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Abstract

Reasoning with inconsistencies is an important issue for Semantic Web as imperfect infor-

mation is unavoidable in real applications. For this, different paraconsistent approaches,

due to their capacity to draw as nontrivial conclusions by tolerating inconsistencies, have

been proposed to reason with inconsistent description logic knowledge bases. However,

existing paraconsistent approaches are often criticized for being too skeptical. To this end,

this paper presents a non-monotonic paraconsistent version of description logic reasoning,

called minimally inconsistent reasoning, where inconsistencies tolerated in the reasoning

are minimized so that more reasonable conclusions can be inferred. Some desirable proper-

ties are studied, which shows that the new semantics inherits advantages of both non-

monotonic reasoning and paraconsistent reasoning. A complete and sound tableau-based

algorithm, called multi-valued tableaux, is developed to capture the minimally inconsistent

reasoning. In fact, the tableaux algorithm is designed, as a framework for multi-valued DL,

to allow for different underlying paraconsistent semantics, with the mere difference in the

clash conditions. Finally, the complexity of minimally inconsistent description logic reason-

ing is shown on the same level as the (classical) description logic reasoning.

1 Introduction

Description logics (DLs) [1] are a family of formal knowledge representation languages, the

logic formalism originally for Frame-based systems and Semantic Networks, and recently for

Web Ontology Language (OWL) in Semantic Web. However, logically formalized knowledge

is rarely perfect due to modeling errors, migration from other formalisms, or evolution of

ontologies [2–6]. So it is unrealistic to expect that real DL ontologies are always logically con-

sistent and complete [7]. However, DLs, as a fragment of first-order logic, allow to draw arbi-

trary, unsupported conclusions over inconsistent knowledge bases (KBs). Therefore, non-

classical reasoning of DLs has received extensive interests [3, 5, 7–30] in recent years.

To reason with “imperfect” DL KBs, two kinds of non-classical reasoning mechanisms,

namely paraconsistent reasoning and non-monotonic reasoning, have been proposed in DLs.
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The first applies paraconsistent semantics to DLs to tolerate inconsistent knowledge, e.g.,

based on Belnap’s four-valued semantics [21, 23], Kleene’s three-valued semantics [5], a vari-

ant of Belnap’s four-valued semantics [19] which is the {_, ^, * } fragment of Nelson’s para-

consistent logic N4 [31], and Besnard & Hunter’s quasi-classical semantics [28, 30]. While

these paraconsistent semantics can tolerate inconsistencies [11], they still have shortcomings.

For illustration, consider a KB Ka about “animal” and its axioms in DL syntax shown in

Table 1.

It is not hard to show that Ka is inconsistent. This can be handled in a paraconsistent logic

(e.g., four-valued logic [32]) but Ka would have two models: Model1 satisfying both AbnBird
(tweety) and ¬Fly(tweety) and Model2 satisfying both ¬AbnBird(tweety) and Fly(tweety). How-

ever, in commonsense reasoning (such as causal reasoning), it is widely accepted that Model1

is not intended since the inconsistency of Ka is mainly caused by the assertion ¬Piscivore(ursi-
dae) and a consequence Piscivore(ursidae), which is inferred from three assertions (φ2, φ4, φ5),

and the part of Ka in representing whether tweety can fly is consistent.

To enable the desired reasoning mechanism, non-monotonic reasoning is required because

some inferences should be blocked when information increased. Non-monotonic reasoning

takes inconsistency as “exception” in reasoning [33]. Different treatments with “exception”

lead to different non-monotonic systems, e.g., Reiter’s default logic [7], epistemic operators

[12, 13], McCarthy’s circumscription [10], and Motik and Rosati’s MKNF (Minimal Knowl-

edge and Negation as Failure) [13]. Accordingly, existing non-monotonic DLs are achieved by

extending classical DL syntax with extra operators or restricting some DL constructors, e.g.,

via modal operators [12, 13], via open default rules in [7], or using circumscription patterns

[10, 34]. However, existing non-monotonic DL systems still have limitations in inconsistency

handling because their underlying logics have to be monotonic. In other words, they can no

longer work if the new knowledge contains inconsistency, as the second situation in the illus-

trative example above. Indeed, the underlying monotonic logic for non-monotonic logics is

not necessarily classical, but should be chosen according to the intended applications instead

[35]. If, for example, we do not totally reject inconsistent knowledge, then an underlying para-

consistent logic might be a better choice than the classical logic.

As argued above, paraconsistent reasoning and non-monotonic reasoning have their

advantages and disadvantages. Combining paraconsistent and non-monotonic reasoning has

been studied for several systems [36–38], but the challenge of a paraconsistent non-monotonic

DL system exists in the preservation of desired features of classical DLs. Ideally, such a com-

bined reasoning should satisfy the following properties: (1) It works on original DL syntax; (2)

It is paraconsistent; (3) It is non-monotonic; (4) It is decidable and does not bring extra

computational complexity compared to classical DLs.

To resolve this issue for paraconsistent reasoning and non-monotonic reasoning in DL

ontologies, in this paper, we propose to use minimal models in paraconsistent description log-

ics. As a result, we introduce a minimally inconsistent description logic satisfying all of these

Table 1. An example: Animal KB.

Assertions DL-axioms

Every animal which can fly has wings φ1: Flyv HasWing

Every animal which eats fish is a piscivore φ2: 9 Eat.Fishv Piscivore

tweety is not an abnormal bird or cannot fly φ3: (¬AbnBird t ¬Fly)(tweety)

ursidae eats salmon φ4: Eat(ursidae, salmon)

salmon is some fish φ5: Fish(salmon)

ursidae is not a piscivore φ6: ¬Piscivore(ursidae)

https://doi.org/10.1371/journal.pone.0181056.t001
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requirements, which can minimize the inconsistent part in KB in order to infer more feasible

information. This work is a significant extension of the preliminary results that were prevously

published in [39, 40] where [39] presents a paradoxical semantics (as a class of complete multi-

valued semantics) for DL and [40] presents a minimally paradoxical semantics (as a class of

minimally complete multi-valued semantics) for DLs, respectively. In this paper, we generate

paradoxical semantics and minimally paradoxical semantics for DLs in a unified framework so

that we could investigate general properties and relations with other classes of MVDL and

MIDL, such as four-valued semantics and minimally four-valued semantics. Moreover, we

develop a tableaux called multi-valued tableaux to characterize the minimal inconsistent rea-

soning with DLs. Our main contributions are summarized as follows:

• We define two sorts of the minimally inconsistent DL reasoning based on two multi-valued

semantics for DLs;

• We propose a new framework of tableaux called multi-valued tableaux as the proof systems

for both multi-valued DLs and minimally inconsistent DL reasonings.

• By the proposed tableaux algorithm for minimally inconsistent DL reasonings, we show that

both of the our minimally inconsistent DL reasoning problems are no harder than their cor-

responding classical DL reasoning problems.

The rest of the paper is organized as follows: a brief review of DL is first introduced, and

then Section 3 defines multi-valued DL. Section 4 proposes the minimally inconsistent DL rea-

soning and Section 5 presents multi-valued tableaux framework. Section 6 discusses related

works and Section 7 concludes the paper. All proofs are presented in Appendix.

2 Preliminaries

In this section, we give a brief introduction of description logics and paraconsistent logic.

2.1 Description logics

In DLs, elementary descriptions are concept names and role names. Complex descriptions are

built from them inductively using concept and role constructors provided by the particular DL

in consideration. For a comprehensive understanding, we refer readers to the Description

Logic Handbook [1].

