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Abstract

Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner

with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter

Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mamma-

lian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosoph-

ila zinc uptake transporters to facilitate dietary zinc absorption by importing ions into the

midgut enterocytes. However, the functional characterisation of Zip88E presented here indi-

cates that Zip88E may instead play a role in detecting and responding to zinc toxicity. Larvae

homozygous for a null Zip88E allele are viable yet display heightened sensitivity to elevated

levels of dietary zinc. This decreased zinc tolerance is accompanied by an overall decrease

in Metallothionein B transcription throughout the larval midgut. A Zip88E reporter gene is

expressed only in the salivary glands, a handful of enteroendocrine cells at the boundary

between the anterior and middle midgut regions, and in two parallel strips of sensory cell

projections connecting to the larval ventral ganglion. Zip88E expression solely in this

restricted subset of cells is sufficient to rescue the Zip88E mutant phenotype. Together, our

data suggest that Zip88E may be functioning in a small subset of cells to detect excessive

zinc levels and induce a systemic response to reduce dietary zinc absorption and hence pro-

tect against toxicity.

Introduction

Zinc is an essential dietary nutrient, required as a structural or enzymatic cofactor for poten-

tially thousands of different proteins. It has been estimated that up to 10% of all human pro-

teins are able to bind zinc [1]. There is also a growing body of evidence that unbound zinc ions

may be able to act as signalling molecules to regulate cellular processes such as growth and

neurotransmission [2].

Movement of zinc ions across cell membranes is facilitated by two large classes of proteins.

Members of the Zip family have mostly been shown to transport zinc into the cytosol, either

from outside the cell (cellular uptake) or from the lumen of cellular organelles in order to

redistribute zinc within individual cells. ZnT proteins mostly function in the opposite
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direction, removing zinc from the cell (cellular efflux) or supplying organelles such as the

endoplasmic reticulum, Golgi and lysosome. Within such organelles, zinc may be loaded onto

proteins that require zinc for their activity, stored for later use, or packaged for removal. The

large number of Zip and ZnT proteins encoded by vertebrate and invertebrate genomes indi-

cates that each protein has taken on a specialised role defined in part by its expression pattern,

cellular localisation, zinc transport ability / specificity and post-translational regulation.

The relative simplicity of the zinc transport network in Drosophila (17 Zip and ZnT genes

compared to 25 in vertebrates [3]) has facilitated the functional characterisation of a number

of these genes. Focussing on the process of zinc absorption from the diet, two Zip proteins,

Zip42C.1 and Zip42C.2, have been shown to play a major role in uptake of zinc from the intes-

tinal lumen through a small cluster of cells in the larval midgut called the iron cells [4]. A

third, closely related protein, Zip89B, is more widely expressed throughout the midgut and

appears to play an ancillary role in zinc absorption [5]. Although Zip89B is non-essential, in its

absence, Zip42C.1 and Zip42C.2 are upregulated, presumably to compensate for a reduction in

zinc uptake [5]. Once inside the cells of the fly midgut, zinc must be released into the circula-

tory system for systemic supply, a function performed by ZnT63C with support from ZnT77C
[4, 6].

Together with a fourth protein, Zip88E, Zips 89B, 42C.1 and 42C.2 form a highly-conserved

clade with highest similarity to mammalian Zips 1, 2 and 3 [3]. Indeed, this is the only situation

where there are more fly proteins than human proteins within a Zip or ZnT phylogenetic sub-

group. The Zip1 to 3 mouse triple knockout shows no obvious defects in mice raised on a zinc

replete diet [7]. The Zip1 and Zip3 single knockout mice do however show a high level of

embryonic developmental abnormalities in pups of knockout mice raised on a zinc-deficient

diet and in the Zip1/3 double knockout mice these defects are elevated in an additive fashion.

The Zip1/2/3 triple knockout mouse has zinc deficiency phenotypes equivalent to those of the

1/3 double knockout suggesting that while Zip1 and Zip3 are playing overlapping roles, Zip2
functions differently. Indeed, expression of Zips 1 and 3 is broad and includes the intestinal

stromal cells whereas Zip2 expression is limited to the pericentral hepatocytes, keratinocytes

and immature dendritic cells [8].

Zip4 has been considered as the major zinc uptake gene in the mammalian intestine to date

because a human zinc deficiency disease, Acrodermatitis enteropathica, is caused by Zip4
mutations [9]. However, intestinal-specific knockout of Zip4 actually results in a reprogram-

ming of Paneth cells, accompanied by crypt dysplasia and reduced cell division in the small

intestine [10]. Therefore the systemic zinc shortage caused by Zip4 mutations may in fact be

due to general intestinal malfunction resulting from zinc deficiency specifically in the Paneth

cells. In this scenario, Zips 1 and 3 may play an important role in general zinc absorption via

the enterocytes, although clearly Zip4 and / or other uptake mechanisms must also be contrib-

uting since the Zip1/3 double knockout is relatively healthy.

