging grain

from storage bins resulting in the uppermost grain being discharged first flowing through a

center channel formed inside the grain mass [40, 41] increasing the probabilities of finding

spoilage pockets originated on the bulk grain surface in the first loads. In winter, water con-

densation above the high moisture area of the bin (top center) might trigger spore growth that

could lead to OTA accumulation if P. verrucosum spores are present. Conversely, in fall and

spring, the ambient temperature becomes higher than that of the center bulk and natural con-

vection currents reverse direction causing buildup on the bottom of the bins thus increasing

the probability of P. verrucosum activity and OTA contamination in the last loads.

P. verrucosum is able to grow and produce mycotoxins over a wide range of temperatures

[42, 43], including low temperatures (0˚C-4˚C) [44, 45] especially when moisture is sufficiently

high (20%) in a highly susceptible grain like rye [46]. OTA production is limited by a aw level

<0.80 (around 14% moisture content) [45]. More studies on incubation periods required for

OTA formation under low temperatures in high moisture hot spots are needed in wheat. Hot

spots of OTA contamination were most often in areas affected by moisture migration due to

inadequate aeration and exposure to moisture from precipitation or condensation. These data

indicate that different patterns of condensation and oxygen tension occur and this affects the

nature and distribution of small pockets of toxin in a grain bin.

In our 4-year study of stored grain, we were not able to find multi-year OTA contamination

in any of the on-farm storage bins surveyed. The lack of consistency of OTA contamination

between years in the same storage bins following the same aeration patterns could indicate an

interaction between harvest, post-harvest and storage management strategies with environ-

mental factors that favors high grain moisture content at harvest and/or moisture migration

and condensation inside grain bins. Fungal growth depends largely on temperature and water

availability. Even within the closed conditions of a storage bin, large temperature and moisture

gradients can occur causing heat-induced natural convection currents resulting in moisture

migration within the stored grain bulk [35]. Although weather related factors were not consid-

ered in this study, due to the low thermal conductivity of grain [47] during winter the bulk of

the grain retains heat while the periphery and air above the grain cools or warms to ambient

temperature [33]. P. verrucosum growth and OTA accumulation in samples collected from

untouched surfaces (n = 3) and the first load (n = 1) (Table 4) were most likely the result of

moisture migration in winter. In the cold season, when the ambient temperature becomes

lower than that of the center bulk, the warm bulk air rises into the headspace and condenses as

it cools in contact with bin roof, leading to moisture accumulation that may both drip onto the

top of the grain and pour down into the sides of the bins [37]. In spring or by the beginning of

summer the ambient temperature becomes higher than that of the center bulk, and the natural

convection currents reverse direction causing moisture buildup on the bottom of the bins

[48], as is the case of samples collected from the last load.
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Critical control points where OTA contamination can occur in storage bins were identified.

In decreasing order of likelihood, they are: 1) grain clumps accumulated around or directly

under manhole openings (n = 5, 370.3 ±198.1 ng/g; t = 7.2; p<0.0001); 2) debris and residue of

old grain or grain clumps collected from the bin walls or left on storage floor (n = 6; 80.0 ±34.0

ng/g; t = 5.7; p<0.0001) and augers (n = 5; 59.7 ±30.7 ng/g; t = 5.0; p<0.0001); 3) grain clumps

accumulated around side doors (n = 4; 46.3 ±19.0 ng/g; t = 4.9; p<0.0001). All clumps and

debris samples collected from these bins were positive for OTA; 4) most grain samples col-

lected and one clump sample (67%) collected from untouched surface (high moisture area on

the central top part of grain bulk) were positive for OTA (n = 7; 15.9 ±8.0 ng/g; t = 2.9;

p = 0.007); Conversely, 5) most samples (71%) collected from the first or last loads were nega-

tive for OTA (n = 27; 1.8 ±1.2 ng/g; t = 0.7; p = 0.514); and 6) all samples collected from dis-

turbed surfaces and intermediate loads were negative for OTA (Table 5).

Conclusion and recommendations

OTA was rarely found in wheat samples in our survey. When found, it was highly-localized in

areas of high moisture content in the grain bulk and clumps. We were surprised by the rela-

tionship between condensation and the occurrence of OTA in the colder periods of the storage

cycle, and the isolated and specific nature of the pockets and clumps of contaminated grain

(Fig 6).

This was true for new corrugated-steel bins and even when grain enters storage below the

14.5% threshold of moisture. Attention must be given with respect to bin design, construction

and management. Designers and farmers must pay attention to the small details of managing

Fig 6. Critical point sources of OTA contamination in on-farm stored winter wheat.

https://doi.org/10.1371/journal.pone.0181239.g006
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the entry of liquid water moisture and the accumulation of condensation. The focus should be

less on the movement of moisture out of the grain, and more on the removal of moisture as it

leaves the grain in the head space to preventing condensation in or on the grain bulk. For

example, in a modern new bin a missing bolt, a poorly sealed access door, an open down-

spout are all potential sources of free moisture and condensation. The entry of snow in winter

through vents and other openings is also of concern (Fig 6). We did not have the opportunity

to sample from below the aerated floor, but suspect that the grain residue in these places are

also contributors to inoculum and spoilage. Therefore, prevention is the key strategy through

sanitation and bin inspection, to eliminate the sources of inoculum and free moisture.

Supporting information

S1 Table. P. verrucosum colony counts (CFU/g), mycotoxin occurrence (ng/g) and aeration

practices associated with OTA positive grain, grain clumps and residue samples found

during the 2011–2014 on-farm storage survey of Ontario winter wheat. CFU of P. verruco-
sum were determined by dilution plating on modified YES media (LOD: 63 CFU/g). OTA

OTB and CTN were determined by LC-MS/MS with a LOD of 0.3, 0.5 and 0.6 ng/g, respec-

tively.

(XLSX)
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