In this paper, we consider the ALC which is a simple yet relatively expressive DL. Let NC

and NR be pairwise disjoint and countably infinite sets of concept names and role names respec-

tively. Let NI be an infinite set of individual names. We use the letters A, B for concept names,

the letter R, S for role names, the letters C, D for concepts, and the letters a, b for individual

names. Let> and? denote the top concept and the bottom concept respectively. The set of

ALC concepts is the smallest set such that:

• every concept name is a concept;

• if C, D are concepts, R is a role name, then the following expressions are also concepts: ¬C
(full negation), C u D (concept conjunction), C t D (concept disjunction), 8R.C (value restric-
tion on role name) and 9R.C (existential restriction on role name).

For instance, the concept description Student t Staff is an ALC-concept describing those

members that are students or staffs. Suppose HasCourse is a role name, the concept description

Student u 9hasCourse.ComputerScience expresses those students who have some courses of

computer science. The concept description 8hasCourse.? u Staff describes those staffs who

have no course.
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An interpretation I ¼ ðDI
; �IÞ consists of a non-empty domain D

I
and a mapping �I which

maps every concept to a subset of D
I

and every role to a subset of D
I
� D

I
such that the fol-

lowing conditions are satisfied:

• >I ¼ DI ;

• ?I ¼ ;;

• ð:CÞI ¼ DI n CI ;

• ðC u DÞI ¼ CI \ DI ;

• ðC t DÞI ¼ CI [ DI ;

• ð9R:CÞI ¼ fx j 9y: ðx; yÞ 2 RI & y 2 CIg; and

• ð8R:CÞI ¼ fx j 8y: ðx; yÞ 2 RI ) y 2 CIg.

Here & means “and” and)means “imply”.

A general concept inclusion axiom (GCI) or a terminological axiom is an inclusion statement

of the form Cv D, where C and D are two (possibly complex) ALC concepts (concepts for

short). It is the statement about how concepts are related to each other. An interpretation I
satisfies a GCI Cv D if CI � DI , denoted by I ⊨ C v D. A finite set of GCIs is called a TBox.

We can also formulate statements about individuals. A concept (role) assertion has the form

C(a) (R(a, b)). An ABox consists of a finite set of concept assertions and role assertions. Con-

cept assertions, role assertions and GCIs are axioms. In an ABox, each axiom describes a spe-

cific fact of an application domain in terms of concepts and roles. To give a semantics to

ABoxes, we need to extend interpretations to individual names. For each individual name a, �I

maps it to an element aI 2 D
I
. An interpretation I satisfies C(a) if aI 2 CI , denoted by

I ⊨ CðaÞ. I satisfies R(a, b) if ðaI ; bIÞ 2 RI , denoted by I ⊨ Rða; bÞ. A knowledge base (KB)

K consists of a TBox and an ABox. An interpretation I is a model of a DL (TBox or ABox)

axiom if it satisfies this axiom, and it is a model of a KB K if it satisfies every axiom in K.

ModðKÞ denotes the collection of all models of K.

A concept D subsumes a concept C with respect to (w.r.t.) a TBox T if each model of T is a

model of axiom Cv D. Moreover, two concepts C, D are equivalent, denoted by C ≜D, if for

any interpretation I such that CI ¼ DI . Indeed, C ≜ D if and only if I ⊨ C v D and

I ⊨ D v C for any interpretation I . A KB K is consistent if there exists some model of K, i.e.,

ModðKÞ 6¼ ;; inconsistent otherwise.

Given a KB K and an axiom φ, we say K entails φ, denoted as K⊨ �, if every model of K is

a model of φ, i.e., ModðKÞ � ModðfφgÞ. Note that DL reasoning is realized via the entailment

relation ⊨. A concept C is satisfiable w.r.t. a TBox T if there exists a model I of T such that

CI 6¼ ;; and unsatisfiable otherwise.

Two basic reasoning problems, namely, instance checking (checking whether an individual

is an instance of a given concept) and subsumption checking (checking whether a concept sub-

sumes a given concept) can be reduced to the problem of consistency. That is,

Lemma 1 ([1]) Let K be a KB, C, D concepts and a an individual in ALC. Then

1. K⊨ CðaÞ if and only if K [ f:CðaÞg is inconsistent;

2. K⊨ C v D if and only if K [ fC u :DðiÞg is inconsistent where ι is a new individual not

occurring in K.
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In ALC, the problem of checking consistency of an ABox is PSPACE-Complete and the

problem of checking consistency of an ABox w.r.t. a general TBox is EXPTIME-Complete [1].

For some inference rules in propositional logic, their counterparts in DLs still hold as fol-

lows: let C, D, E be DL concepts and K;K1;K2;K be KBs,

• modus ponens (MP): {C(a), Cv D}⊨D(a);

• modus tollens (MT): {¬D(a), Cv D}⊨C(a);

• disjunctive syllogism (DS): {¬C(a), C t D(a)}⊨ D(a);

• resolution (R): {C t D(a), ¬C t E(a)}⊨ D t E(a);

• disjunction introduction (DI): {C(a)}⊨ C t D(a);

• implication (I): K⊨ C v D if and only if K⊨ :C t DðaÞ for any a;

• transitive inclusion (TI) if K⊨ C v D and K⊨ D v E then K⊨ C v E;

• excluded middle (EM): ; ⊨ C t ¬C(a);

• transitivity (T): if K1 ⊨ K2 and K2 ⊨ K3 then K1 ⊨ K3;

• monotonicity (M): if K1 ⊨ K2 then K3 ⊨ K2 where K1 � K3.

The property of DS is a special case of the resolution rule. The property of I can be used to

reduce the subsumption problem to the satisfaction problem.

We say an entailment relation ⊨x satisfies a property P above if it is true when ⊨ is replaced

by ⊨x. If the entailment of a logic satisfies the property of monotonicity, we say monotonic
logic; and otherwise non-monotonic logic. Clearly, all members of the DL family satisfy proper-

ties listed above and in particular, each DL is a monotonic logic.

Given an axiom φ, if for any interpretation I , I ⊨ φ then φ is a tautology; and if for any

interpretation I , I⊭φ, φ is a contradiction. For instance, the three axioms?v>,>(a), and A
t ¬A(a) are tautologies while the three axioms>v?,?(a), and A u ¬A(a) are contradic-

tions. Indeed, the property of EM captures a sort of tautologies among many others.

2.2 Paraconsistent logic

In the last of this section, we briefly recall paraconsistent logic and paraconsistent description

logic. More details can be found in [30].

In practical reasoning, it is common that there exists “too much” information (classically

inconsistent information) about some situation. However, the reasoning of classical logic

would be trivialized when inconsistent information exists due to a curious feature, known as

the principle of explosion or (ex falso quodlibet) can be expressed formally as: for any formula

φ, ψ, {φ, ¬φ}⊨ ψ.

This is the need to derive reasonable inferences without deriving the trivial inferences that

follow the ex falso quodlibet. In other words, we need a logic, called paraconsistent logic (or

inconsistency-tolerant logic) where the principle of explosion fails in its reasoning [41].

Description logic fails to be paraconsistent because an inconsistent KB K does not possess

any model, i.e., ModðKÞ ¼ ;. In this sense, we say that the entailment ⊨ satisfies the principle

of explosion. Thus, the entailment of a paraconsistent description logic does not satisfy the

principle of explosion, called a paraconsistent entailment.
Indeed, if some properties about inference are allowed together, the inference with incon-

sistent knowledge possibly becomes explosive.
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For instance, let ⊨p be an entailment. Assume that ⊨p satisfies DS, DI and transitivity.

Given an ABox A1 ¼ fAðaÞ;:AðaÞg, A1 is inconsistent. Because ⊨p satisfies DI, A1 ⊨p A t
BðaÞ for arbitrary B. Let A2 ¼ fAðaÞ;:AðaÞ; ðA t BÞðaÞg. We conclude that A1 ⊨pA2.