While Drosophila Zips 89B, 42C.1 and 42C.2 have been well characterized, the closely-

related Zip88E is yet to be examined in detail. Previous over-expression experiments have

shown that Zip88E is localized both to the outer basolateral membrane and an endomembrane

but does not overlap with endoplasmic reticulum or Golgi markers [11]. Zip88E overexpres-

sion alone has no effect on Drosophila viability or morphology but does modify over expres-

sion phenotypes of other fly Zip and ZnT genes. In these interaction experiments, Zip88E acts

to increase cytosolic zinc levels, behaving similarly to Zips 89B, 42C.1 and 42C.1 but even more

like the uncharacterised Zips 102B and 99C [11].

Double knockdown of Zips 42C.1 and 42C.2 in the fly larval midgut clearly causes zinc defi-

ciency in animals raised on a zinc-poor diet yet has relatively little effect on a zinc-replete diet

[4], indicating that additional enterocyte uptake mechanisms may be contributing to zinc
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absorption in the fly. A similar phenomenon is observed in mouse Zip gene knockouts, sug-

gesting that alternative zinc absorption mechanisms could be novel therapeutic targets for

addressing zinc deficiency. Here we have generated a null mutation in Zip88E and examined

its expression pattern to investigate whether this closely-related gene may be playing a sup-

porting role in zinc absorption.

Materials and methods

Drosophila stocks

The following fly stocks were used: w1118 (BL3605, Bloomington Stock Centre, Indiana USA);

GMR-GAL4 (P[longGMR-GAL4]3, BL8121). RNA interference (RNAi) lines were obtained

from the Vienna Drosophila RNAi Centre (VDRC)). MtnB:EYFP was a gift from Walter

Schaffner (University of Zurich, Switzerland). Microscopy utilized P[UAS-mCD8::GFP.L]2 and

P[UAS-2xEGFP]AH2 to visualize reporter gene expression. A list containing the transgenic

lines used in this study is provided in [11]. All transgenic Drosophila experiments carried out

in this research were performed with the approval of the Monash University Institutional Bio-

safety Committee. No ethics approval is required for experiments involving insects in

Australia.

Cloning and generation of Zip88E:GAL4 reporter construct

The predicted promoter/enhancer regions of Zip88E were PCR-amplified from genomic DNA

extracted from w1118 third instar larvae. The region directly upstream of the START codon of

Zip88E until the STOP codon of the preceding gene (CG14864) was amplified and cloned into

a modified pUAST-attB vector with the UAS sequence upstream of the multiple cloning site

(MCS) removed. Full length GAL4 coding sequence was also cloned into the MCS. This con-

struct was injected into PhiC31 attP 51C and 86Fb strains (provided by Konrad Basler). Micro-

injections utilized an Eppendorf Femtojet apparatus with Femtotips II pre-pulled glass needles

(Eppendorf). Oligonucleotide sequences are provided in S1 Table.

Drosophila maintenance and feeding experiments

All Drosophila strains and crosses were maintained on standard (basal) medium at 25˚C unless

stated otherwise. Standard medium was supplemented with 4–12 mmol l-1 zinc chloride

(ZnCl2; Sigma Aldrich, St. Louis, MO, USA) to make zinc-supplemented medium, or 50–

150 μmol l-1 N,N,N’,N’-tetrakis (2-pyridylmethyl)-ethylenedidiamine (TPEN; Sigma Aldrich)

to make zinc-deficient medium. For survival assays, Drosophila first instar larvae were trans-

ferred between 20–24 h post-emergence onto media supplemented with aqueous pre-diluted

ZnCl2 or TPEN (50 larvae per replicate). Adult survival was determined as the proportion of

larvae that had emerged as adults after 15 days at 25˚C. Acute exposure to supplemented food

was achieved by picking third instar larvae before the wandering stage onto treated food types

and allowing development for 20–24 h before further analysis was conducted.

Imprecise P-element excision

Males with the P-element P[EPgy2]Zip88EEY11179 (BL20270) inserted just upstream of the

Zip88E translation START codon were crossed to the Δ2,3 (99B) transposase stock to induce

an imprecise excision event. Single male progeny with mosaic eyes were crossed to MRKS/
TM6β females. Single white-eyed males in the subsequent generation were then tested for

imprecise excision events, using PCR primers designed to span the majority of the Zip88E
locus. Oligonucleotide sequences are provided in S1 Table.
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Microscopy

Adult flies were partially dissected then mounted directly onto plasticine and monitored with

a Leica MZ6 stereomicroscope. All eye images were recorded on a Leica DC300n digital cam-

era and Leica Application Suite.

Midguts, salivary glands and the brain were dissected from third instar larvae in cold phos-

phate buffered saline (PBS) and mounted directly onto glass slides in Vectorshield (Vectorlabs)

or fixed in 4% paraformaldehyde in PBS. Monoclonal α-Prospero and α–Fasciclin I primary

antibodies used for Zip88E>mCD8::eGFP co-localization studies were obtained from the

Developmental Studies Hybridoma Bank and used at 1:50 and 1:200 dilution respectively, fol-

lowed by α-mouse AlexaFluor568 secondary antibody (Molecular Probes) used at 1:1000 dilu-

tion. MtnB:EYFP fluorescence in larval tissue was viewed on a Leica M165 FC dissecting

microscope using a Leica DFC450 camera and Leica Application Suite. Higher magnification

imaging was performed on either: 1) a Leica DMLB compound microscope using a Leica

DC300 camera and Leica Application Suite at a magnification of 10x and 20x; or 2) an Olym-

pus CV1000 spinning disk confocal microscope with a 10x dry objective lens or a 60x immer-

sion objective lens.

