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Abstract

Due to its environmentally sustainable and energy-saving characteristics, railway transpor-

tation nowadays plays a fundamental role in delivering passengers and goods. Emerged in

the area of transportation planning, the crew (workforce) sizing problem and the crew sched-

uling problem have been attached great importance by the railway industry and the scien-

tific community. In this paper, we aim to solve the two problems by proposing a novel two-

stage optimization approach in the context of the electric multiple units (EMU) depot

shunting driver assignment problem. Given a predefined depot shunting schedule, the

first stage of the approach focuses on determining an optimal size of shunting drivers.

While the second stage is formulated as a bi-objective optimization model, in which we

comprehensively consider the objectives of minimizing the total walking distance and

maximizing the workload balance. Then we combine the normalized normal constraint

method with a modified Pareto filter algorithm to obtain Pareto solutions for the bi-objec-

tive optimization problem. Furthermore, we conduct a series of numerical experiments to

demonstrate the proposed approach. Based on the computational results, the regression

analysis yield a driver size predictor and the sensitivity analysis give some interesting

insights that are useful for decision makers.

1. Introduction

Nowadays, high-speed railways (HSR) play an important role in public transportation systems,

mainly due to its environmentally friendly, energy-saving, comfortable, fast and safe character-

istics. Therefore, many countries spare no effort to build new HSR lines. China, for example,

has built an advanced HSR network with a scale of more than 20,000 km, making it the world’s

largest HSR network. Along with the continuous construction of HSR, the number of high-

speed trains or electric multiple units (EMU) that are put into service increases rapidly, which

remains a challenging task for HSR operators to design effective and efficient operation plans,

such as rolling stocks circulation plans and train timetables. Furthermore, since maintenance
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activities are a critical point to ensure safe operations of EMU trains, the massive number of

EMUs also introduces great difficulties to depot staff to accomplish maintenance task effi-

ciently. Here EMU depots refer to workshops where high-speed trains get maintained. Cur-

rently, the maintenance schedules in EMU depots are mainly manually designed by depot

dispatchers. As a result, it is a time-consuming and laborious work to obtain a feasible sched-

ule, let alone an optimal one. In practice, the schedule making process always requires several

hours of painstaking effort by a team of highly experienced dispatchers. Therefore, it is of great

significance to generate maintenance schedules through automatic computing.

The goal of maintenance schedules is to guide the depot maintenance crew to execute main-

tenance work in a well-ordered way. Generally, these maintenance schedules can be classified

into two categories: depot train routing plans and depot workforce scheduling plans. The first

category focuses on the train movements within a depot, e.g., how to assign depot tracks to

EMU trains, and how to shunt trains between tracks in a conflict-free manner, which is

embodied in a shunting schedule [1] in most cases. The second category, clearly, aims at plan-

ning the depot workforce, such as shift scheduling and task assignment. Basically, the depot

train routing plans and workforce schedules are correlated to some extent. However, since

both planning problems belong to the NP-hard class, the train routing planning problem and

the workforce scheduling problem are always solved sequentially. In this study, we explore the

depot shunting driver assignment (DSDA) problem under the condition that a depot shunting

schedule is given in advance. As for the DSDA problem, two aspects are discussed, namely, the

workforce size of shunting drivers and the task assignment for shunting drivers. In order to

link these two aspects, we propose a novel two-stage optimization framework.

The overall optimization framework for the DSDA problem is illustrated by Fig 1. As

depicted in the figure, the inputs of the optimization framework are primarily the depot infra-

structure layout and depot shunting schedule; and the outputs include the driver assignment

plan and the driver routing plan. Furthermore, the driver size serves as the intermediary that

links the first stage and second stage; that is, the driver size is not only the output of the first

stage but also the input of the second stage. Indeed, the proposed two-stage approach consists

of two optimization models. The first-stage model aims to determine an optimal workforce

size of shunting drivers, while the second-stage model is used to design the "best" assignment

plan of shunting tasks for the drivers whose total number is computed in the first stage. The

second-stage workforce scheduling subproblem is formulated as a bi-objective optimization

model, in which we comprehensively consider the objectives of minimizing the total walking

distance and maximizing the workload balance. The advantage of the bi-objective formulation

is that depot decision makers can easily select a desirable or reasonable configuration from the

solution pool when making tradeoffs between overall costs (total walking distance) and indi-

vidual fairness (workload balance). Both models consider the depot track layout, walking dis-

tance and walking time of drivers, etc. Using the state-of-the-art optimization solver Gurobi,

the solution times of the models are just a matter of seconds. Based on the computational

results, we further reveal some interesting insights that can be useful for practitioners and

operators of EMU depots, including a driver size predictor that is applicable for roughly deter-

mining a workforce size of shunting drivers while just using three easily obtainable problem

characteristics, and a sensitivity analysis result that reports how the number of shunting tasks

impacts the total walking distance as well as the workload balance.

The remainder of this paper is organized as follows. In Section 2, a literature review for

recent studies on crew sizing and crew scheduling related problems is presented. Section 3 pro-

poses a two-stage approach for the DSDA problem which aims to determine an optimal driver

size as well as an optimal shunting task assignment plan. In Section 4, in order to generate

Pareto solutions to the bi-objective model of the second stage, we introduce the normalized
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normal constraint method, and optimize it with a modified Pareto filter algorithm. Section

5 conducts a series of computational experiments and reveals some interesting insights based

on the computational results. Finally, conclusions and research prospects are presented in Sec-

tion 6.