Because ⊨p satisfies DS, we conclude that A2 ⊨p BðaÞ. Then, {A(a), ¬A(a)}⊨p B(a) for any B
since ⊨p satisfies transitivity. In this sense, ⊨p loses a property so-called “relevance”, which

requires sharing of variables between premises and conclusion, in relevance logic [42].

A feasible method to make the principle of explosion invalid is weakening inference power

by prohibiting some inference rules in reasoning [3].

The following lemma presents a common feature of all paraconsistent description logics.

Lemma 2 A paraconsistent entailment does not satisfy DS, DI and transitivity.

3 Multi-valued description logic

To construct a paraconsistent non-monotonic ALC, we first revise paraconsistent ALC in this

section in two steps: (1) introducing a general framework, called multi-valued description

logic (MVDL); and (2) constructing two restricted versions, namely, four-valued DL [21, 43]

and paradoxical DL, in MVDL [39].

3.1 Syntax and semantics of MVDL

Syntactically, MVDL revises ALC in two ways:

• To block the conflict between positive and negative information, four-valued DL and para-

doxical DL do not treat the negation of a concept as its “opposite” concept, but allow them to

have a common individual. As shown in [19, 21, 28], to maintain the transformation from

entailment to inconsistency checking (cf. Proposition 4), a stronger negation should be

introduced, called complement of a concept C, denoted C. So MVDL contains � as an extra

concept constructor.

• As stated in [21], we allow for three kinds of concept inclusions, namely, material inclusion
(C 7! D), internal inclusion (C⊏D) and strong inclusion (C! D).

The semantics of MVDL is based on four-valued semantics, called base interpretations.
Definition 1 [21] A base interpretation I is a pair ðD

I
; �IÞ where the domain D

I
is a set of

individuals, and the assignment function �I assigns each individual to an element of D
I
, assigns

each concept name A to hpþðAIÞ; p� ðAIÞi where pþðAIÞ; p� ðAIÞ � D
I
, each role name R to

hpþðRIÞ; p� ðRIÞi where pþðRIÞ; p� ðRIÞ � D
I
� D

I
and satisfies the followings:

?I ¼ h;
I
;D

I
i;

>I ¼ hD
I
; ;

I
i;

ð:CÞI ¼ hp� ðCIÞ; pþðCIÞi;

ðCÞI ¼ hD
I
n pþðCIÞ;D

I
n p� ðCIÞi;

ðC u DÞI ¼ hpþðCIÞ \ pþðDIÞ; p� ðCIÞ [ p� ðDIÞi;

ðC t DÞI ¼ hpþðCIÞ [ pþðDIÞ; p� ðCIÞ \ p� ðDIÞi;

ð9R:CÞI ¼ hfx j 9y: ðx; yÞ 2 S ^ y 2 Pg; fx j 8y: ðx; yÞ 2 S) y 2 Ngi;

ð8R:CÞI ¼ hfx j 8y: ðx; yÞ 2 S) y 2 Pg; fx j 9y: ðx; yÞ 2 S ^ y 2 NÞgi:

Minimally inconsistent reasoning in Semantic Web

PLOS ONE | https://doi.org/10.1371/journal.pone.0181056 July 27, 2017 6 / 35

https://doi.org/10.1371/journal.pone.0181056


where CI ¼ hpþðCIÞ; p� ðCIÞi, DI ¼ hpþðDIÞ; p� ðDIÞi, and RI ¼ hpþðRIÞ, p� ðRIÞi.

Remark 1

1. Two arguments of a base interpretation of a concept/role are not necessarily disjoint with

respect to the domain.

2. In MVDL ALC, the second argument of every interpretation of a role is not necessary.

However, we still reserve it here in order that the semantics of MVDL can directly extend

more expressive DLs such as OWL 2 where the negation of a role ¬R is also considered as a

role [44], which takes the same treatment as in four-valued DLs [43] or quasi-classical DLs

[30].

3. The first argument of a base interpretation of a concept is a set of elements known to be in

the extension of concept and the second argument is a set of elements known to be in the

extension of the negation of the concept. In this sense, an element is unknown to be in the

extension of a concept (i.e., no information is given), which is different from that an ele-

ment is known to be in the extension of the negation of a concept in an open world.

For instance, let I be a base interpretation with domain {tweety, ursidae}, and assigning Fly
a pair hftweetyIg; fursidae

I
gi. Then I tells us that it is known that tweety can fly and ursidae

can not fly.

Two extended concepts C, D are multi-valued equivalent, denote by C ≜m D, if for each

base interpretation I , we have CI ¼ DI , that is, pþðCIÞ ¼ pþðDIÞ and p� ðCIÞ ¼ p� ðDIÞ.

Then, the negation ¬ and the complement � satisfy following properties.

Proposition 1 [43] Let C, D be concepts and R a role in MVDL.

1. :C ≜m :C;

2. :ð:CÞ ≜m C and C ≜m C;

3. :ðC u DÞ ≜m :C t :D and C u D ≜m C t D;

4. :ðC t DÞ ≜m :C u :D and C t D ≜m C u �D;

5. :9R:C ≜m 8R: :C and 9R:C≜m 8R:C;

6. :8R:C ≜m 9R: :C and 8R:C≜m 9R:C.

Note that (C t ¬C) > and (C u ¬C) ? for any C. For instance, let Δ = {a, b, . . .,}

and I a base interpretation on Δ such that CI ¼ hfaIg; faIgi. Thus ðC t :CÞI ¼ hfaIg;

faIgi while>I ¼ hD
I
; ;i. Moreover, ðC u :CÞI ¼ hfaIg; faIgi while?I ¼ h;;D

I
i. Then

(C t ¬C) > and (C u ¬C) ?.

Definition 2 [21] Let C, D be two extended concepts, R a role, and I a base interpretation.

The multi-valued satisfaction between a base interpretation I and an extended axiom φ,

denoted by I ⊨m φ, is defined as follows:

1. I ⊨m CðaÞ, if aI 2 pþðCI Þ;

2. I ⊨m Rða; bÞ, if ðaI ; bI Þ 2 pþðRI Þ;

3. I ⊨m C 7! D, if DI n p� ðCI Þ � pþðDI Þ;

4. I ⊨m C ⊏ D, if pþðCI Þ � pþðDI Þ;
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5. I ⊨m C ! D, if pþðCI Þ � pþðDI Þ and p� ðDI Þ � p� ðCI Þ.

In Definition 2, the multi-valued satisfaction of C(a) (or R(a, b)) means that a (or (a, b)) is

known not in C (or R); the satisfaction of C 7! D means that each instance known not in ¬C
must be in D; the satisfaction of C⊏D means that each instance known to be in C must be in

D; and the satisfaction of C! D means that each instance known to be in C (resp. ¬D) must

be in D (resp. ¬C).

By Definition 2, it follows that the multi-valued satisfaction of C! D can be represented by

the multi-valued satisfaction of C⊏D and ¬D⊏ ¬C. It is easy to observe that for any two con-

cepts C, D for any base interpretation I , we have I ⊨m C ! D if and only if I ⊨m C ⊏ D and

I ⊨m :D ⊏ :C.

Let K be an extended KB and I a base interpretation. I is a multi-valued model of K if

I ⊨m φ for any φ 2 K. Let ModmðKÞ denote the collection of all multi-valued models of K. K
is multi-valued consistent if ModmðKÞ 6¼ ;; and multi-valued inconsistent otherwise. The multi-
valued entailment ⊨m is defined as: K1 ⊨m K2 if ModmðK1Þ � ModmðK2Þ.

In MVDL, a classical inconsistent KB has some multi-valued models since the negation ¬ is

weaker under the multi-valued semantics. For instance, let A0 ¼ fAðaÞ;:AðaÞg be an ABox.

Assume that Δ = {a, . . .} and I is a base interpretation on Δ such that AI ¼ hfaIg; faIgi. Thus

I ⊨m AðaÞ and I ⊨m :AðaÞ. However, not all extended KBs have some multi-valued model.