Western blot analysis

Extraction of protein lysate was achieved by homogenising five whole third instar larvae in 2%

SDS lysis buffer with a protease inhibitor cocktail (Sigma Aldrich). Protein samples were

resolved on 4–12% NuPAGE1 Bis-Tris gels (Invitrogen) and were transferred to a poly-

vinylidene di-fluoride membrane (Milipore) using the X Cell Surelock™ Mini Cell system

(Invitrogen). Ponceau S (Sigma) staining was used to assess efficiency of the transfer and pro-

vide confirmation of equal sample loading between lanes. α-GFP (rabbit, Molecular Probes)

primary antibody was used at 1:10,000 in 5% skim milk solution. Blots were viewed using the

QUANTUM ST5 Gel Documentation System (Vilber Lourmat).

Semi-quantitative RT-PCR analysis

RNA extraction was performed by homogenising midguts in TRIsure RNA reagent (Bioline).

Reverse transcription was performed using Tetro cDNA Synthesis Kit (Bioline). Semi-

quantitative PCR analysis was performed using GoTaq green master mix with 1 μl of 100 ng/

μl cDNA used per reaction. PCR products were separated by electrophoresis on a 2.5% agarose

gel. Housekeeping gene RP49 was used as an endogenous control. Oligonucleotide sequences

are provided in S1 Table.

Statistical analysis

Two-way ANOVA analysis followed by Tukey multiple comparisons test and multiple T-test

analysis followed by the Holm-Sidak multiple comparison test were performed using Graph-

Pad Prism version 6.00 for Windows, GraphPad Software, La Jolla California USA, www.

graphpad.com. Statistical significance was deemed when the p-value� 0.05. Quantification of

western blot band intensity was achieved using Image J analysis software (1.47v).

Results

Previous, limited functional characterisation of Zip88E by targeted over expression and RNAi-

mediated knockdown indicated that it acts to increase cytosolic zinc levels; over expression in

the adult eye exacerbated zinc toxicity phenotypes caused by Zip71B::FLAG and ZnT86D over

expression while Zip88E knockdown had the opposite effect, rescuing both these phenotypes
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back to wild type [11]. This analysis was extended by examining interactions between over

expression of Zip88E::FLAG and manipulation of all other Drosophila Zip and ZnT genes,

using GMR-GAL4 to drive expression only in the eye. While over expression of Zip88E::FLAG
alone had no impact on eye morphology (Fig 1B), co-expression with ZipFoi::FLAG (Fig 1D),
Zip48C IR (Fig 1F), ZnT33D::FLAG (Fig 1H), and ZnT63C IR (Fig 1J) all caused mild but

detectable disruptions to eye morphology. All other Zip / ZnT transgenes caused no apprecia-

ble phenotype when co-expressed with Zip88E::FLAG (S1 Fig).

To further characterise the systemic role of Zip88E during fly development, a putative null

mutation was generated by imprecise P-element excision, creating a deletion removing the

START codon and all of the first and second introns encoding the first 170 amino acids of the

protein (S2 Fig). No Zip88E transcript could be amplified from cDNA extracted from Zip88EΔ/
Δ homozygous larvae (S3 Fig), supporting the proposition that this deletion constitutes a null

allele for Zip88E.

As Zip88EΔ/Δ animals survived to adulthood with no obvious morphological defects, the

sensitivity of these mutants to alterations in dietary zinc content was tested. Early first instar

larvae of various genotypes were transferred onto Drosophila media supplemented with either

ZnCl2 or the zinc chelator TPEN and survival to adulthood assessed. Compared to the w1118

control strain, survival of the Zip88EΔ/Δ homozygotes was significantly reduced on both 4 and

8 mmol l-1 ZnCl2-supplemented food, but was unaffected on lower zinc concentrations and on

zinc-chelated media (Fig 2).

To further assess the impact of loss of Zip88E on zinc levels in the fly, a reporter gene for

the zinc-responsive Metallothionein B (MtnB) gene was employed to estimate zinc levels in the

gastrointestinal tract. Mtns A to D have all been found to be transcriptionally activated by zinc,

copper and cadmium in the fly midgut [12]. MtnB:EYFP has enhanced Yellow Fluorescent

Protein (EYFP) expression driven by the MtnB regulatory region [13] and is strongly induced

in the midgut by increased dietary zinc content [3, 6, 13]. While basal MtnB:EYFP expression

was observed in control third instar larvae (Fig 3A), particularly in the crop / gastric caeca,

middle midgut and posterior midgut regions, a strong overall reduction in MtnB:EYFP signal

was seen in Zip88EΔ/Δ mutant larvae (Fig 3B). Quantification of MtnB:EYFP levels by α-GFP

western blot from lysates extracted from whole third instar larvae confirmed a dramatic drop

in MtnB:EYFP in the mutant larvae (Fig 3C and S4 Fig), particularly in the crop and posterior

midgut regions. Induction by 24 hour exposure to 2 mmol l-1 ZnCl2-supplemented food

greatly stimulated MtnB:EYFP in control larvae as expected (Fig 3D) but had considerably

lower impact on the reporter in the Zip88EΔ/Δ mutant larvae (Fig 3E and 3F). Additional mid-

gut images are provided in S5 Fig. Semi-quantitative RT-PCR carried out on other Zip genes

showed that none of the tested genes were up or down regulated in the Zip88EΔ/Δ larval midgut

(S3 Fig), suggesting that adequate zinc levels are retained in the mutant midgut cells.