2. Literature review

The DSDA problem can be regarded as a post-phase of the depot shunting scheduling prob-

lem. Although there is a lot of attention paid to the train shunting planning problem (see, e.g.,

[2–4]), literature on the shunting driver scheduling problem is scarce. Nevertheless, relevant

studies on crew sizing problems and crew scheduling problems within the transportation plan-

ning field are worth referring to. Rich literature have discussed these two attractive topics,

which lays a solid foundation on which this study is carried out. A comprehensive literature

review is proceeded as follows to help the readers better understand the progress of related

work.

2.1. Crew (workforce) sizing problem

The transportation crew sizing problem, which is also known as the workforce or personnel

sizing problem, refers to determining an optimal crew size that is able to cover a given set of

transportation tasks (e.g., train services, maintenance tasks) within a given time framework.

This problem falls into the scope of human resource management [5]. Verbeek [6] proposed a

mixed-integer mathematical formulation for the crew sizing problem arising in the strategic

manpower planning of airline pilots. Shiftan and Wilson [7] presented a two-stage method for

determining the optimal number of public transport operating personnel so as to minimize

total operating costs subject to a constraint on the minimum level of service reliability. The

first stage of the method estimated the optimal number of operators required in each period,

and the second stage defined the annual hiring program and vacation allocation plan. Zak [8]

presented the application of the methodology of multiple criteria decision making/aiding for

the problem that optimizes the crew size in the mass transit system operated by a public trans-

portation company. A multi-objective mathematical programing was formulated and then a

customized heuristic procedure was then designed to solve the problem.

Fig 1. The two-stage optimization framework.

https://doi.org/10.1371/journal.pone.0181165.g001
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If we define the transportation mobile equipment (e.g., vehicles, rolling stocks and locomo-

tives) as the “generalized crew”, the fleet sizing problem is similar with the crew sizing problem

to some extent. The fleet sizing problem is also one of highlighted topics within the transporta-

tion area (see [9–11]). Taking the railway transportation as an example, the concept of fleet siz-

ing embodies (but is not limited to) the following problems: the locomotive scheduling problem

[12–15], the rolling stock circulation problem [16–18] and the empty car distribution problem

[19–21]. Aside from the transportation planning field, the workforce sizing optimization has

also been widely applied to other fields in recent years, to name but a few, the manufacturing

industry field [22] and the nurse staffing field [23].

2.2. Crew scheduling problem

The crew scheduling problem refers to assigning K crew members to N tasks with fixed start

and finish times such that each crew does not exceed a limit on the total time it can spend work-

ing [24]. Majority of the relevant studies assume that the operation staff is given in advance, i.e.,

the crew size K serves as a known parameter of the crew scheduling module. The crew schedul-

ing problem occurs frequently in airline, railway and urban public transportation systems,

which is commonly modeled as set covering problems. Because of the NP-hard complexity

nature of this problem, many researchers have paid their attention to finding fast solution algo-

rithms. Haase et al. [25] presented a branch-and-price solution approach (only for the crew

schedules) for solving the simultaneous vehicle and crew scheduling problem in urban mass

transit systems. Freling et al. [26] designed a flexible branch-and-price algorithm to address the

problem of crew scheduling and crew rostering. Huisman et al. [27] presented two algorithms

both of which were based on a combination of column generation and Lagrangian relaxation

for integrated vehicle and crew scheduling in the multiple-depot case. Jütte and Thonemann

[28] presented a column generation based decomposition algorithm, namely, the divide-and-

price algorithm, which achieved high-quality solutions at reasonable runtimes for the railway

crew scheduling problem. In addition, (meta-) heuristics are also widely adopted to solve the

crew scheduling problem, which have showed their great potential on the aspect of computa-

tional efficiency compared with exact algorithms. Deng and Lin [29] introduced an ant colony

optimization algorithm to solve the airline crew scheduling problem. Performance was evalu-

ated by performing computational tests regarding real cases as the test problems. Azadeh et al.

[30] presented a particle swarm optimization (PSO) algorithm synchronized with a local search

heuristic for solving the airline crew scheduling problem. Computational results showed the

effectiveness and superiority of the proposed hybrid PSO algorithm over other algorithms (e.g.,

genetic algorithm). Hanafi and Kozan [31] applied a hybrid constructive heuristic with the sim-

ulated annealing search algorithm to the railway crew scheduling problem. The performance of

the algorithms was evaluated by applying computational experiments on randomly generated

test instances.

In this paper, we aim to simultaneously consider the crew sizing problem and the crew

scheduling problem within a two-stage modeling framework. Furthermore, on the crew sched-

uling stage, we propose a novel bi-objective optimization model to comprehensively take into

account the objectives of overall costs (measured by total walking distance) and individual fair-

ness (indicated by workload balance). To the best of our knowledge, few previous studies have

carefully addressed the DSDA problem that involves both the workforce sizing module and

the crew scheduling module while comprehensively considering the overall cost and the work-

load balance objectives. Another contribution of this paper is that we apply the normalized

normal constraint method combined with a modified Pareto filter scheme to generate Pareto

solutions to the bi-objective optimization problem. Last but not least, our discussions with
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respect to the computational results of a set of problem instances provide a shunting driver

size predictor and some sensitivity analysis results that are useful for decision makers when

designing shunting driver assignment plans.

3. Model formulation

In this section, we shall first give a brief introduction to the maintenance activities in the high-

speed railway system. A formal definition of the depot shunting driver assignment problem is

then given. After that, we present mathematical formulations for the problem within a two-

stage optimization framework. The computational complexity of both models are also dis-

cussed in this section.