For example, when A ¼ fAðaÞ;AðaÞg, there exists no multi-valued model of A since

pþðAIÞ \ pþðAIÞ ¼ ; for any base interpretation I .

Example 1 Let’s consider the KB Ka in Section 1 by selecting the internal inclusion.

Ka ¼ ðT a;AaÞ where the TBox T a ¼ fFly ⊏ HasWing; 9Eat:Fish ⊏ Piscivoreg and the

ABox Aa ¼ f:AbnBird t :FlyðtweetyÞ, Eat(ursidae, salmon), Fish(salmon), ¬Piscivore(ursi-
dae)} and Δ = {tweety, ursidae, a1, a2, a3}.

1. Let I1 be a base interpretation where AbnBirdI1 ¼ hftweetyI ; aI1

1 , aI1

2 g, fa
I1

3 gi,

FlyI1 ¼ hftweetyI1 , aI1

3 g; ftweetyI1 ; aI1

1 gi, HasWingI1 ¼ hftweetyI1 , aI1

3 g, fa
I1

1 ; a
I1

2 gi,

FishI1 ¼ hsalmonI1 ; ;i, EatI1 ¼ hðursidaeI1 ; salmonI1Þ; ;i, and

PiscivoreI1 ¼ hfursidaeI1g; fursidaeI1gi.

2. Let I2 be a base interpretation where AbnBirdI2 ¼ hfaI2

1 ; a
I2

2 g; ftweetyI1 ; aI2

3 gi,

FlyI2 ¼ hftweetyI1 ; aI2

3 g; fa
I1

1 ; a
I2

2 gi, HasWingI2 ¼ HasWingI1 , FishI2 ¼ FishI1 ,

EatI2 ¼ EatI1 , and PiscivoreI2 ¼ PiscivoreI1 .

Thus I 1 and I 2 are multi-valued models of Ka. Clearly, multi-valued models can certainly

tolerate classical inconsistency. For instance, in the multi-valued model I 1, tweety is inter-

preted to be in both Fly and ¬Fly. Intuitively, under the multi-valued semantics of I 1, it is

acceptable no matter that tweety can fly or not.

The nonexistence of multi-valued models leads to the principle of explosion because all

conclusions are satisfied by the empty model set. For instance, {?(a)} ⊨ φ for any axiom φ. A

form of KBs called satisfiable form is introduced by [21] by substituting> with NA t ¬NA
and? with NA u ¬NA where NA is a new concept name. Let SFðKÞ denote the satisfiable

form of it.

By applying that transformation, we also conclude:

Proposition 2 [43] For any classical KB K, ModmðSFðKÞÞ 6¼ ;.
Due to Proposition 2, we consider all classical KBs (including classically inconsistent KBs)

are in satisfiable form in this paper.

Minimally inconsistent reasoning in Semantic Web

PLOS ONE | https://doi.org/10.1371/journal.pone.0181056 July 27, 2017 8 / 35

https://doi.org/10.1371/journal.pone.0181056


Therefore, we obtain that the multi-valued entailment on KBs in satisfiable form is

paraconsistent.

Proposition 3 For any classical KB K, there exists some axiom φ such that SFðKÞ⊭m φ.

Lemma 1 for DLs can be extended in MVDL.

Proposition 4 [43] Let K be an extended KB and C, D two extended concepts. The follow-

ings hold.

1. K⊨m CðaÞ if and only if K [ fCðaÞg is multi-valued inconsistent;

2. K⊨m C 7! D if and only if K [ fð:C u DÞðtÞg is multi-valued inconsistent;

3. K⊨m C ⊏ D if and only if K [ fðC u DÞðtÞg is multi-valued inconsistent;

4. K⊨m C ! D if and only if both K [ fðC u DÞðtÞg and K [ fð:D u :CÞðtÞg are multi-

valued inconsistent.

By Proposition 4, the multi-valued entailment problem can be reduced to the multi-valued

consistency problem of KBs.

The following result states that MVDL inherits monotonicity of DL.

Proposition 5 MVDL is monotonic.

Different from material inclusion, the multi-valued entailment for both internal inclusion

and strong inclusion hold the property of transitive inclusion.

Proposition 6 Let T be an extended TBox and C, D, E three extended concepts.

1. If T ⊨m C ⊏ D and T ⊨m D ⊏ E then T ⊨m C ⊏ E;

2. If T ⊨m C ! D and T ⊨m D! E then T ⊨m C ! E.

3.2 Constructing four-valued DL and paradoxical DL in MVDL

We show that both four-valued DL [21] and paradoxical DL can be constructed in MVDL.

Constructing four-valued DL in MVDL. By the syntax and semantics of MVDL, it is not

hard to show that MVDL extends four-valued DL in the following way:

1. The syntax of MVDL extends four-valued DL by introducing the complement of a concept

C. That is, the language of four-valued DL is a sublanguage of MVDL.

2. With the restriction of MVDL semantics to four-valued DL constructors, four-valued inter-

pretations are identical to MVDL base interpretations. Thus, the entailment problems in

four-valued DL can be characterized by their corresponding problems in MVDL.

Proposition 7 Let K be a KB, φ an axiom, and, ⊨4 the four-valued entailment as defined in

[21].

K⊨4 φ if and only if K⊨m φ:
Note that, by Proposition 4, the four-valued entailment problems in four-valued DL can be

reduced to the multi-valued consistency problem in MVDL, with the appearance of comple-

ment constructor.

Constructing paradoxical DL in MVDL. The syntax of paradoxical DL [39] is the same

as that of four-valued DL. And a paradoxical interpretation I p for paradoxical DL is a

restricted four-valued interpretation in the following way:

1. for any concept C, pþðCI Þ [ p� ðCI Þ ¼ DI ;

2. for any role R, pþðRI Þ [ p� ðRI Þ ¼ DI � DI .
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The paradoxical satisfaction and the paradoxical entailment ⊨LP are analogously defined in

paradoxical DL by using paradoxical interpretations.

To construct paradoxical DL in MVDL, we introduce the notion of complete base interpre-
tation. A base interpretation I is complete if I satisfies two above-mentioned conditions. Intui-

tively, two arguments of complete base interpretations are not necessarily disjoint but the

union of two arguments fills the whole domain.

Different from general base interpretations, complete base interpretations can represent

tautologies.

Proposition 8 Let C be a concept and I be a base interpretation. If I is complete then

pþðC t :CÞI ¼ pþð>IÞ: ð1Þ

Let K be an extended KB and I a base interpretation, I is a complete multi-valued model of

K if I is complete and I is a multi-valued model of K, written I ⊨mc
K. And let Modmc

ðKÞ
denote the collection of all complete multi-valued models of K. We say that K is complete
multi-valued consistent if Modmc

ðKÞ 6¼ ;; and complete multi-valued inconsistent otherwise.

Consider an extended ABox A ¼ fAðaÞ;:AðaÞg. If I 2 Modmc
ðKÞ, it holds that

aI 2 D
I
n pþðAIÞ and aI 2 D

I
n p� ðAIÞ. Thus aI 2 D

I
n ðpþðAIÞ [ p� ðAIÞ. Then

ðpþðAIÞ [ p� ðAIÞ 6¼ D
I
, contradicting with the fact that I is complete. Therefore, A is com-

plete multi-valued inconsistent. However, all classical ALC KBs in satisfiable form are com-

plete multi-valued consistent.

Proposition 9 For any KB K, Modmc
ðSFðKÞÞ 6¼ ;.

For instance, ABox A0 ¼ fAðaÞ;:AðaÞg has a complete multi-valued model I with

Δ = {a, . . .} and AI ¼ hfaIg;D
I
i.