To determine the endogenous expression pattern of Zip88E, a transgenic reporter line,

Zip88E-GAL4, was generated by cloning the putative upstream enhancer sequences of Zip88E
in front of the GAL4 coding sequence. Using UAS-mCD8::GFP (encoding membrane-bound

GFP) in combination with Zip88E-GAL4, GFP expression was only observed in three larval tis-

sues, the salivary glands (Fig 4A), in two parallel stripes down the ventral ganglion of the cen-

tral nervous system (CNS, Fig 4C), and in a collection of enteroendocrine-like cells just

anterior to the copper cells of the midgut (Fig 4E). Raising Zip88E>mCD8::GFP larvae on

either ZnCl2 or TPEN-supplemented food had no impact on GFP expression, indicating that

this gene is not subjected to transcriptional regulation by dietary zinc content (S6 Fig).

To further explore the origin of the GFP expressed under Zip88E-GAL4 control, confocal

microscopy was performed on larval brains and midguts. Co-staining of Zip88E>mCD8::GFP
midguts with an α-Prospero antibody revealed that all GFP +ve cells in the anterior larval
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Fig 1. Zip88E over expression interacts with other zinc transport gene manipulations to disrupt eye

development. GMR-GAL4 was used to drive ectopic Zip88E::FLAG expression in the developing Drosophila

eye, alone and in combination with the over expression and RNAi (IR) knockdown of various Zip and ZnT

genes. A) GMR-GAL4-only control. B) GMR>Zip88E::FLAG. C) GMR>ZipFoi::FLAG. D) GMR>Zip88E::

FLAG + ZipFoi::FLAG. E) GMR>Zip48C IR. F) GMR>Zip88E::FLAG + Zip48C IR. G) GMR>ZnT33D::FLAG.

H) GMR>Zip88E::FLAG + ZnT33D::FLAG. I) GMR>ZnT63C IR. J) GMR>Zip88E::FLAG + ZnT63C IR.

https://doi.org/10.1371/journal.pone.0181237.g001
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midgut were also Prospero +ve, indicating these Zip88E-expressing cells are enteroendocrine

cells (Fig 5A–5C). As no cell bodies were visible in the larval ventral ganglion (Fig 4C), the

membrane-localised mCD8::GFP reporter was compared to a predominantly nuclear GFP

reporter (nls::GFP, Fig 5D and 5E). Whereas the membrane-bound GFP highlighted the paral-

lel stripes down the ventral ganglion as well as lateral projections emanating from these stripes

(Fig 5D), the nuclear GFP was observed mainly in a small number of cells at the midline of the

ventral ganglion (Fig 5E). While double-staining was not possible due to the presence of the

3xP3:DsRed transgene at the Zip88E-GAL4 docking site, α-Fasciclin I staining was carried out

on control larval brains to provide a morphological landmark. The parallel stripes of Fasciclin

I +ve cells appeared to be closer to the ventral ganglion midline than the Zip88E>mCD8::GFP
staining (Fig 5F), therefore the Zip88E-expressing sensory neurons are unlikely to be associ-

ated with the Fasciclin-expressing dopaminergic neurons.

Previously we have reported that a Zip88E::eGFP fusion protein localises predominantly to

an endomembrane, but not the Golgi or ER, when over expressed in larval salivary gland cells

[11]. To investigate whether Zip88E is influenced by dietary zinc content, we examined

Zip88E::eGFP localisation in the Zip88E-GAL4 expression domain. The same endomembrane

localisation as previously reported was observed in salivary gland cells of larvae raised on

Fig 2. Larvae lacking Zip88E have increased susceptibility to high dietary zinc. Mean survival rates of

control (w1118) and Zip88EΔ/Δ flies raised from first instar larvae on zinc-supplemented and zinc-chelated

media. There is no effect on survival of Zip88EΔ/Δ flies on basal, zinc-chelated (TPEN) and 2 mmol l-1 ZnCl2-

supplemented media compared to control flies. Zip88EΔ/Δ flies have a significantly decreased survival rate on

4 and 8 mmol l-1 ZnCl2-supplemented media compared to control flies (values are represented as the

mean ± SD and compared by multiple unpaired T-test: ***P�0.001, ****P�0.0001, n = 3).

https://doi.org/10.1371/journal.pone.0181237.g002
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normal, low or high-zinc diets (Fig 6A–6C). In the midgut enteroendocrine cells, Zip88E::

eGFP was observed throughout the cytosol and on the outer membrane and this localisation

did not differ in larvae raised on low or high zinc diets (Fig 6D–6K).