3.1. Problem description and notations

Maintenance activities play a critical role in railway transportation to ensure safe operations.

There exist various types or levels of maintenance work in repair workshops, which usually fol-

lows a time-cycle or a distance-cycle manner. For example, in China high-speed railway system,

the maintenance work for EMU trains is divided into five levels. Each level of maintenance corre-

sponds to a time cycle as well as a distance cycle. For instance, the time cycle and the distance

cycle of the first-level maintenance are two days and 3,000 km, which means when a train’s accu-

mulative operation time from last maintenance reaches two days or its accumulative running dis-

tance reaches 3,000 km, the train needs to complete the first-level maintenance. The first- and

second-level are called the minor maintenance while the remainder are defined as the major

maintenance. The minor and major maintenance work are carried out in minor maintenance

depots and major maintenance workshops, respectively. In this paper, we focus our attention on

the minor maintenance work. One of the most important plans to guide depot staff to perform

the maintenance work is the so-called depot shunting schedule. For a detailed description of the

depot shunting schedule, we refer the readers to a previous paper [1]. After generating a shunting

schedule, maintenance tasks are then assigned. There are different worker groups that are respon-

sible for different types of maintenance related work, e.g., the train inspection and repair group,

the train cleaning group, and the train shunting group. The train shunting group refers to a fleet

of shunting drivers that are in charge of train shunting tasks. A detailed shunting task involves

two fundamental aspects: time windows of the task (time information) and locations to perform

the task (space information). The time windows can be derived from the shunting schedule

directly; and with considerations of the depot track layout (see Fig 2), the locations can be also

determined. To have a better understanding of the relationship between a depot shunting sched-

ule and a depot shunting driver assignment plan, we use the following illustrations to give more

details.

Fig 3 depicts a shunting schedule corresponding to the depot track layout shown in Fig 2.

In this shunting schedule, the connection between a dwell on one track and a subsequent

dwell on another track implies a shunting movement. For example, at the time moment 68,

EMU_1 (colored with dark green) starts a shunting movement from track w1; then it is

shunted towards track m2. At the time moment 73 the train finishes the shunting movement

and stays on track m2. In this way, the shunting schedule tells the exact time stamps (time

information) of a shunting task.

We then turn our attention to how we can get the space information of a shunting task. It is

known that an EMU train is able to move towards both directions using its own engine. There-

fore, a train always has two driver cabs, located at the head of the train and the tail of the train

(see Fig 2). The shunting driver who controls the train needs to be in the cab corresponding to

the train’s running direction. If a train moves forward, the driver uses the “head cab”; and vice

Two-stage approach to depot shunting driver assignment
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versa. Since a shunting movement (see Fig 4) always needs to turn the running direction of a

train, the shunting driver will use both cabs. As a result, the getting on point where a driver

starts a shunting movement is usually not identical to the getting off point where a shunting

movement finishes. For a dead-end type of depot layout (see Fig 2), the getting on points

(numbered with odd numbers in Fig 2) are near the bottleneck of the depot while the getting

off points (numbered with even numbers in Fig 2) are near the ends of the tracks. By mapping

the shunting schedule to the track layout, we can obtain the space information of a shunting

task. For example, the above-mentioned shunting movement from track w1 to track m2 of

EMU_1 implies that the shunting driver’s getting on point is 9 while the getting off point is 4.

Up to this point, we have obtained both the time and space information for a shunting task.

One shunting driver is capable of handling several shunting tasks. In order to perform

another shunting task after completing one, the shunting driver has to walk from the current

getting off point to the corresponding getting on point for the next shunting task within a

given time window. Before starting and after finishing all assigned shunting tasks, the driver

also needs to walk from and to the driver’s lounge. Note that, at the direction turning step

(step ② in Fig 4) during a shunting process, the driver needs to get off from the head driver

cab and walk to the tail cab, and then get on to the tail cab and the tail cab therefore becomes

the head cab. Since a shunting movement is only assigned to one driver, the walking effort of

the driver during the train direction turning process is mandatory. For simplification reasons,

in the optimization model presented in next section, we will treat the shunting movement as a

Fig 2. A typical depot track layout with getting on/off points.

https://doi.org/10.1371/journal.pone.0181165.g002
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black box and merge the driver’s walking effort into the driver’s driving effort. The shunting

driver assignment plan aims to design an optimal partition of the set of shunting tasks and

optimal connections of shunting tasks for each resulting subset while satisfying various opera-

tional requirements.

Fig 3. Diagram of the depot shunting schedule.

https://doi.org/10.1371/journal.pone.0181165.g003

Fig 4. A shunting movement from track w1 to track m2.

https://doi.org/10.1371/journal.pone.0181165.g004
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Before we present the mathematical model to describe the shunting driver assignment

problem, we introduce the following notations used in our formulations. Let P be the set of

driver’s getting on/off points indexed by p and q, P = {0, 1, 2, . . .,m}, wherem is the total num-

ber of getting on/off points. Kindly note that we assume all shunting drivers’ departure and

arrival points are identical, i.e., the driver’s lounge denoted by a five-pointed star in Fig 2. We

use element “0” in setW to represent the point. Let S be the set of shunting tasks indexed by i
and j, S = {0, 1, 2, . . ., n}, where n is the total number of shunting tasks. For the sake of model-

ing convenience, here we add the element of “0” to set S to represent the virtual task that links

the arrival and departure activities of the shunting drivers at the driver lounge. LetW denote

the set of shunting drivers indexed by k,W = {1, 2, . . ., c}, where c is the workforce size of

shunting drivers. We define the start point (getting on point) and end point (getting off point)

of shunting task i as spi and epi, respectively. The walking distance between point p and q is

denoted by d(p,q). We assume that the walking speed of all shunting drivers is identically v.
Meanwhile, we define the start time and end time of shunting task i as sti and eti, respectively.

