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Abstract

Objective

To collectively evaluate the association of glucose-6-phosphatase catalytic unit 2 (G6PC2)

allele variants with elevated fasting glucose (FG) and type 2 diabetes (T2D).

Design

Meta-analysis

Data sources

PubMed, Web of Knowledge and Embase databases.

Study selection

Full text articles of studies that identified an association of G6PC2 with T2D and elevated

FG.

Patient involvement

There was no T2D patient involvement in the analyses on the association of FG with

G6PC2, there were T2D patients and non-diabetes patient involvement in the analyses on

the association of T2D with G6PC2.

Statistical analysis

Random-effects meta-analyses were used to calculate the pool effect sizes. I2 metric and

H2 tests were used to calculate the heterogeneity. Begg’s funnel plot and Egger’s linear

regression test were done to assess publication bias.
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Results

Of the 423 studies identified, 21 were eligible and included. Data on three loci (rs560887,

rs16856187 and rs573225) were available. The G allele at rs560887 in three ethnicities, the

C allele at rs16856187 and the A allele at rs573225 all had a positive association with ele-

vated FG. Per increment of G allele at rs560887 and A allele at rs573225 resulted in a FG

0.070 mmol/l and 0.075 mmol/l higher (ß (95% CI) = 0.070 (0.060, 0.079), p = 4.635e-50

and 0.075 (0.065, 0.085), p = 5.856e-48, respectively). With regard to the relationship of

rs16856187 and FG, an increase of 0.152 (95% CI: 0.034–0.270; p = 0.011) and 0.317 (95%

CI: 0.193–0.442, p = 6.046e-07) was found in the standardized mean difference (SMD) of FG

for the AC and CC genotypes, respectively, when compared with the AA reference genotype.

However, the G-allele of rs560887 in Caucasians under the additive model and the C-allele

of rs16856187 under the allele and dominant models were associated with a decreased risk

of T2D (OR (95% CI) = 0.964 (0.947, 0.981), p = 0.570e-4; OR (95% CI) = 0.892 (0.832,

0.956), p = 0.001; and OR (95% CI) = 0.923(0.892, 0.955), p = 5.301e-6, respectively).

Conclusions

Our meta-analyses demonstrate that all three allele variants of G6PC2 (rs560887,

rs16856187 and rs573225) are associated with elevated FG, with two variants (rs560887 in

the Caucasians subgroup and rs16856187 under the allele and dominant model) being

associated with T2D as well. Further studies utilizing larger sample sizes and different ethnic

populations are needed to extend and confirm these findings.

Introduction

Fasting plasma glucose (FPG) levels are associated with a risk of type 2 diabetes (T2D) and car-

diovascular disease [1]. There is strong evidence suggesting that hyperglycemia is a risk factor

in a dose-dependent manner for both micro- and macro-vascular complications in both type 1

and type 2 diabetes [2].

Both genetic and environmental factors contribute to the pathophysiology of T2D [3, 4].

However, the contribution of genetic factors to T2D risk is not well understood. Global knock-

out of theglucose-6-phosphatase catalytic unit 2 (G6PC2) gene in mice led to a significant

decrease in blood glucose [5]. Previous studies have showed that higher FPG levels within the

normal glucose range constitute an independent risk factor for T2D [1, 6]. Considering the

genetic risk that might result from G6PC2 alleles, a number of studies have explored the associ-

ation of G6PC2 with fasting glucose (FG) and T2D in different ethnicities [7–12]. However,

individual studies have yielded inconsistent or conflicting findings, possibly caused by limita-

tions associated with an individual study, such as different genetic backgrounds and ethnicity,

sample size and so on. Wang H et al [13] have previously performed a meta-analysis on the

association of G6PC2 rs560887 with T2D. To expand and evaluate more precisely the relation-

ship between G6PC2 and FG and T2D, we carried out meta-analyses of published studies.

Methods

Search strategy

We included all studies published prior to 4st April of 2017 that reported an association

between G6PC2 and T2D and FG. Eligible studies were found by searching the PubMed, Web

Meta-analyses of the association of G6PC2 with FG and T2D
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of Knowledge and Embase databases for relevant reports. We used the gene name “G6PC2”
as search term limited in all fields to retrieve association studies between genetic variants in

G6PC2 and FG or T2D. We also reviewed reference lists of the identified publications for

additional relevant studies. A literature search was performed on these databases without

restriction to regions or publication types. Two investigators (YY.S and YQ.L) independently

searched the articles, and disagreements were resolved by discussion.