The highly restricted expression pattern of the Zip88E-GAL4 reporter gene came as a sur-

prise given the strong zinc-sensitivity phenotype of the Zip88EΔ/Δ mutants. To examine

whether Zip88E expression in just these tissues was sufficient to restore systemic Zip88E func-

tion, survival of Zip88EΔ/Δ mutants on a high zinc diet was compared with and without the

presence of a Zip88E-GAL4>Zip88E::eGFP transgene combination. Expression of Zip88E

Fig 3. Zip88EΔ/Δ larvae have decreased MtnB:EYFP expression. A, B, D, E) MtnB:EYFP expression in third instar larval midguts from control and

Zip88EΔ/Δ homozygous larvae on basal medium (A and B) and after exposure to 2 mmol l-1 ZnCl2-supplemented medium (D, E). Variable MtnB:EYFP

expression can be observed between individual flies, therefore an example of both ‘weak’ (top panel) and ‘strong’ (bottom panel) expression has been

shown for each genotype and treatment. Decreased MtnB:EYFP expression is observed in Zip88EΔ/Δ midguts (B, B’, E and E’) compared to control

flies (A, A’, D and D’) on both food types. Fluorescence was observed under dissecting microscope, images were taken with 3 second exposure.

N�10. CR—Crop, AM—Anterior midgut, PM—Posterior midgut. Scale bars represent 1mm. C and F) Representative α-GFP western blots with protein

lysate extracted from whole third instar larvae raised on basal (C) and 2 mmol l-1 ZnCl2 (F) media. Equivalent protein loading was demonstrated by

Ponceau S staining (S4 Fig). A single band was detected at 37kDa (see S4 Fig for entire blot), equivalent to the predicted size of the GFP protein

produced by MtnB:EYFP. Band intensity for Zip88EΔ/Δ larvae was calculated relative to controls and averaged over multiple western blots (values are

represented as the mean ± SD, N� 3). C) There is an approximate 5 fold decrease in MtnB:EYFP expression in Zip88EΔ/Δ larvae compared to controls

when raised on basal media. F) There is an approximate 2 fold decrease in MtnB:EYFP expression in Zip88EΔ/Δ larvae compared to controls when

exposed to 2 mmol l-1 ZnCl2-supplemented media. Note that because we are relying on Ponceau S staining as a loading control, these fold changes in

band intensity are indicative only and cannot be statistically tested.

https://doi.org/10.1371/journal.pone.0181237.g003
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Fig 4. Expression of a Zip88E reporter gene is highly restricted. Expression of membrane-bound mCD8::

eGFP driven by Zip88E-GAL4 in third instar larval tissues. GFP expression was observed in the salivary

glands (A, B = negative control), in the ventral ganglion of the central nervous system (C, D = negative control)

and in a small number of enteroendocrine cells just anterior to the copper cell region of the midgut (E). All

images were recorded on a compound fluorescence microscope at 10x (A, B, E)) or 20x (C, D) magnification.

In A-D), larvae were fixed and immune-stained with an α-GFP antibody followed by an FITC-conjugated

secondary antibody. In E), native GFP signal without antibody staining was imaged.

https://doi.org/10.1371/journal.pone.0181237.g004
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under the control of the Zip88E-GAL4 driver completely restored the tolerance of Zip88EΔ/Δ

homozygotes back to wild type levels when larvae were raised on 4 mmol l-1 ZnCl2-supple-

mented media (Fig 7). All genotypes tested contained the same w1118 X chromosomes and all

but Zip88EΔ/+ had at least one autosomal mini-white transgene, abrogating the potential effect

of white gene presence / absence on zinc content [14].

Discussion

The strong amino acid sequence conservation between mammalian Zips 1 to 3 and Drosophila
Zips 42C.1, 42C.2, 89B and 88E suggests that these proteins may be playing similar, possibly

overlapping roles in zinc transport. Expression data and functional analysis supports this

notion for several of these transporters. Zips 42C.1 and 42C.2 have complementary roles in

zinc absorption through the iron cells of the fly larval midgut and double knockdown of these

transporters causes severe zinc deficiency under zinc-depleted conditions [4]. However, the

double knockdown flies are viable under normal dietary conditions suggesting alternative

Fig 5. Cells expressing the Zip88E reporter gene are enteroendocrine cells. Confocal microscopy of midguts (A-C) and CNS (D-F) of third instar

larvae. A-C) Low (A) and high (B, C) magnification images of larval midguts showing Zip88E>mCD8::GFP (green) and α-Prospero (red). While all GFP

+ve cells also show nuclear α-Prospero staining, indicating they are enteroendocrine cells, numerous other α-Prospero +ve cells in the same midgut

region show no GFP signal. D-F) Larval CNS showing Zip88E>mCD8::GFP (D), Zip88E>nls::GFP (E) and α-Fasciclin I (F, red). The GFP positive

axons highlighted by the Zip88E reporter gene do not have cell bodies within the CNS and do not appear to lie in the same region as the Fasciclin I +ve

axons.

https://doi.org/10.1371/journal.pone.0181237.g005
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Fig 6. Zip88E protein localisation is not affected by altered zinc dietary content. Confocal microscopy showing

salivary gland cells (A-C) and midgut enteroendocrine cells (D-K) with Zip88E-GAL4>Zip88E::eGFP (green) and nuclear

DAPI staining (blue) from third instar larvae raised on basal media (A, D, G, J) or media supplemented with 100 μmol l-1

TPEN (low zinc, B, E, H, K) or 4 mmol l-1 ZnCl2 (high zinc, C, F, I). In the enteroendocrine cells, Zip88E::eGFP is observed

at both the outer cell surface (D-F) and surrounding the nucleus within the body of the cell (G-I). A lateral view of these

cells (J, K) illustrates how they span the width of the midgut epithelial layer.

https://doi.org/10.1371/journal.pone.0181237.g006
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absorption pathways are available. Zip89B is expressed both in the iron cells and extensively in

the posterior midgut and in mutant larvae lacking this transporter, Zips 42C.1 and 42C.1 are

upregulated [5], indicating that Zip89B may be providing additional zinc uptake capacity that

is normally not essential.