We use binary decision variables xij to decide whether shunting tasks i and j are connected,

where xij = 1 if i and j are connected, xij = 0 otherwise. Binary decision variables ykij are used to

describe whether shunting tasks i and j are connected by shunting driver k; if i and j are con-

nected by k, it takes value one, otherwise it takes value zero. Furthermore, we use auxiliary

binary decision variables zik to model whether shunting task i is assigned to shunting driver k;

when i is assigned to k, its value is one, otherwise its value is zero.

3.2. The First-stage model

In the first-stage of the DSDA problem, we aim to find an optimal workforce size of shunting

drivers to complete all the shunting tasks within a predefined shunting schedule. The fist-stage

crew sizing sub-problem is formulated as an Integer Linear Programming (ILP) model. The

objective function and constraints of the model can be written as follows:

First-stage Model (FSM)

• Objective function

Minimizing the workforce size of shunting drivers:

min c ð1Þ

• Subject to

Each shunting task should be assigned to one shunting driver:
X

i2S

xij ¼ 1 8j 2 Snf0g ð2Þ

X

j2S

xij ¼ 1 8i 2 Snf0g ð3Þ

All shunting drivers’ departure and arrival points are identically the driver’s lounge:
X

i2S

xi0 ¼ c ð4Þ

X

j2S

x0j ¼ c ð5Þ

Two-stage approach to depot shunting driver assignment
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The walking time from the getting off point of a shunting task to the getting on point of the

connected shunting task should be less than the time interval of the two tasks; otherwise, the

two shunting tasks should never be connected, i.e., xij = 0:

stj � etj �
dðepi; spjÞ

v

� �

� xij � 0 8i; j 2 Snf0g ð6Þ

Decision variables are binary:

xij 2 f0; 1g 8i; j 2 S ð7Þ

The computational complexity of the first-stage model (FSM) can be analyzed as follows.

Generally, two aspects are discussed with respect to the model complexity: decision vari-

ables and constraints. Clearly, the complexity of the decision variables is O(n2). In contrast,

the complexity of constraints (2) and (3) is O(n) while the complexity is O(n2) for constraint

(6).

3.3. The Second-stage model

In the second-stage model, we aim to minimize the total walking distance as well as to balance

the workload for the shunting drivers whose total number c is computed in the first-stage

model. We propose a bi-objective modeling framework to consider both goals. By removing

auxiliary decision variables, the basic mathematical model can be modified to a more concise

formulation without increasing the computational complexity.

3.3.1. Bi-objective formulation. We formulate the second-stage problem as a Bi-objective

Binary Integer Quadratic Programming (BBIQP) with two groups of decision variables. The

objective functions and constraints can be written as follows:

Second-stage Model 1 (SSM_1)

• Objective function

Objective 1: Minimizing the total walking distance of all shunting drivers

min Z1 ¼
X

i2S

X

j2S

X

k2W

dðepi; spjÞ � y
k
ij ð8Þ

Objective 2: Minimizing the imbalance of workload for the shunting drivers

Here, we define the actual workload of a shunting driver as the sum of driving time and

walking time. Let awk denote the actual workload of driver k and it is calculated by the follow-

ing equation:

awk ¼
X

i2Snf0g

ðeti � stiÞ � zik þ
X

i2S

X

j2S

dðepi; spjÞ
v

� ykij ð9Þ

One advantage of this definition is that it benefits from considering the redundant walking

time, which equals the time interval of two shunting tasks minus the actual walking time.

Under such a definition, we can now turn our attention to the objective formulation. It is a

widely used method to measure the imbalance with a variance metric. Accordingly, we formu-

late the second objective, namely, minimizing the imbalance of actual workload for the shunt-

ing drivers as follows:

Two-stage approach to depot shunting driver assignment
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min Z2 ¼
X

k2W

awk �
1

c

X

k2W

awk

 !2

ð10Þ

According to the original definition of variance, the right side of formula (10) should be

divided by the scale of data samples (in this model the scale is c). The scale is a constant, which

means that it has no effect on the optimal solution (task assignment plan). For simplification

reasons, we remove the constant from formula (10).

• Subject to

Each shunting task should be assigned to one shunting driver:

X

k2W

zik ¼ 1 8j 2 Snf0g ð11Þ

All shunting drivers’ departure and arrival points are identically the driver’s lounge:

X

k2W

z0k ¼ c ð12Þ

The walking time between two connected shunting tasks should be less than the time inter-

val of the tasks:

stj � eti �
dðepi; spjÞ

v

� �

� ykij � 0 8i; j 2 Snf0g; k 2W ð13Þ

The two groups of decision variables have the following relationship:

X

j2S

ykij ¼ zik 8i 2 S; k 2W ð14Þ

X

i2S

ykij ¼ zjk 8j 2 S; k 2W ð15Þ

Decision variables are binary:

ykij 2 f0; 1g 8i; j 2 S; k 2W ð16Þ

zik 2 f0; 1g 8i 2 S; k 2W ð17Þ

Similarly, the computational complexity of the model (SSM_1) is analyzed as follows. The

complexity of constraints (11), (13), (14) and (15) is O(n), O(cn2), O(cn) and O(cn), respec-

tively. It is observed that the complexity of decision variables ykij is O(cn2) while the complexity

of auxiliary decision variables zik is O(cn).