Selection

The study inclusion criteria were as follows: (1) published in Chinese or English; (2) primary

outcomes of T2D or FG were given; (3) either I or II, as follows: (I) provided the odds ratio

(OR) with 95% confidence interval (CI) or adequate information about the genotype and allele

to calculate the OR and 95% CI for the association of rs568007 and rs16856187 polymorphisms

with T2D. (II) provided mean and standard deviation (SD) values of FG and sample size (n) in

every genotype for rs16856187, and linear regression coefficients (ß) of per-effect allele from

linear regression analysis for the association of rs560887 and rs573225 with FG or enough data

to calculate them. Studies were excluded if any of the following factors were identified: (1)

not an association study for T2D or FG [14–24]; (2) studied other single nucleotide polymor-

phisms (SNPs) [25–28]; (3) data were not fully available [29–32]; (4) not population-based

studies [33–34]; (5) meta-analyses or systematic review [13, 35–40]; (6) duplicate studies [41–

43]. For duplicate publications, the study with the most recent and complete information was

included.

Patient involvement

There was no T2D patient involvement in the analyses on the association of FG with G6PC2;

There were T2D patients and non-diabetes patient involvement in the analyses on the associa-

tion of T2D with G6PC2.

Data extraction

Data were extracted and summarized independently by two of the authors. The adjudicating

senior authors resolved any disagreement. If the data were unavailable, an attempt was made

to contact the corresponding author to request missing data via E-mail. The following infor-

mation was extracted: (1) study characteristics such as the first author, study name, year pub-

lished, country; (2) subjects and methods characteristics including sex, mean age, sample size

(n), Body Mass Index (BMI), genotyping method and blood samples measured for FG; (3) pri-

mary outcomes such as risk allele, risk allele frequency (RAF), OR with 95% CI and their ad-

justment factors, statistical methods and the p value of Hardy-Weinberg equilibrium (HWE)

test in control group for data on T2D; Mean and SD of FG and sample size (n) in every geno-

type, and ß and their standard error (SE) or 95% CI, p value for linear regression and their

adjustment factors as in previously published studies [44–46], and the p value of HWE for data

on FG. All data were extracted independently by two investigators (YY.S and YQ.L), and dis-

crepancies were resolved by discussion.

Quality assessment

The strengthening report of genetic association studies (STREGA) quality score system was

used to assess the qualities of all included studies [47]. The STREGA system includes twenty-

two quality assessment items with scores ranging from 0 to 22 (S1 Supplement). Studies are

classified into three levels based on their scores: low quality (0–12), moderate-high quality

Meta-analyses of the association of G6PC2 with FG and T2D
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(13–17), and high quality (18–22). Two authors (XJ.L and DD.Z) independently assessed the

quality of included studies. Discrepancies over quality scores were resolved by discussing with

all authors and subsequent consensus.

Statistical analysis

In our meta-analyses the included studies on rs560887 and rs573225 used an additive model to

assess the genetic effect of G6PC2 polymorphisms [48]. For the studies on rs16856187, an addi-

tive model (AA versus AC versus CC) was used for the association of FG, and an allele model

(A versus C), dominant model and recessive model were used for the association of T2D. The

ß value and SEs were used to identify the association of rs560887 and rs573225 [14, 32, 44]

with FG. SE of the ß value was calculated by 95% CI or ß value and p value when SE was not

extracted directly from the original literature [49, 50]. The SMD was used to analyze the associ-

ation between rs16856187 and FG. ORs with 95% CIs were assessed to determine the relation-

ship between T2D and rs560887 and rs16856187.