The complete multi-valued entailment, denoted by ⊨mc
, is defined as follows: let K1;K2 be

two extended KBs, K1 ⊨mc
K2 if Modmc

ðK1Þ � Modmc
ðK2Þ. Analogously, we can show that the

complete multi-valued entailment ⊨mc
is paraconsistent in KBs by Proposition 9.

Based on the discussion above, we directly conclude the following proposition:

Proposition 10 Let K be a KB and φ an axiom. K⊨LP φ if and only if K⊨mc
φ.

Analogously, the complete multi-valued entailment can be reduced to the complete multi-

valued consistency problem in KBs.

Proposition 11 Let K be a KB and C, D two concepts. The followings hold.

1. K⊨mcCðaÞ if and only if K [ fCðaÞg is multi-valued inconsistent;

2. K⊨mcC 7! D if and only if K [ fð:C u DÞðtÞg is complete multi-valued inconsistent;

3. K⊨mcC ⊏ D if and only if K [ fðC u DÞðtÞg is complete multi-valued inconsistent;

4. K⊨mcC ! D if and only if both K [ fðC u DÞðtÞg and K [ fð:D u :CÞðtÞg are com-

plete multi-valued inconsistent.

In general, the material inclusion does not always satisfy the property of transitive inclusion

under ⊨mc
as under ⊨m. However, it holds the transitive inclusion property when restricted to

conflict-free concepts. An extended concept is C is called conflict-free with respect to an

extended KB K if pþðCIÞ ¼ D
I
n p� ðCIÞ for any complete multi-valued model I of K.

Proposition 12 Let T be an extended TBox and C, D, E three extended concepts. If D is

conflict-free with respect to T , then T ⊨mc
C 7! D and T ⊨mc

D 7! E imply T ⊨mc
C 7! E.

Proposition 12 shows that information can be properly propagated even if there are con-

flicts. A further advantage of the complete multi-valued entailment is that it holds the principle

of excluded middle.
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Proposition 13 For any concept C and any individual a, ; ⊨mc
C t ¬C(a).

However, Proposition 13 does not hold in extended concepts. For instance, let Δ be a

domain and I a base interpretation such that AI ¼ hfag;DI
i. We can conclude that I

is a complete multi-valued model of ; while I is not a complete multi-valued model of

ðA t AÞðaÞ since pþðAIÞ [ p� ðAIÞ ¼ D
I
n faIg (6¼ D

I
).

As a result, we have the following corollary.

Corollary 1 For any conflict-free extended concept C and any individual a,

;⊨mc
C t :CðaÞ: ð2Þ

The corollary directly follows Proposition 13 and the definition of conflict-free concept.

4 Minimally inconsistent description logic (MIDL)

The basic idea of minimally inconsistent reasoning is, by employing a preference relation on

models, to select only those preferred models, which contains less inconsistent information, so

that the resulting reasoning is more reasonable [38]. We first present a formulation of mini-

mally inconsistent reasoning in MVDL and then investigate its properties and relations.

4.1 Minimally inconsistent semantics

Because the constructor of the negation of a role ¬R is absent in ALC (see [21]), the inconsis-

tency of KBs is mainly caused by concepts. To convey our core idea, we will define a preference

relation according to concepts. For expressive DLs with ¬R, we can feasibly extend the prefer-

ence relation on roles.

Firstly, let S be a set of concept names and role names. We introduce a preference relation

≼ between two base interpretations w.r.t. S.

Definition 3 Let I 1 and I 2 be two base interpretations. We say I 1 is more consistent than

I 2 w.r.t. S, denoted I 1≼S I 2, if the followings hold:

1. DI1 ¼ DI2 , i.e., I1 and I2 have the same domain Δ;

2. pþðAI1Þ \ p� ðAI1Þ � pþðAI2Þ \ p� ðAI2Þ for any concept name A 2 S.

We denote I 1�S I 2 if I 1≼S I 2 but I 2: ⋠S I 1.

Intuitively, the first condition states that if I 1 and I 2 do not share a common domain, then

they are incomparable; the second condition ensures that if I 1�S I 2 then I 1 contains less

inconsistencies than I 2.

For instance, let Δ = {a, b} be a domain and S = {A}. Assume that I 1 and I 2 are two base

interpretations such that D ¼ D
I1 ¼ D

I2 , AI1 ¼ hfaI1g; fbI1gi and AI2 ¼ hfaI2 ; bI2g; fbI2gi.

Then we can easily see I 1�S I 2. Let I 3 be a base interpretation such that AI3 ¼ hfbIg; faIgi.

Then I 1⊀S I 3 and I 3⊀S I 1.

Moreover,� is anti-reflexive, anti-symmetric and transitive. Formally, for any base interpre-

tations I i (i = 1, 2, 3), (1) I 1⊀S I 2; (2) if I 1�S I 2 then I 2⊀S I 1; and (3) if I 1�S I 2 and

I 2�S I 3 then I 1�S I 3.

Definition 4 Let S be a set of concept names and role names and S a set of base interpreta-

tions. A base interpretation I in S is minimal if there exists no interpretation I 0 in S such that

I 0�S I . Let min�S
ðSÞ denote the set of all minimal interpretations in S w.r.t.�S.

Now, we are ready to define a notion of minimally multi-valued model.
Definition 5 Let K be an extended KB. Let S be a set of all concept names and role names

occurring in K. We define minimally multi-valued models as follows: Modmin
m ðKÞ ¼ min�S

ðModmðKÞÞ.
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Intuitively, minimally multi-valued models are those multi-valued models which contain

minimal numbers of inconsistencies.

For instance, in Example 1, assume that S = {Fly, HasWing, Fish, Piscivore, AbnBird, Eat}.
We have I 2�S I 1 since ; ¼ pþðFly

I2Þ \ p� ðFly
I2Þ�S pþðFly

I1Þ \ p� ðFly
I1Þ ¼ ftweetyI1g.

It can be also verified that I 2 is a minimally multi-valued model of Ka with respect to Δ.

Those multi-valued models with minimal inconsistencies can characterize their semantics

in a rational way. For instance, in the KB Aa presented in the Introduction, I 2, stating tweety
is not an abnormal bird, is a minimal multi-valued model of Aa while I 1, stating tweety is an

abnormal bird, is not a minimal multi-valued model of Aa. Because we know that tweety can

fly and tweety is abnormal or can fly, it is widely accepted that tweety is not an abnormal bird.

In this sense, the minimal model represents more reasonable knowledge.

By Definition 4 and Definition 5, we conclude that Modmin
m ðKÞ � ModmðKÞ for all KB K.

Based on minimally multi-valued models, we can define the corresponding entailment relation

between two extended KBs.

Definition 6 Let K1;K2 be two extended KBs. We define minimally multi-valued entailment
as follows: K1 ⊨min

m K2 if Modmin
m ðK1Þ � ModmðK2Þ.

In general, the minimally multi-valued entailment is a super set of the multi-valued entail-

ment between two extended KBs since each minimally multi-valued model of a KB is a multi-

valued model of the KB.

Analogously, we also define minimally complete multi-valued models as those models

among all complete multi-valued models with the minimum under�S. The minimally com-
plete multi-valued entailment, denoted by ⊨min

mc
, formally, K⊨min

mc
K0 if Modmin

mc
ðKÞ � Modmc

ðK0Þ
where Modmin

mc
ðKÞ denotes the set of all minimally complete multi-valued models of K.

The minimally multi-valued entailment ⊨min
m and the minimally complete multi-valued

entailment ⊨min
mc

are called minimally inconsistent entailment, denoted by ⊨min.

Because the minimally inconsistent entailments focus on those multi-valued models in

which inconsistency is minimized, they are between the classical entailment ⊨ and the multi-

valued entailments (⊨m, ⊨mc
).