3.3.2. Model reformulation without auxiliary decision variables. In fact, the SSM_1 can

be improved to a more concise formulation without using auxiliary decision variables zik. We

define the resulting reformulation as Second-stage Model 2 (SSM_2). The detailed mathemati-

cal formulations of SSM_2 is presented as follows:

Second-stage Model 2 (SSM_2)

• Objective function

Objective 1:

Two-stage approach to depot shunting driver assignment
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Formula (8)

Objective 2:

Formula (10)

where awk is rewritten as follows:

awk ¼
X

i2Snf0g

ðeti � stiÞ �
X

j2S

ykij
� �

þ
X

i2S

X

j2S

dðepi; spjÞ
v

� ykij ð18Þ

• Subject to

Each shunting task should be assigned to one shunting driver:
X

i2S

X

k2W

ykij ¼ 1 8j 2 Snf0g ð19Þ

X

j2S

X

k2W

ykij ¼ 1 8i 2 Snf0g ð20Þ

X

i2S

ykij �
X

i2S

ykji ¼ 0 8j 2 S; k 2W ð21Þ

All shunting drivers’ departure and arrival points are identically the driver’s lounge:
X

i2S

yki0 ¼ 1 8k 2W ð22Þ

X

j2S

yk
0j ¼ 1 8k 2W ð23Þ

The walking time should be less than the time interval of two connected shunting tasks:

stj � eti �
dðepi; spjÞ

v

� �

� ykij � 0 8i; j 2 Snf0g; k 2W ð24Þ

Decision variables are binary:

ykij 2 f0; 1g 8i; j 2 S; k 2W ð25Þ

The complexity of constraints (19) ~ (24) is O(n),O(n),O(c),O(c),O(n) and O(cn2), respec-

tively. Clearly, the complexity of decision variables is O(cn2). Compared with SSM_1, the com-

plexity of constraints and decision variables has not increased. However, the total number of

decision variables has been significantly reduced, which makes the problem easier to solve. In

our paper, we shall use SSM_2 to address the second-stage sub-problem, i.e., the shunting

driver routing and scheduling problem.

4. Pareto optimality for the bi-objective optimization problem

The second-stage model proposed in Section 3 addresses a bi-objective optimization problem

(BOP). In most cases, the two objectives of BOPs are conflicting, which requires the decision

makers to make a tradeoff between them [32]. There are various approaches available in scientific

literature (see, for example, [33]) to help decision makers make reasonable tradeoffs (i.e., obtain

solutions), e.g., sequential optimization method, weighting method and goal programming

Two-stage approach to depot shunting driver assignment
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method. Using different solution approaches, decision makers are able to obtain different config-

urations from the BOP solution pool. The generally accepted solution of a BOP is said to be

Pareto optimal, or a Pareto solution. A Pareto solution is one for which any improvement in one

objective can only take place if at least one other objective worsens [34]. By generating a set of

Pareto solutions, one can obtain the so-called Pareto frontier. In this way, it is quite easy for deci-

sion makers to get suitable solutions from the Pareto frontier. Therefore, we will focus on gener-

ating the Pareto frontier for the second-stage model. In general, Pareto frontier generation

methods can be categorized into two groups: classical methods and evolutionary methods. For a

recent overview of Pareto frontier generation methods, we refer the readers to the corresponding

section of reference [35]. In this study, we use the normalized normal constraint method pro-

posed by Messac et al. [34] to generate the Pareto frontier for the second-stage BOP (i.e., SSM_2).

The normalized normal constraint method includes two phases: Pareto points generation and

non-Pareto solutions filter. In the following, we first give a brief introduction to the Pareto points

generation phase, and then develop a modified Pareto filter algorithm in the second phase.

4.1. Pareto points generation

Given the bi-objective optimization problem composed of formulae (8), (10) and (18) ~ (25),

the normalized normal constraint method for generating Pareto points is described as follows.

First, by solving the two single-objective optimization problems (one problem is composed

of formulae (8) and (18) ~ (25); and another one is composed of formulae (10) and (18) ~

(25)) separately, we can gain their respective optimal solutions x1� and x2�. Let μ1 and μ2 repre-

sent Objective 1 (formula (8)) and Objective 2 (formula (10)), respectively. To avoid scaling

deficiencies, the objective functions μ1 and μ2 should be normalized by the following equation:

m ¼
m1ðxÞ � m1ðx1�Þ

m1ðx2�Þ � m1ðx1�Þ

m2ðxÞ � m2ðx2�Þ

m2ðx1�Þ � m2ðx2�Þ

� �

ð26Þ

where mis called the normalized design metrics (objective functions). If we substitute the

optimal solutions x1� and x2� into Eq (26), we obtain two points: m1� ¼ mðx1�Þ ¼ ½0; 1� and

m2� ¼ mðx2�Þ ¼ ½1; 0�. The line linking these two points is called the Utopia line (see Fig 5).

Next, we define N 1 as the direction from m1� to m2�, yielding N 1 ¼ m2� � m1� ¼ ½1; � 1�.