The aggregated results OR and 95% CI, ß and 95% CI and SMD were calculated using ran-

dom-effects meta-analysis. A statistical test for heterogeneity was conducted using the I2 met-

ric and H2 tests [51]. A I2 greater than 50% or H2 greater than 1 was suggestive of substantial

between-study heterogeneity [52–53]. Sensitivity analyses were performed by omitting each

study to identify possible study contributions to the heterogeneity. To evaluate the reliability

and stability of our results, Begg’s funnel plot and Egger’s linear regression test were done to

assess publication bias [54, 55]. We divided the study populations into three ethnic subgroups,

including Caucasians, Asians and African-Americans for the relationship between FG and

rs560887, and two ethnic subgroups (Caucasians and Asians) for the relationship between

T2D and rs560887. All analyses were performed using Stata 12.1 (Stata Corp, College Station,

TX, USA).

The HWE for all the subjects of each study was evaluated using χ2 test. For the studies

which didn’t include the distributions of genotypes but contained the information on the RAF

in both cases and controls, we calculated the frequency of the different genotypes according to

the HWE Law, which can be used to calculate the crude ORs and 95% CIs under an additive

genetic model. All reported probabilities (p values) were two-sided, with p< 0.05 considered

statistically significant.

Finally, for a better presentation of the public health relevance, we explored the PAR by tak-

ing into account both the pooled per-allele ORs and the pooled RAF (T2D risk allele frequency).

PAR was calculated as PAR = (X − 1)/X. Assuming a multiplicative model, X = (1 − f)2 + 2f(1 −
f)γ + f2γ2, where f is RAF and γ is their estimated ORs. We calculated the pooled prevalence of

each risk allele in various groups using the inverse variance method described previously [56].

Power calculations

Power to detect a genetic association was estimated using the QUANTO program version

1.2.4. For the association study with FG, we had an estimated power of more than 99.99% to

detect a minimal per-allele effect at β of 0.070 mmol/l for rs560887 and 0.075 mmol/l for

rs573225 under an additive model, depending on an allele frequency of 0.76 and 0.67. For the

association study with T2D, we had an estimated power of 97.58% to detect an OR of 0.967 for

rs560887 under the prevalence of 8.8% [57] under an additive model, and 98.78%, 64.23% and

10.01% power to detect genetic effects at an OR of 0.960, 0.892 and 0.923 for rs16856187 under

allele, dominant and recessive model, respectively. A p value<0.05 was considered statistically

significant (two-tailed).
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Results

Literature search results

Through literature searches a total of 423 articles from PubMed (National Center for Biotech-

nology Information), Web of Knowledge and Embase databases were identified up to 4st Apri-

lof 2017. A flow chart of study selection in the meta-analyses is shown in Fig 1. There were 52

articles included after duplicates were removed and following the screening of the titles and

abstracts. As shown in S2 Supplement, 31 full-text articles were excluded. Overall, 21 articles

were eligible and included (see study inclusion flowchart in Fig 1[7–12, 58–72]). Of these, 5

articles covered the loci rs560887 for FG and T2D, 3 articles covered the loci rs16856187 for

FG and T2D, 2 articles covered the loci rs560887 and rs573225 for FG, 8 articles covered the

loci rs560887 for FG, and 3 articles covered the loci rs560887 for T2D, respectively (Tables 1

and 2). In total, 18 studies comprising 69120 cases (62492 for rs560887, 6628 for rs16856187),

126483 non-diabetic controls (119627 for rs560887, 6856 for rs16856187), and 35 studies

Fig 1. PRISMA 2009 flow diagram.

https://doi.org/10.1371/journal.pone.0181232.g001
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containing 187968 non-diabetic participants (13752 for rs573225 and rs560887, 170772 for

rs560887 and 3444 for rs16856187) were included. The meta-analyses were carried out accord-

ing to the “Meta-analysis on Genetic Association Studies” statement (S3 Supplement).

Association of rs560887, rs573225 and rs16856187 polymorphisms with

FG

Meta-analysis estimates of SNP associations with FG are presented in Table 3. Under an addi-

tive model [48], a nominally significant positive association with FG was observed: per incre-

ment of additional G allele at rs560887 in G6PC2, FG was 0.070 mmol/l (95% CI: 0.060, 0.079,

p = 4.635e-50) higher, with heterogeneity observed (I2 = 72%, 95% CI: 60%, 80%; H2 = 2.56).