This work investigated whether Zip88E may also be playing an auxiliary role in zinc absorp-

tion. First we confirmed that when over expressed, Zip88E acts in a manner consistent with a

role in increasing cytosolic zinc levels, as seen previously [11]. Although ectopic Zip88E
expression in the eye alone has no effect on eye morphology, when combined with ZipFoi over

expression (increased zinc uptake) or ZnT63C RNAi knockdown (decreased zinc efflux), a

Fig 7. Zip88E expression in the Zip88E-GAL4 expression domain restores dietary zinc tolerance to Zip88EΔ/Δ

mutants. Mean survival rate of flies raised from first instar larvae on 4 mmol l-1 ZnCl2-supplemented media, relative to

survival of the same genotype on basal media. Over expression of Zip88E::eGFP driven by Zip88E-GAL4 results in a

significant increase in survival of Zip88EΔ/Δ mutants, back to levels comparable with heterozygote controls. Expression

of Zip88E::eGFP transgene in heterozygotes had no effect on zinc tolerance. Values are represented as the mean

survival relative to survival on basal media ± SD. Means with the same letter are not significantly different. Means with

different letters (i.e. A and B) are significantly different (P�0.05, Two-way ANOVA, n = 3).

https://doi.org/10.1371/journal.pone.0181237.g007
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flattened eye with disrupted morphology results, suggesting a zinc toxicity leading to cell

death. However, the interactions seen between Zip88E over expression and Zip48C knockdown

/ ZnT33D over expression were contrary to expectations since both these manipulations are

predicted to decrease cytosolic zinc levels [11] yet both combine with Zip88E expression to

cause an apparent zinc toxicity phenotype. Rather than a simple cellular zinc uptake role,

Zip88E appears to provide a more complex contribution to cellular zinc distribution, consis-

tent with its predominantly intracellular localisation [11]. One caveat in these over expression

studies is that Zip88E is being expressed in tissues it may not normally be active in and there-

fore the interactions observed may not reflect endogenous interactions.

The sensitivity of the Zip88EΔ/Δ mutant larvae to normally sub-lethal levels of dietary ZnCl2

argues against a function in dietary zinc absorption. If Zip88E were required normally for zinc

uptake in the midgut, the mutants might be expected to show increased sensitivity to zinc

depletion or higher tolerance to zinc toxicity, neither of which was observed. The expression

pattern of our Zip88E-GAL4 reporter gene was also not consistent with a role for this gene in

zinc absorption. The only midgut expression observed was in a highly restricted set of enter-

oendocrine cells at the anterior / middle midgut boundary. No expression was seen in the iron

cells where Zips 42C.1, 42C.2 and 89B are thought to mediate most zinc absorption, nor in any

other region of the midgut. While reporter genes do not necessarily capture the entire expres-

sion pattern of a gene, the ability of the Zip88E-GAL4>Zip88E::eGFP transgene combination

to rescue the zinc sensitivity phenotype of the Zip88EΔ/Δ mutant larvae provides evidence that

the Zip88E-GAL4 reporter is driving expression in the cell types responsible for the mutant

phenotype. Previously we have reported that RNAi knockdown of Zip88E suppresses zinc tox-

icity phenotypes caused by eye-specific over expression of Zip71B or ZnT86D [11], implying

that Zip88E plays an endogenous role in increasing cytosolic zinc levels in the eye. The absence

of Zip88E-GAL4 expression in the eye may be due to an incomplete reporter gene or may indi-

cate that the original RNAi result was in fact due to off-target knockdown of a similar Zip such

as Zip42C.1.

The highly restricted expression pattern of the Zip88E reporter gene is strongly suggestive

of an enteroendocrine role for this gene. In the midgut, we observed expression only in ~six

Prospero +ve cells located at the boundary between the anterior and middle midgut segments.

Previously, cells in this location have been show to express both allatostatin B / MIP and

diuretic hormone DH31 [15]. Allatostatin B is a myo-inhibitory peptide that is able to suppress

gut peristalsis in insects. DH31 signals through a G protein-coupled receptor encoded by

CG17415 expressed in the Malpighian tubules [16] to regulate fluid secretion but is also able to

increase peristaltic muscle contraction [17]. Additional membrane-bound GFP under

Zip88E-GAL4 control was observed in two parallel stripes down the ventral nerve cord of the

larval brain as well as occasional lateral projections. No GFP +ve cell bodies were observed in

this region indicating that these may represent peripheral sensory neurons projecting to the

central nervous system, a possibility supported by the absence of any nuclear signals when

using a predominantly nuclear-localised GFP marker.