After that, we generate a predefined number of points Xj (j = 1, 2, . . .,m1, wherem1 is the pre-

defined number) along the direction of N 1 distributed on the Utopia line by the following

equation:

Xj ¼ a1jm
1� þ a2jm

2� ð27Þ

where 0� α1j,α2j� 1 and α1j + α2j = 1. Please note that for each j 2 {1,2,. . .,m1}, α1j is incre-

mented by the step 1/(m1−1) while α2j is decremented by the same step. Therefore, these points

are evenly distributed on the Utopia line with a step of
ffiffiffi
2
p

=ðm1 � 1Þ.

Using the set of evenly distributed points on the Utopia line, we can generate a correspond-

ing set of Pareto points by solving a succession of optimization runs of the following single

objective sub-problem:

Single objective sub-problem (for jth point)

• Objective function

min z ¼ m2 ð28Þ
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• Subject to

Formulae (18) ~ (25)

N 1ðm � XjÞ
T
� 0 ð29Þ

m ¼ ½m1ðxÞ m2ðxÞ�
T

ð30Þ

Each optimization run corresponds to a point on the Utopia line. Specifically, for each gen-

erated point on the Utopia line, solve for the jth point.

Finally, after solving them1 single objective sub-problems, we obtainm1 optimal solutions

x�
1
; x�

2
; . . . ; x�m1

. By substituting the optimal solutions into original objective functions μ1 and μ2, we

get the set of Pareto points: P1 ¼ f½m1 ðx�1Þ m2 ðx�1Þ�; ½m1 ðx�2Þ m2 ðx�2Þ�; . . . ; ½m1 ðx�m1
Þ m2 ðx�m1

Þ�g.

4.2. Modified pareto filter algorithm

As indicated by Messac et al. [34], under certain circumstances, the normalized normal con-

straint method can generate non-Pareto solutions. Therefore, it is necessary to develop a

Pareto filter algorithm to eliminate all dominated points from the given set of Pareto points

(e.g. the set of P1); that is, to generate a set of global Pareto optimal points. Messac et al. [34]

proposed a Pareto filter algorithm with a four-step process. However, according to our compu-

tational experiments, the algorithm fails to provide a set of Pareto points without repeated ele-

ments (Pareto points). That is to say, if the original set P1 contains repeated Pareto points, the

algorithm cannot eliminate repeated copies. Moreover, according to the algorithm description

(with both the pseudocode and the flow diagram), the original algorithm seems to occur a

Fig 5. The Pareto frontier and the Utopia line in the normalized objective space.

https://doi.org/10.1371/journal.pone.0181165.g005
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subscript out of range error when the subscript of the Pareto set (represented by i in [34]) is

equal to the number of generated solutions (represented by m in [34]). This motivates us to

enhance the algorithm with slight modifications. Table 1 presents the overall framework of our

modified Pareto filter algorithm.

As described in Table 1, the overall algorithm framework consists of two basic modules:

eliminating repeated points (Line 4 ~ 17) and eliminating dominated points (Line 19 ~ 37).

Since the second-stage model is a combinational optimization problem, which means its

Table 1. Framework of the modified Pareto filter algorithm.

Algorithm: Modified Pareto Filter

Input: Original set of Pareto points (P1)

Output: Set of global Pareto optimal points without repeated elements (P3)

1: Flag zeros(m1) // Flag is to flag repeated points

2: P2 {} // P2 is to store unrepeated points

3: P3 {}

4: for all i 2 {1,2,. . .,m1} do

5: if Flag[i]= 0 then

6: for all j 2 {1,2,. . .,m1} do

7: if j > i then

8: if P1[j] = P1[i] then

9: Flag[j] 1

10: end if

11: end if

12: end for

13: end if

14: if Flag[i]= 0 then

15: P2.add(P1[i]) // add P1[i] to set P2

16: end if

17: end for

18: m2 |P2| // m2 is the number of points in P2

19: for all i 2 {1,2,. . .,m2} do

20: for all j 2 {1,2,. . .,m1} do

21: if j 6¼ i then

22: if P2[i]� P2[j] then

23: break

24: else

25: if i < m2 then

26: if j = m2 then

27: P3.add(P2[i])

28: end if

29: else

30: if j = m2−1 then

31: P3.add(P2[i])

32: end if

33: end if

34: end if

35: end if

36: end for

37: end for

https://doi.org/10.1371/journal.pone.0181165.t001
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solutions are discrete, it is possible to yield repeated points. This supposition is proved to be

reasonable by our numerical experiments presented in Section 5. After eliminating all repeated

points and dominated points (local Pareto optimal points), we can obtain the "real" Pareto

frontier (global Pareto optimal points) from which decision makers can select a suitable con-

figuration conveniently.

5. Computational experiments

In this section, in order to evaluate the two-stage model and the Pareto frontier generation

algorithm, we carry out several computational experiments. We focus on two aspects: entire

computational process for the two-stage model and a regression analysis as well as a sensitivity

analysis on input parameters. The first-stage model is solved by Gurobi 6.5.2; and the second-

stage model is solved by the normalized normal constraint method and each single objective

sub-problem is also solved by Gurobi solver. All the computational experiments are coded in

Python 2.7 and implemented within the interactive Python development environment of Spy-

der on a PC with Intel Core i5 CPU and 8 GB RAM. We start with the demonstration of the

overall solution process.

5.1. Demonstration of the overall solution process

In order to demonstrate the overall solution process for the two-stage model, we are given the

predefined shunting schedule presented in Fig 3. It is observed that there are a total of 23

shunting movements (shunting tasks) within the shunting schedule. The attributes for the

shunting tasks, including start track, end track, start point, end point, start time and end time,

are listed in Table 2.