When the study population was divided into three ethnic subgroups, pooled ß (95% CI) and p
were [0.075 (0.068, 0.081) mmol/l, p = 4.06e-118], [0.054 (0.020, 0.088) mmol/l, p = 0.002] and

Table 3. Meta-analyses of G6PC2 polymorphisms and FG or T2D.

Association of G6PC2 polymorphism with FG Association of G6PC2 polymorphism with T2D

SNP/ FG-raising

allele

number of

studies

n ß/SMD (95%

CI)

p I2%

(95% CI)

H2 number of

studies

n (case/

control)

OR (95% CI) P I2%

(95%

CI)

H2

rs560887/G

(overall)

32 184524 0.070

(0.060,0.079)

4.635e-

50

72

(60,80)

2.56 15 24278/

67043

0.967

(0.932,1.003)

0.076 39

(0,67)

0.42

Caucasians 23 78334 0.075

(0.068,0.081)

4.06e-

118

37

(38,73)

0.58 11 16372/

58538

0.964

(0.947,0.981)

0.570e-

4

0

(0,60)

0.00

Asians 5 14048 0.054

(0.020,0.088)

0.002 46

(0,80)

0.85 4 7906/

8505

1.120

(0.940,1.334)

0.205 66

(0,88)

2.06

African-

Americans

3 2504 0.018

(0.004,0.031)

0.010 0 (0,90) 0.00

Mexico 1 1421 0.120(0.002,

0.238)

0.046 - -

rs16856187/C 3 3444

allele model#, (A

vs C)

3 6628/

6856

0.892

(0.832,0.956)

0.0013 35

(0,79)

0.50

Additive model#

AC vs AA 0.152

(0.034,0.270) *
0.011 58

(0,88)

1.36

CC vs AA 0.317

(0.193,0.442) *
6.046e-

07

0 (0,90) 0.00

Dominant model,

(AC+CC) vs AA

6628/

6856

0.923(0.892,

0.955)

5.301e-

6

0 (0,

90)

0.00

Recessive model,

CC vs (AC+AA)

6628/

6856

0.960

(0.827,1.115)

0.596 80 (35,

94)

3.28

rs573225/A 5 13752 0.075

(0.065,0.085)

5.856e-

48

0 (0,79) 0.00

* indicate standardized mean differences (SMD) of AC vs AA and CC vs AA genotypes in rs16856187, respectively.

# indicate additive model for FG, allele model for T2D, respectively.

p: significance test of effect size (ß) = 0 or effect size (OR) = 1.

FG = fasting glucose; T2D = type 2 diabetic.

ß represents linear regression coefficients for the association of G6PC2 polymorphism with FG.

OR represents odds ratio for the association of G6PC2 polymorphism with T2D

ORs for rs560887 were calculated with logistic regression adjusted for different adjustment factors

ORs for rs16856187 were calculated using χ2 tests.

https://doi.org/10.1371/journal.pone.0181232.t003
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[0.018 (0.004, 0.031) mmol/l, p = 0.010] in Caucasians, Asians and African-Americans, respec-

tively (Fig 2). Heterogeneity was observed [(I2 = 37%, 95% CI: 38%, 73%; H2 = 0.58), (I2 =

46%, 95% CI: 0, 80%; H2 = 0.85), (I2 = 0, 95% CI: 0, 90%; H2 = 0.00)] in Caucasians, Asians

and African-Americans, respectively.

In the association of rs16856187 with FG under the additive model, an additive trend of

0.152 (0.034, 0.270) and 0.317 (0.193, 0.442) increased in SMD of FG for AC and CC genotypes

was found when compared to the AA reference genotype, respectively. Heterogeneity was

observed (I2 = 58%, 95% CI: 0, 88%; H2 = 1.36) for AC vs AA while no heterogeneity was

observed (I2 = 0, 95% CI: 0, 90%; H2 = 0.00) for CC vs AA (Fig 3).

In the association of rs573225 with FG, a nominally significant positive association with ele-

vated FG was observed: per increment of A allele at rs573225 in G6PC2, FG was 0.075 mmol/L

higher (ß = 0.075; 95% CI: 0.065–0.085, p = 5.856e-48), with no heterogeneity observed (I2 = 0,

95% CI: 0, 79%; H2 = 0.00) (Fig 4).