How might the zinc sensitivity phenotypes observed in the Zip88E mutant relate to endo-

crine signalling? A simple model would have Zip88E required for zinc detoxification specifi-

cally in the salivary glands and some enteroendocrine cells of the midgut. In the absence of

Zip88E, these cell types would be more susceptible to zinc toxicity resulting in a decrease in

functionality that is manifested as a general decline in larval survival rate. Alternatively,

Zip88E may be playing a role in detecting elevated zinc levels and mounting a systemic

response to this stress; in the absence of such a signal, the developing larvae would be less able

to tolerate higher zinc in the diet. In support of this notion, a non-cell autonomous response to

loss of Zip88E was observed in the decrease in MtnB:EYFP expression in the midguts of
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Zip88E mutant larvae. Zip88E is not expressed in the many midgut cells MtnB is active in

therefore this transcriptional response is presumably caused by a systemic signal. The decrease

in MtnB:EYFP could be explained by an inappropriate release of zinc from the midgut cells

into the haemolymph. While normally that zinc would be retained safely in the midgut cells, in

the Zip88E mutants, the absence of an inhibitory signal would allow the influx of zinc to cause

damage to internal organs, resulting in a higher mortality rate.

To date, evidence from mammalian and insect systems has mainly supported a model

whereby regulation of dietary zinc absorption occurs cell-autonomously at the level of the

intestinal enterocytes, so the concept of a mechanism for detecting systemic zinc levels and

inducing a non-autonomous response to modify intestinal absorption must be treated as spec-

ulative. However precedence for such a mechanism can be found in both the copper and iron

homeostasis systems. For instance, genetically-induced copper deficiency in the mouse heart

triggers a non-autonomous release of copper from the liver and upregulation of absorption

mechanisms in the intestine [18], while hepcidin, produced in the liver in response to iron

loading, is able to inhibit iron absorption through enterocytes by inducing endocytosis of the

ferroportin iron exporter [19].

It appears that Zip88E has diverged appreciably in function from its closest homologues.

Zip89B, 42C.1 and 42C.2. First, its expression pattern is quite different, a situation similar to

the comparison between mammalian Zip2 and its close homologues Zip1 and Zip3. However

we do not seen any obvious parallels between the expression patterns of Zip88E and Zip2 and

while Zip2 knockout mice reveal defects under zinc deficiency conditions, the Zip88E mutant

flies are only affected by zinc toxicity.

Zip88E differs from its closest fly homologues at the cellular level as well. Unlike the zinc

uptake Zips that are all found at the apical plasma membrane, Zip88E::eGFP was observed

mainly on intracellular organelles when ectopically expressed [11]. Furthermore, genetic inter-

action data, looking at the effect of excess Zip expression on phenotypes caused by cellular zinc

dysregulation, found that Zip88E behaved more like Drosophila Zips 102B and 99C than its

closest homologues [11]. The mammalian homologue of Zip102B, Zip9, has recently been

shown to act as a non-classical androgen receptor for testosterone [20–24], working together

with an inhibitor G protein to activate MAP kinase signalling as well as releasing free zinc

from mitochondria and the nucleus [23]. These endocrine links suggest that functionally,

Zip88E may be more closely related to Zip102B / Zip9 and that an endocrine function for

Zip88E may have arisen independently in the invertebrate lineage.

Zip88E plays an important role in protecting Drosophila larvae against dietary zinc toxicity

and this protective action emanates from a small number of specialised cells. It will be of great

interest to determine whether the production / activity of known peptides or their receptors is

affected by the loss of Zip88E, and whether the Zip88E mutant zinc sensitivity phenotype can

be replicated by inhibiting such peptide activity. A conclusive demonstration of a systemic

zinc sensing / response mechanism would dramatically change our view of how this critical

biometal is regulated in animals.

Supporting information

S1 Table. Oligonucleotide sequences of PCR primers used in this study.

(DOCX)

S1 Fig. Over expression of Zip88E shows no interaction with over expression or RNAi

knockdown of most other Drosophila Zip and ZnT genes. GMR>Zip88E::FLAG in combina-

tion with the over expression and RNAi suppression (IR) of all remaining Zip / ZnT genes not

shown in Fig 1. A) Zip88E::FLAG-only control. B) GMR-GAL4-only control. C)
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GMR>Zip88E::FLAG. D-H’) GMR>Zip88E::FLAG together with D) Zip88E::FLAG, E)

Zip42C.2::FLAG, F) Zip89B::FLAG, G) Zip99C::FLAG, H) ZipCatsup::FLAG, I) Zip71B::eGFP, J)

Zip102B, K) Zip48C, L) ZnT41F::FLAG, M) ZnT63C::FLAG, N) ZnT35C::FLAG, O) ZnT77C::

FLAG, P) ZnT86D::FLAG, Q) Zip88E IR(1), R) Zip88E IR(2), S) Zip42C.1 IR, T) Zip42C.2 IR,

U) Zip89B IR, V) ZipFoi IR, W) Zip99C IR, X) ZipCatsup IR, Y) Zip71B IR, Z) Zip102B IR(1),
A’) Zip102B IR(2), B’) ZnT41F IR, C’) ZnT33D IR, D’) ZnT35C IR(1), E’) ZnT35C IR(2), F’)

ZnT77C IR, G’) ZnT86D IR and H’) ZnT49B IR.