The corresponding train depot used for our computational experiments is depicted in Fig

2. As shown in the figure, there are 15 depot tracks and 31 shunting driver involved points,

including 30 getting on/off points and one shunting driver’s lounge (i.e., the departure/arrival

point for the shunting drivers). The walking distance between each two points is presented in

S1 Table, and the walking speed of the shunting drivers is set as 90.0 m/min. In fact, the illus-

trated depot is a simplified version of Shanghai South Depot, China. Therefore, all the compu-

tational results can serve as a benchmark and a decision support for real-life problems.

Given the input data, we can solve the first model using the optimization solver Gurobi. The

solution time is just a matter of seconds. The optimal objective value of the first-stage model is

3, which means the optimal workforce size of shunting drivers for the 23-task instance is 3.

With the optimal workforce size, we can proceed to solve the second-stage BOP. We are inter-

ested in obtaining the Pareto frontier for the BOP. Solving the above problem instance with a

normalized increment of 0.01 yields 101 Pareto solutions. Fig 6 shows the generated Pareto

solutions by the normalized normal constraint method. Among these solutions, there are a total

of 71 repeated copies, which corresponds with our supposition that it is possible to generate

repeated points since the problem is a combinational optimization problem. By performing the

modified Pareto filter algorithm, we can further identify 16 non-Pareto optimal solutions. As a

result, there are only 14 global Pareto points left after the entire solution process. The global

Pareto points are shown in Fig 7.

As can be seen in Fig 7, the range for the first objective function’s value is between 14,000

and 14,600 (m) while the range for the second objective is between 5 and 40 (min2). When the

total walking distance for all shunting drivers decreases, the imbalance of workload increases,

which means the two objectives are conflicting. If we consider the optimal walking distance

(overall costs) as the "system optimal (global optimal)" objective and regard the optimal work-

load balance (fairness) as the "user equilibrium (local optimal)" objective, this figure could
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reveal why "local optimal" does not always mean "global optimal", and vice versa. For decision

makers, they should comprehensively consider the fairness (Objective 2) and overall costs

(Objective 1), i.e., making a suitable tradeoff between these two goals. Once the decision mak-

ers have made a suitable choice, they can select a configuration from the Pareto frontier

directly. For example, if the decision makers want the imbalance level be lower than 15, they

should select the seven Pareto points distributed at the lower right corner of Fig 7.

To highlight the proposed approach on both aspects of solution quality and speed, in

Table 3 we compare the computational results with those from the manual method based on

above case. In terms of the solution quality, we focus on the objective values (including driver

size, total walking distance and workload imbalance). While with respect to the solution speed,

we pay our attention to the total time it takes to design a shunting driver assignment plan.

As can be seen from Table 3, the optimal shunting driver size from the manual method is

four, which means the manual plan requires one more driver to complete all the shunting

tasks. Since labor costs represent a large share of rail operators’ operating costs [36], reducing

the workforce size is beneficial for rail operators to pursuit operating cost savings. Regarding

the total walking distance of all shunting drivers, the two methods show little difference. How-

ever, for the workload imbalance criterion, the proposed approach significantly improves the

balance level by approximately ten times compared with the manual method. Moreover, the

proposed approach is able to provide the Pareto solution pool while the manual method just

yields a single plan. Another advantage of the proposed approach embodies in the solution

speed. According to our field investigations at Shanghai Depot, it generally takes the

Table 2. Shunting tasks deriving from Fig 3.

Task ID Start Track End Track Start Point End Point Start Time a End Time a

1 m2 s4 3 20 223 228

2 w1 m2 9 4 68 73

3 m3 s1 5 14 295 300

4 w2 m3 11 6 133 138

5 w1 m1 9 2 541 546

6 s2 w1 15 10 468 473

7 m2 s8 3 28 383 388

8 w1 m2 9 4 228 233

9 m4 s9 7 30 388 393

10 w2 m4 11 8 233 238

11 w1 s3 9 18 463 468

12 s3 m4 17 8 584 589

13 s3 w1 17 10 398 403

14 w1 m4 9 8 393 398

15 s7 w1 25 10 328 333

16 w2 m1 11 2 317 322

17 m3 s8 5 28 579 584

18 w1 m3 9 6 323 328

19 w2 m2 11 4 619 624

20 s6 w2 23 12 546 551

21 w1 m3 9 6 624 629

22 s5 w1 21 10 551 556

23 w2 m2 11 4 403 408

a Unit: min.

https://doi.org/10.1371/journal.pone.0181165.t002
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dispatcher two to three hours to design a shunting driver assignment plan. While it just

requires four seconds through automatic computing using the proposed approach. In practice,

our method could provide a useful and efficient decision support tool for dispatchers when-

ever designing a new plan or rescheduling an existing plan.

5.2. Discussions

5.2.1. Regression analysis for the first-stage model. It is interesting to investigate how

the input data (parameters) impact the optimization results (optimal workforce size of shunt-

ing drivers). To this end, we estimate a statistical regression model that can produce significant

predictions of the workforce size based on a small number of problem characteristics, which

are listed in Table 4. We suspect the listed characteristics to have the gravest impact on the

optimal workforce size.