Association of rs568007 and rs16856187 polymorphisms with T2D

In the overall estimate, no association was detected between the rs560887 and risk of T2D

(OR = 0.967; 95% CI: 0.932–1.003; p = 0.076), with low heterogeneity (I2 = 39%, 95% CI: 0,

67%; H2 = 0.42). In Asians, rs560887 also had no association with risk of T2D (OR = 1.120;

95%CI: 0.940–1.334; p = 0.205) (Fig 5). Conversely, in the Caucasian subgroup we found a sig-

nificant association between the FPG-raising G-allele and decreased risk of T2D (OR = 0.964;

Fig 2. Forest plot for the association between rs560887 and FG under the additive model. Pooled ß for

the additive genetic model are shown under a random-effects model. Square sizes were proportional to

weight of each study in the meta-analyses. Significant association was detected in three ethnicities.

https://doi.org/10.1371/journal.pone.0181232.g002
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95% CI: 0.947–0.981; p = 0.570e-4), with no heterogeneity observed (I2 = 0, 95% CI: 0, 60%; H2

= 0.00). When both the pooled RAF and the pooled per-allele OR were taken into account, the

presence of each risk allele would be associated with a 5.4%, 5.3% and 18.3% increase in inci-

dence of T2D according to the PAR estimate in total sample, Caucasian and Asians subgroup,

respectively.

Fig 3. Forest plot for the association of rs16856187 with FG under the additive model.

https://doi.org/10.1371/journal.pone.0181232.g003

Fig 4. Forest plot for the association of rs573225 with FG under the additive model. Pooled ß for the

additive genetic model was shown under a random-effects model. Square sizes were proportional to weight of

each study in the meta-analysis.

https://doi.org/10.1371/journal.pone.0181232.g004
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Under the allele model, the association between the rs16856187-C allele and decreased risk

of T2D was significant (OR = 0.892; 95% CI: 0.832–0.956; p = 0.001) with low heterogeneity

among studies (I2 = 35, 95% CI: 0, 79%; H2 = 0.50) (Fig 6A). Under the dominant model

(AC+CC vs AA), a significant negative association was detected (OR = 0.923; 95% CI: 0.892–

0.955; p = 5.301e-6) with no heterogeneity among studies (I2 = 0, 95% CI: 0, 90%; H2 = 0.00)

(Fig 6B). Under the recessive model (CC vs AC+AA), no significant association was detected

(OR = 0.960; 95% CI: 0.827, 1.115; p = 0.596) with high heterogeneity among studies (I2 = 80,

95% CI: 35%, 94%; H2 = 3.28) (Fig 6C). Results under the allele and dominant model indicated

that the FPG-raising C-allele might be associated with a decreased risk of T2D. When both

the pooled RAF (rs16856187-A allele) and the pooled per-allele OR were taken into account,

the presence of each A-allele would be associated with a 6.5%, 4.6% and 2.3% increase in inci-

dence of T2D according to the PAR estimate under allele, dominant and recessive model,

respectively.

Publication bias, sensitivity test

Visual inspection of funnel plots for the primary outcomes did not show distinct asymmetry,

and based on Begg’s funnel plots (S1 Fig) and Egger’s linear regression, no publication bias

was observed (all p> 0.1). In the sensitivity test (S2 Fig), the leave-one-out influential analyses

did not show any major change in the primary outcome, indicative of a good stability of

results.

Discussion

To the best of our knowledge, this is the most comprehensive meta-analyses on the evaluation

of the associations between G6PC2 SNPs and FG and T2D. Our meta-analyses include the

Fig 5. Forest plot for the association of G6PC2 rs560887 with T2D under the additive model. Pooled

OR for the additive genetic model was shown under a random-effects model, square sizes were proportional

to the weight of each study in the meta-analysis.

https://doi.org/10.1371/journal.pone.0181232.g005
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most SNPs in G6PC2 on the associations of these SNPs with FG and T2D studied to date. In

these meta-analyses, we analyzed three SNPs (rs560887, rs16856187 and rs573225) in the

G6PC2 gene for an effect on FG and two SNPs (rs560887 and rs16856187) for an association

with T2D. We found that all three SNPs were associated with elevated FG level in participants

with normal glucose regulation, and rs560887 in the Caucasians subgroup and rs16856187

under allele and dominant model were all associated with T2D.