4.2 Properties of MIDL

In this subsection, we enumerate several useful properties of MIDL and several interesting

relations with MVDL.

Firstly, we discuss the paraconsistency of MIDL.

Lemma 3 Let K be a KB. Modmin
m ðKÞ 6¼ ;.

By Lemma 3, minimally inconsistent entailments preserve the paraconsistency of multi-

valued entailments.

Proposition 14 For any KB K, there exists some axiom φ such that K ⊭min φ.

Proposition 14 directly follows Lemma 3 if let φ =?(a).

Moreover, the minimally inconsistent DL do not satisfy the monotonic feature.

Proposition 15 Minimally inconsistent DL is non-monotonic.

For instance, {¬A(a), A t B(a)} ⊨min B(a) while {A(a), ¬A(a), A t B(a)} ¬⊨min B(a), ⊨min is

non-monotonic. So the non-monotonic feature of the minimally inconsistent DL makes their

inference more reasonable for real world applications.

Our new semantics satisfies another important property, called consistency-protected, for

paraconsistent reasoning. It ensures that the new entailment is identical to the classical one.

Formally, a (paraconsistent) entailment relation ⊨p is consistency-protected if, for any two

KBs K1 and K2 with K1 being consistent, then K1 ⊨p K2 if and only if K1 ⊨ K2.

Proposition 16 ⊨min
mc

is consistency-protected.
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This proposition easily follows from the fact that every minimally complete multi-valued

model of a classical consistent KB can be one-by-one mapped to classical model of KB:

Proposition 17 Let K be a KB and I a minimally complete multi-valued model of K. If K is

consistent then for any concept C,

pþðCIÞ \ p� ðCIÞ ¼ ; and pþðCIÞ [ p� ðCIÞ ¼ D
I
:

However, ⊨m, ⊨min
m , and ⊨mc

are not consistency-protected. For instance, ; ⊭m A t ¬A(a),

; ⊭min
m
A t :AðaÞ, and {A(a), ¬A t B(a)} ⊭mc

B(a).

By Proposition 17, the property of resolution is valid in minimally inconsistent DL for the

case of consistent KBs, while it fails in the general case (possibly inconsistent KBs).

For instance, {A(a), ¬A(a), A t B(a)} ⊭min B(a) because there is a conflict between A(a)

and ¬A(a), so the resolution between ¬A(a) and A t B(a) is blocked.

In fact, the entailment is a relation between sets of KBs. In this sense, given two entailments

⊨x and ⊨y, we denote ⊨x� ⊨y if for any K;K0, K⊨xK
0
implies K⊨yK

0
and there exists some

K@
and K‴

such that K@ ⊨yK
‴

but K@⊭xK
‴
.

Proposition 18 The three followings hold.

1. ⊨m � ⊨mc
;

2. ⊨m � ⊨minm ; and

3. ⊨mc � ⊨minmc .

However, ⊨min
m and ⊨mc

are incomparable.

For instance, let A ¼ {¬A(a), A(a), A t B(a)}. We have A⊨min
m BðaÞ while

A ⊭mc
A0 t :A0ðaÞ. However, A⊨mc

A0 t :A0ðaÞ while A ⊭min
m

BðaÞ.
Based on the discussion above, their relations among four entailments (⊨m, ⊨mc

, ⊨min
m

and ⊨min
mc

) and classical entailment ⊨ can be shown in Fig 1 where! denotes�.

A more detailed comparison between multi-valued entailment and minimally inconsistent

entailment for three inclusions can be shown in Table 2.

4.3 Usage of MIDL

In Section 3 and Section 4, we introduce four semantics and investigate some properties under

three kinds of inclusions. Since our proposal consists of 12 cases which are slightly different

shown in Table 2, we are interesting to discuss the relations among them so that we could

choose a suitable sematics.

Next, we will classify those relations in three classes.

1. ⊨m vs. ⊨mc
and ⊨minm vs. ⊨minmc The difference between ⊨m and ⊨mc

is the law of excluded

middle (EM) under three kinds of inclusions as well as the difference between ⊨minm and

⊨minmc . The law of excluded middle can represent tautologies well, such as>v?,?(a), and

A u ¬A(a). Both ⊨mc
and ⊨minmc can satisfy the law of excluded middle while neither ⊨m nor

⊨minm does so. In this sense, we recommend ⊨mc
or ⊨minmc if a tautology should be inferred in

a scenario. Otherwise, ⊨m and ⊨minm look simple in usage for those users who assume that

tautologies do not bring much valuable information.

2. ⊨m vs. ⊨minm and ⊨mc
vs. ⊨minmc The differences between ⊨m vs. ⊨minm are mainly the four

principles, namely, disjunctive syllogism (DS), resolution (R), transitivity (T), and monoto-

nicity (M) under three kinds of inclusions as well as the differences between ⊨mc
and ⊨minmc .

The first two principles (DS and R) can enhance the inference power by inferring a new

conclusion implied by two assertions containing complementary knowledge and the last
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Fig 1. Relations among five entailments: ⊨, ⊨m ; ⊨mc
; ⊨min

m ; ⊨min
mc

.

https://doi.org/10.1371/journal.pone.0181056.g001
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two principles (T and M) can characterize the transitivity of inference via subsumption of

knowledge bases. Both ⊨minm and ⊨minmc can satisfy the four principles while neither ⊨m nor

⊨mc
does so. In other words, both ⊨minm and ⊨minmc are non-monotone while ⊨m nor ⊨mc

are

monotone. In this sense, we recommend ⊨minm or ⊨minmc if the strong inference power is

required in a scenario. Otherwise, ⊨m and ⊨mc
are good choices if the monotonicity of

inference is guaranteed in some scenario.

3. 7! vs. ⊏ vs.! The differences among 7!, ⊏, and! are mainly the three principles related

to inclusion, namely, modus ponens (MP), modus tollens (MT), and transitive inclusion

(DI) (except ⊨minmc under!). MP characterizes forward reasoning while MT captures back-
ward reasoning [1, 45]. All ⊨m, ⊨mc

, ⊨minm , and ⊨minmc under! can satisfy both MP and MT.

All ⊨m, ⊨mc
, ⊨minm , and ⊨minmc under ⊏ can satisfy MP. Moreover, both ⊨minm and ⊨minmc under

⊏ can still satisfy MT. Both ⊨minm and ⊨minmc can satisfy MP while neither ⊨m nor ⊨mc
does

so. In a short, 7! has a stronger inference power than ⊏ and ⊏ has a stronger inference

power than!. Of course,! has more cost of reasoning than ⊏ and⊏ has more cost of rea-

soning than 7!. The choice of three kinds of inclusion deponds on the requirement of a

practical application.

4.4 A practical example

Consider a simplified buggy Policy KB [27] Kp ¼ ðT p;ApÞ with T p ¼ fφ1
; . . . ;φ

5
g and

Ap ¼ fφ6
g as follows:

φ
1

: GeneralReliabilityUserPolicy v Reliable;

φ
2

: GeneralReliabilityUserPolicy v Policy;

φ
3

: GeneralReliabilityUserPolicy v :Messaging;

φ
4

: Kerberos v :Messaging;

φ
5

: Reliable v Messaging;

φ
6

: GeneralReliabilityUserPolicyðidÞ:

Table 2. Comparisons for three inclusions under ⊨m ; ⊨mc ; ⊨
min
m ; ⊨minmc .

Property 7! ⊏ !