The total number of shunting tasks is an obvious choice, since more shunting tasks always

require more shunting drivers. The average walking distance between any two shunting tasks

is also rather an evident selection, because for a given walking speed and a predefined planning

Fig 6. Pareto points without the Pareto filter.

https://doi.org/10.1371/journal.pone.0181165.g006
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horizon, the longer walking distance between two shunting tasks implies less number of shunt-

ing tasks a shunting driver can handle, which means more shunting drivers are needed. Finally,

we pay our attention to the total number of infeasible shunting task connections. An infeasible

shunting task connection refers to that the walking time for a shunting driver is longer than the

connection time defined by the shunting schedule between a pair of shunting tasks. Therefore,

Fig 7. Pareto points with the Pareto filter.

https://doi.org/10.1371/journal.pone.0181165.g007

Table 3. Comparisons between the manual method and proposed approach.

Criterion Manual Method Proposed Approach Gap

Driver Size 4 3 1

Walking Distance (m) 14820.5 Pareto solutions (14020.5 ~ 14557.5) -

Workload Imbalance (min2) 267.0632 Pareto solutions (9.3117 ~ 38.2193) -

Computational Time 2 ~ 3 h 4.05 seca -

a The computational time of the first-stage model is 0.03 sec; and the second-stage model is 4.02 sec.

https://doi.org/10.1371/journal.pone.0181165.t003
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larger number of infeasible shunting task connections represent less flexibility for shunting

drivers. As a result, extra shunting driver(s) are necessary to avoid this type of infeasibility. Con-

sider an extreme scenario where any two shunting tasks are infeasible connections, then the

optimal driver size will be equal to the total number of shunting tasks.

We generate 25 shunting task plans and solve them with the proposed method. Note that

for simplification reasons and without loss of generality, we still focus on the pre-described

depot layout (see Fig 2). We then estimate a linear regression model based on the three charac-

teristics for the dataset using Microsoft Excel. Table 5 presents the estimated parameters calcu-

lated from the dataset. The regression model features a coefficient of determination R2 of

0.905, which indicates that 90.50% variability is explained by the model. Moreover, all the p-

values of the selected three problem characteristics (coefficients) are much less than 0.05,

which means the characteristics have a strong linear relationship with the optimal workforce

size of shunting drivers, i.e. indicating high significance.

As can be seen from Table 5, the number of shunting tasks (NST) is the most important fac-

tor that impacts the optimization results. Therefore, we are particularly interested in how the

number of shunting tasks impacts the Pareto frontier for the second-stage model. We will con-

duct the interesting sensitivity analysis in the following sub-section.

5.2.2. sensitivity analysis for the second-stage model. In this section, we would like to

investigate how the Pareto solutions of the second-stage BOP change with the number of

shunting tasks. To quantify the impact, we select three data samples (shunting task plans) from

the above mentioned dataset, for which the optimal solutions of the first-stage model are all

equal to three (shunting drivers), but the number of shunting tasks for the three plans are 13,

18 and 23, respectively. The Pareto solutions for the selected problem instances are shown in

Fig 8. Please note that in the figure, the lines linking two adjacent Pareto points do not repre-

sent the Pareto frontiers, they are just for visualization purposes.

Fig 8 clearly shows that the Pareto optimal curves move from left to right as the number of

shunting tasks (NST) increases from 13 to 23. It implies that, at the same workload balance

level, a larger NST leads to a longer total walking distance. The reason is quite simple. Since

the number of shunting driver is a constant, a larger total NST means that a shunting driver is

assigned more shunting tasks. Consequently, the total walking distance of all shunting drivers

increases.

Table 4. Problem characteristics.

No. Characteristic Description Abbreviation

1 Number of shunting tasks NST

2 Average walking distance between any two shunting tasks AWD

3 Number of infeasible shunting task connections NIC

https://doi.org/10.1371/journal.pone.0181165.t004

Table 5. Coefficients and std. errors for the regression modela.

Parameter Denotation Coefficient Std. Error p-value

Intercept β0 -0.3200 0.2249 0.1693

NST β1 1.1690 0.1222 <0.0001

AWD β2 -0.0041 0.0005 <0.0001

NIC β2 -0.0086 0.0023 0.0013

a The confidence interval is set as 95%.

https://doi.org/10.1371/journal.pone.0181165.t005
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6. Conclusions

In this paper, we propose a two-stage approach to the EMU depot shunting driver assignment

problem, aiming to link two research highlights in the transportation area: the crew sizing

problem and the crew scheduling problem. The first-stage model is to minimize the workforce

size of shunting drivers, which is a primary goal for the decision makers. With the optimal

driver size, the second-stage model comprehensively consider the overall costs (total walking

distance) as well as fairness (workload balance), which is modeled as a bi-objective problem.

We apply the normalized normal constraint method to solve the second-stage BOP. The

method consists of two modules: Pareto point generation and non-Pareto solution filter. Moti-

vated by the disadvantage of original Pareto filter algorithm, we develop an enhanced Pareto

filter algorithm with slight modifications.

Furthermore, to evaluate the proposed model and algorithm, we carry out several computa-

tional experiments. Discussions with respect to computational results provide some interesting

insights, including: (1) a linear regression model with a high coefficient of determination for

Fig 8. Sensitivity analysis on the number of shunting tasks.

https://doi.org/10.1371/journal.pone.0181165.g008
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the first-stage sub-problem is estimated, the regression parameters can be useful for decision

makers to roughly determine a workforce size of shunting drivers while just using three easily

obtainable problem characteristics; (2) a sensitivity analysis for the second-stage model is con-

ducted and we observe that the Pareto frontier moves from left to right as the total number of

shunting tasks increases.

Our future research direction is to simultaneously consider the depot shunting scheduling

problem and the shunting driver assignment problem. We would like to use a bi-level pro-

gramming framework or other advanced modeling techniques to address the integrated opti-

mization problem.
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