(TIF)

S2 Fig. Generation of a putative null deletion allele of Zip88E by imprecise P-element exci-

sion. A) Annotated schematic of the Zip88E genomic region showing the 5’ and 3’ untrans-

lated regions (UTRs), exons 1 to 4, the location of the original P(EPgy2) element in the 5’ UTR

and the location of the oligonucleotide primers used to screen for internal deletions caused by

mobilisation of the P(EPgy2) element. B) Schematic of the Zip88E region after a precise P

(EPgy2) excision event. C) Schematic of the Zip88E region after an imprecise P(EPgy2) exci-

sion event that deleted all of the 5’UTR and exons 1 and 2 of Zip88E, resulting in a putative

null allele. This allele, called Zip88EΔ, was used in all functional analyses presented here. D)

Annotated alignment of the Zip88E genomic sequence from control (top line) and Zip88EΔ/Δ

(bottom line) flies, showing the full extent of the Zip88E deletion. E) Agarose gel showing PCR

products generated using primers Zip88E PF1 and PR2 on gDNA extracted from single adult

flies of genotypes Zip88EΔ/Δ (1–5) or w1118 control (6–10). All mutant flies show a ~800 bp

PCR product compared to the ~1500 bp product present in the control flies.

(TIF)

S3 Fig. Semi-quantitative PCR of Zip gene expression in larval midguts. A) 2.5% agarose

gels showing PCR products from cDNA generated from mRNA extracted from dissected mid-

guts of: w1118 control (1); Zip89B Δ/Δ (2); and Zip88EΔ Δ/Δ (3) third instar larvae. Products for

Zip88E, Zip89B, ZipFoi, Zip99C, ZipCatsup; Zip71B, Zip102B, Zip48C and RP49 are seen for

each genotype. Zip42C.1 and Zip42C.2 did not produce bands of sufficient intensity for analy-

sis. The lower molecular weight band seen for Zip71B is non-specific. Results shown are repre-

sentative of two independent cDNA extractions / PCR analyses. B) Separated scatter plot

showing quantification of PCR product band intensities from gels illustrated in A (n = 2).

Band intensities for each Zip gene were determined using ImageJ then normalised to the con-

trol gene (RP49) band intensities for that particular cDNA sample. For each Zip gene, the nor-

malised band intensity from the w1118 control cDNA sample was set at 1 then band intensities

of the two mutant cDNA samples are expressed relative to the control. This semi-quantitative

gene expression analysis indicates that no Zip88E expression was detectable in the Zip88EΔ/Δ

mutant larvae and no Zip89B expression was detectable in the Zip89BΔ/Δ mutant larvae, con-

firming that these two mutations are most likely null mutations. While no Zip genes showed

altered expression levels in Zip88EΔ/Δ mutant midguts, Zip88E, ZipFoi, ZipCatsup, Zip102B
and Zip48C all appeared to be down-regulated in Zip89BΔ/Δ mutant midguts. Zip71B could not

be analysed due to the presence of non-specific PCR products.

(TIF)

S4 Fig. Equivalent sample loading for westerns blots as shown by Ponceau S staining. A) α-

GFP western blot on lysates from either w1118 or Zip88EΔ/Δ whole larvae both containing the

MtnB:EYFP transgene, raised on either basal medium or medium supplemented with 2 mmol

l-1 ZnCl2. Two replicates are shown for each condition. A strong GFP signal is observed at

molecular mass of ~37kDa. The GFP signal is more intense with w1118 than Zip88EΔ/Δ larvae

and is induced by exposure to high dietary zinc. B) Ponceau S staining of the membrane
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blotted in (A). Similar Ponceau S intensity is seen in each lane indicating that roughly equal

amounts of protein are being loaded in each lane.

(TIF)

S5 Fig. Additional images of MtnB:EYFP expression in the larval midgut. MtnB:EYFP
expression in third instar larval midguts from w1118 control (A and B) and Zip88EΔ/Δ homozy-

gous larvae (C, D) on basal medium (A, C) and after exposure to 2 mmol l-1 ZnCl2-supple-

mented medium (B, D). Variable MtnB:EYFP expression can be observed between individual

flies but overall, decreased MtnB:EYFP expression is observed in Zip88EΔ/Δ midguts compared

to control flies on both food types. Fluorescence was observed under dissecting microscope,

images were taken with 3 second exposure.

(TIF)

S6 Fig. The Zip88E-GAL4 reporter gene does not respond to changes in dietary zinc con-

tent. Confocal microscopy showing dissected third larval instar salivary glands (A-C), midguts

(D-F) and CNS (G-I) from larvae containing either Zip88E>nls::GFP (A-C) or

Zip88E>mCD8::GFP (D-I) reporter gene combinations. Larvae were raised on basal medium

(A, D, G) or media supplemented with 100 μmol l-1 TPEN (low zinc, B, E, H) or 4 mmol l-1

ZnCl2 (high zinc, C, F, I). No changes in the overall Zip88E-GAL4 expression pattern were

observed on either low or high zinc diets compared to basal medium. Native GFP signal (with-

out α-GFP antibody staining) is shown in each case and images are representative of>10 indi-

viduals for each diet.

(TIF)
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