⊨m ⊨mc
⊨minm ⊨minmc ⊨m ⊨mc

⊨minm ⊨minmc ⊨m ⊨mc
⊨minm ⊨minmc

modus ponens (MP) no no yes yes yes yes yes yes yes yes yes yes

modus tollens (MT) no no yes yes no no yes yes yes yes yes yes

disjunctive syllogism (DS) no no yes yes no no yes yes no no yes yes

resolution (R) no no yes yes no no yes yes no no yes yes

disjunctive introduction (DI) yes yes yes yes yes yes yes yes yes yes yes yes

implication (I) no no no no no no no no no no no no

transitive inclusion (TI) no no no yes no no no yes no no no yes

transitivity (T) yes yes no no yes yes no no yes yes no no

excluded Middle (EM) no yes no yes no yes no yes no yes no yes

monotonicity (M) yes yes no no yes yes no no yes yes no no

https://doi.org/10.1371/journal.pone.0181056.t002
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In Kp, from GeneralReliabilityUserPolicyvMessaging which can be inferred from φ3 and

φ10 (i.e., GeneralReliabilityUserPolicy is of Messaging), together with φ5 (i.e., GeneralReliabili-
tyUserPolicy is not of Messaging), GeneralReliabilityUserPolicy is an unsatisfiable concept.

However, φ19 states that id is an instance of the concept GeneralReliabilityUserPolicy. As a

result, Kp is inconsistent.

Next, we compare the four semantics defined above with the following queries αi:

a1 ¼ ReliableðidÞ; a2 ¼ MessageðidÞ;

a3 ¼ Kerberos t :KerberosðidÞ; a4 ¼ :KerberosðidÞ:

Intuitively, α1, α2, α3, and α4 say that id is reliable; id is a message; id either belongs to Ker-
beros or does not; and α; and id does not belong to Kerberos, respectively.

The answer to αi (i = 1, 2, 3, 4) over Kp is shown in Table 3.

Based on Table 3, the answers to αi (i = 1, 2, 4) with three kinds of inclusions are identical

under different semantics. However, the answer to α3 cannot be inferred in ⊨m or ⊨min
m , that is

to say, we cannot conclude that id either belongs to Kerberos or does not under both multi-val-

ued semantics and minimally multi-valued semantics, but positive under ⊨mc
and ⊨min

mc
, that is

to say, we can conclude that id either belongs to Kerberos or does not under both complete

multi-valued semantics and minimally complete multi-valued semantics. In other words, ⊨mc

and ⊨min
mc

look more reasonable in handling the query α3 since α3 is a tautology. Besides, the

answer to α4 is negative under all semantics, that is to say, we can always conclude that id does

not belong to Kerberos under all four semantics. Indeed, there is no knowledge about id being

in Kerberos or not. In this sense, all semantics are reasonable in handling α4.

Now, we add a new assertion φ20 = ¬(Reliable u Kerberos)(id) (i.e., id is neither reliable nor

in Kerberos) in Ap and denote the new KB as K0p.

The answers to four queries over K0p are shown in Table 4.

Table 3. Querying over Kp under ⊨m ; ⊨minm ; ⊨mc ; ⊨
min
mc

.

α1 ⊨m ⊨minm ⊨mc
⊨minmc α2 ⊨m ⊨minm ⊨mc

⊨minmc
7! no no no no 7! no no no no

⊏ yes yes yes yes ⊏ yes yes yes yes

! yes yes yes yes ! yes yes yes yes

α3 ⊨m ⊨minm ⊨mc
⊨minmc α4 ⊨m ⊨minm ⊨mc

⊨minmc
7! no no yes yes 7! no no no no

⊏ no no yes yes ⊏ no no no no

! no no yes yes ! no no no no

https://doi.org/10.1371/journal.pone.0181056.t003

Table 4. Querying over K0p under ⊨m ; ⊨minm ; ⊨mc ; ⊨
min
mc

.

α1 ⊨m ⊨minm ⊨mc
⊨minmc α2 ⊨m ⊨minm ⊨mc

⊨minmc
7! no yes no yes 7! no no no no

⊏ yes yes yes yes ⊏ yes yes yes yes

! yes yes yes yes ! yes yes yes yes

α3 ⊨m ⊨minm ⊨mc
⊨minmc α4 ⊨m ⊨minm ⊨mc

⊨minmc
7! no no yes yes 7! no no no no

⊏ no no yes yes ⊏ no yes no yes

! no no yes yes ! no no no no

https://doi.org/10.1371/journal.pone.0181056.t004
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Based on Tables 3 and 4, the answer to αi (i = 1, 2, 3, 4) with three kinds of inclusions is

identical under ⊨m and ⊨mc
respectively. However, both the answer to α1 under the material

inclusion and the answer to α4 under the internal inclusion change under ⊨min
m and ⊨min

mc
,

where the answers to both α1 and α4 become positive under the material inclusion and the

internal inclusion of minimally inconsistenct semantics respectively. That is to say, we can

conclude that id is reliable and id does not belong to Kerberos under those scenarios. Besides,

the answer of α4 over K0p is different from the answer of α4 over Kp, where, as discussed above,

the answer to α4 is positive under the internal inclusion of minimally inconsistent semantics.

It shows that ⊨min
m and ⊨min

mc
are more reasonable since there is more knowledge about id

related to Kerberos in K0p.

5 Tableaux for MVDL and MIDL

Tableau-based algorithms (simply, tableaux) are popular algorithms for reasoning in DLs and

have been implemented in many popular DL reasoners. For instance, FaCT++ (http://owl.

man.ac.uk/factplusplus/), Pellet (http://clarkparsia.com/pellet/). In this section, we first

develop a framework of tableau-based algorithms for MVDL and complete MVDL, and then

expand it into dealing with the minimally inconsistent DL. Tableau-based algorithms take

advantage of the finite model property of DL [1] where the consistency of a KB is captured in

some finite forest-based data structures.

5.1 Tableaux for MVDL

Analogous to tableaux [1], we describe a kind of tableaux for our new DLs, called multi-valued
tableaux, in the following three steps:

1. Introducing a new negation normal form, called extended negation normal form, ENNF, to

handle the complement of concepts.

2. Specifying expansion rules since new expansion rules are needed to capture three inclusions

(namely, material inclusion, internal inclusion and strong inclusion);

3. Presenting new closeness condition to characterize our tableaux.

We first define the ENNF of MVDL concepts. A concept C is in ENNF, if the complement

only occurs over a concept name, and the negation only occurs in front of concept names or

its complement. For instance, A, ¬A, A, :A, 8R::A, and 9R:ð:A u BÞ are all in ENNF. How-

ever, neither :Anor 9R::Ais in ENNF.

Proposition 1 ensures that each concept can be transformed into an equivalent ENNF con-

cept by pushing complement and negation inwards.

For a concept C we denote the ENNF of ¬C by _C and the ENNF of C by *C. Let clos(C)

denote the smallest set that contains C and is closed under sub-concepts, _and *. Let K be an

extended KB. We use closðKÞ to denote the union of the closure of each concept C occurring

in K. It is not hard to show that the size of closðKÞ is polynomial in the size of K.

Secondly, our multi-valued tableaux work on forest data structure where each node x is

with labeled as LðxÞ, a subset of closðKÞ that contains concepts satisfying individual x, and

each edge is labelled with Lðx; yÞ, a subset of NR that contains role names satisfying two indi-

viduals x, y.

A node y is called an R-successor of x (or x an R-predecessor of y) if for some R0 with R0 R
(where is the transitive closure ofv over roles [1]), y is a successor of x and R0 2 Lðhx; yiÞ.
Similarly, R-neighbors and R-ancestors are defined in the standard way.
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When the TBox is empty, the multi-valued tableaux would always terminate. However, the

multi-valued tableaux for a KB (eg. a KB consisting of a cyclic TBox [1]) would not always ter-

minate similar to the standard tableaux. Our proposed tableaux also employ a so-called block-

ing technique [1] to ensure termination and correctness.

Next, we briefly recall the blocking technique.

A node y is an ancestor of a node x if they both belong to a same completion tree and either

y is a predecessor of x, or there exists a predecessor z of x such that y is an ancestor of z. A

node x is blocked if there is an ancestor y of x such that LðxÞ � LðyÞ (in this case we say that y
blocks x), or if there is an ancestor z of x such that z is blocked.