However, no associations with T2D risk were found for G at rs560887 in overall and Asians

populations, which is consistent with a meta-analysis published in 2013[13]. Compared with

this previous study, our study contained greater sample sizes in the Caucasians subgroup (num-

ber of case/control were 47673/97909 and 54586/111122 for previous and current studies,

Fig 6. Forest plot for the association between G6PC2 rs16856187 and T2D under the allele (A), dominant (B)

and recessive (C) model.

https://doi.org/10.1371/journal.pone.0181232.g006
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respectively). Association of G at rs560887 with T2D and FG in Caucasians is similar to individ-

uals of European descent in the MAGIC study [OR (95% CI): 0.97 (0.95–0.99), ß (SE):0.075

(0.003) mmol/l, respectively] [70].

There may be some reasonable explanations for these differences between ethnic groups. First,

the gene-gene interactions and different environmental factors may affect susceptibility to the

genetic variant and diabetes [73, 74]. Second, the sample size for Asian populations may be too

small. Third, a previous study has reported that Asian subgroups have unique risk-factor profiles

for developing diabetes, which differ from other populations [75]. Thus, further investigations on

Asian populations are needed to replicate the observed association with type 2 diabetes. We will

explore the association of G6PC2with T2D in the Chinese population in the near future.

G6PC2 belongs to the G6PC family of proteins, which catalyze the dephosphorylation of

glucose-6-phosphate to glucose [76]. Thus, glucose-6-phosphatase activity could control glu-

cose metabolism and insulin secretion [76]. However, carriers of the G allele at rs560887 in

Caucasians subgroup and A allele at rs16856187 in allele and dominant model all displayed a

lower risk of type 2 diabetes and a higher risk of elevated FPG level, which is inconsistent with

these previous studies [1, 6]. The mechanism linking the SNP rs560887-A to reduced G6PC2
activity might be connected to the relative expression of the full-length active protein [23, 77].

Studies have shown that heightened beta-cell sensitivity to glucose and a lowered glucose set-

point for insulin secretion are early steps toward ß cell apoptosis [78]. Recent reports in indi-

viduals of European descent also demonstrated a strong association between G6PC2 variants

and insulin secretion [32]. The allele that decreased FPG was also found to lower beta cell func-

tion [65]. However, carriers of G at G6PC2 rs560887 displayed a higher risk of type 2 diabetes

and a higher FPG level in Asians. It is unclear whether ethnic differences in beta cell function

[79, 80] contributed to the different results. Moreover, our relatively small sample size of

Asians may also limit our ability to reach a reliable conclusion.

In addition, we also found that the presence of T at rs13387347, A at rs2232316, G at rs492594,

A at rs483234, T at rs3755157 and C at rs478333 in G6PC2 among Asians were correlated with a

higher risk of T2D [10, 65, 69]. Meanwhile, C at rs478333 in adolescents, T at rs3755157 and A at

rs483234 among Asians displayed a higher FG level. However, T at rs13387347 displayed a lower

FG level [10, 65, 69]. Due to a lack of data, a meta-analysis was not completed for these SNPs, yet

they still provide evidence for the association of G6PC2with FG and T2D.

This study shows that ß value (linear regression coefficient) rather than SMD for the associ-

ation of FG with G6PC2 SNPs (rs560887 and rs573225) when pooled, which was not seen in

the previous studies. This is currently the most comprehensive meta-analyses on G6PC2.

Some limitations in our meta-analyses should be mentioned. First, our results on FG and

T2D were based on slightly different adjusted estimates. Second, the studies included in the

analyses may be insufficient to allow firm conclusions. Thus, potential publication bias is likely

to exist, in spite of the lack of evidence for this obtained from our statistical tests. The power to

detect bias is limited, particularly for moderate amounts of bias or meta-analyses based on a

small number of small studies [81]. Third, heterogeneity is also a potential problem, with esti-

mates of zero or even just low heterogeneity being a concern since heterogeneity is very likely

present but undetected [82]. Finally, the sample size for rs16856187 is small, and the estimate

of the effect of rs16856187 on FG may be imprecise. Therefore, further study is necessary to

confirm this finding.
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