Thirdly, our expansion rules (shown in Table 5) enrich the standard rules [1] by adding

three rules (7!-rule, ⊏-rule and!-rule) for three inclusions (C 7! D, C⊏D, and C! D) in

MVDL respectively.

Finally, we consider which clashes over concept names can characterize our close condi-

tions of a complete forest.

The clash {A, ¬A} of the standard tableau can be classified as three kinds of clashes over

concept names as follows:

C1 : fA; :Ag; C2 : fA; Ag or f:A; :Ag; C3 : fA; :Ag:

Intuitively speaking,

1. the C1 clash is used to capture classical inconsistency;

2. the C2 clash is used to capture multi-valued inconsistency;

3. the C3 clash is used to capture complete multi-valued inconsistency.

Table 5. Multi-valued expansion rules.

u -rule If: 1. C1 u C2 2 LðxÞ, x is not blocked, and

2. fC1;C2g⊈LðxÞ.

Then: set LðxÞ :¼ LðxÞ [ fC1;C2g.

t -rule If: 1. C1 t C2 2 LðxÞ, x is not blocked, and

2. fC1;C2g \ LðxÞ ¼ ;.

Then: set LðxÞ :¼ LðxÞ [ fCg for some C 2 {C1, C2}.

9-rule If: 1. 9R:C 2 LðxÞ, x is not blocked, and

2. x has no R-successor y with C 2 LðyÞ.

Then: create a new node y with Lðx; yÞ :¼ fRg, and LðyÞ :¼ fCg.

8-rule If: 1. 8R:C 2 LðxÞ and R 2 Lðx; yÞ, x is not blocked, and

2. there is an R-successor y of x with C =2 LðyÞ.

Then: set LðyÞ :¼ LðyÞ [ fCg.

7!-rule If: 1. C 7! D 2 T , and

2. _:C t D =2 LðyÞ.

Then: set LðyÞ :¼ LðyÞ [ f _:C t Dg.

⊏-rule If: 1. C ⊏ D 2 T , and

2.� C t D =2 LðyÞ.

Then: set LðyÞ :¼ LðyÞ [ f� C t Dg.

!-rule If: 1. C! D 2 T , and

2. f� C t D; _:C t _:Dg⊈LðyÞ.

Then: set LðyÞ :¼ LðyÞ [ f� C t D; _:C t _:Dg.

https://doi.org/10.1371/journal.pone.0181056.t005
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The multi-valued tableaux initializes a forest FK consisting only of root nodes. More pre-

cisely, FK contains a root node xa for each individual a 2 NIðKÞ (i.e., the collection of all indi-

viduals occurring in K), and an edge hxa, ybi if L contains an assertion (a, b):R.

The labels of these nodes and edges are initialized as follows:

(
LðxaÞ ≔ fC 2 closðAÞ j a : C 2 Ag;

Lðhxa; ybiÞ ≔ fR 2 NR j ða; bÞ : R 2 Ag:
ð3Þ

Then FK is expanded by repeatedly applying multi-valued expansion rules. We say a forest

as a completion forest if, and only if no more rules can be applied on it. Let forestsðKÞ denote the

collection of all possible completion forests generated by applying multi-valued expansion rules.

Based on such two kinds of clashes, we define two kinds of closedness conditions:

• A forest F is m1-closed if it contains at least a node containing a C2 clash; and m1-open
otherwise;

• A forest F is m2-closed if it contains at least a node containing either a C2 clash or a C3

clash; and m2-open otherwise.

Clearly, a m1-closed forest is m2-closed.

When a tableau algorithm for K terminates, if it leads to a m1-open completion forest in the

end, then we say “K is multi-valued consistent”; and if it leads to a m2-open completion forest

in the end, then we say “K is complete multi-valued consistent”.

Next result states that our proposal multi-valued tableaux are sound and complete for

MVDL and the complete MVDL.

Theorem 1 Let K ¼ ðT ;AÞ be an extended KB. Then

1. K is multi-valued inconsistent if and only if forestsðKÞ contains no m1-open completion

forest;

2. K is complete multi-valued inconsistent if and only if forestsðKÞ contains no m2-open

completion forest.

5.2 Tableaux for minimally inconsistent entailment problem

To develop a tableau algorithm for the minimally inconsistent entailment, we introduce a pref-

erence relation on completion forests to eliminate those forests which contain redundant

inconsistencies.

Definition 7 Let S be a set of concept names and role names. Let F 1 and F 2 be two com-

pletion forests on S. We say F 1 is less conflicting than F 2 w.r.t. S, denoted F 1 ⊴S F 2, if the fol-

lowings hold:

1. nodesðF1Þ ¼ nodesðF 2Þ, i.e., F 1 and F 2 have the same set of nodes;

2. if fA;:Ag � LðxÞ in F 1 implies fA;:Ag � LðxÞ in F 2 for any concept name A 2 NC and

for any node x.

We denote F 1⊲S F 2 if F 1 ⊴S F 2 but F 2⋬S F 1.

Intuitively, if F 1 is less conflicting, than F 2 then F 1 contains less C1 clashes than F 2 does.

Definition 8 Let K be an extended KB. We define minimally conflicting forests as follows:

forest
min
ðKÞ ¼ min⊲S

forestðKÞ.
It can be easily verified that there exist always minimally conflicting forests as long as forests

exists since completion forests are always finite.
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Moreover, there exists a close relation between�S (defined over (complete) multi-valued

models) and ⊲S (defined over completion forests).

Let F be a completion forest and I a base interpretation on Δ. We say I satisfies F , denoted

by I ⊨F if the followings hold:

• x is in nodesðFÞ if and only if xI 2 DI ;

• for all node x, B 2 LðxÞ if and only if xI 2 BI where B is in form of A;:A; A;

• for all nodes x and y, R 2 Lðx; yÞ if and only if ðxI ; yI Þ 2 RI .

By the definition, all induced base interpretations from a completion forest satisfy the

forest.

We introduce a notion of induced base interpretation to connect completion forests with

multi-valued models.

Definition 9 Let F be a completion forest. An induced base interpretation ðnodesðFÞ; �IÞ
from F is a base interpretation where nodesðFÞ is the collection of all nodes occurring in F
and �I maps each individual a 2 NIðKÞ to a node xa of F and �I satisfies: for any node x and

any edge hx, yi in F ,

1. x 2 pþðAI Þ if A 2 LðxÞ and x 2 DI n pþðAI Þ if A 2 LðxÞ;

2. x 2 p� ðAI Þ if :A 2 LðxÞ and x 2 DI n p� ðAI Þ if :A 2 LðxÞ;

3. ðx; yÞ 2 pþðRI Þ if R 2 Lðhx; yiÞ and ðx; yÞ 2 p� ðRI Þ if R =2 Lðhx; yiÞ.

The following result states that the relation ⊲S can exactly capture the relation�S.

Proposition 19 Let S be a set of concept names and role names. Let F i be a completion for-

est on S and I i be a base interpretation (i = 1, 2) on S. If I 1 ⊨ F 1 and I 2 ⊨ F 2 then we con-

clude that F 1 ⊴S F 2 if and only if I 1≼S I 2.

Next results show that our tableaux restricted to minimally conflicting forests can soundly

and completely characterize the reasoning of MIDL.

Theorem 2 Let K be a KB and C, D two concepts. The followings hold.

1. K ⊨minm CðaÞ if and only if forestminðK [ fCðaÞg contains no m1-open completion forest;

2. K ⊨minm C 7! D if and only if forestminðK [ fð:C u DÞðtÞgÞ contains no m1-open comple-

tion forest;

3. K ⊨minm C ⊏ D if and only if forestminðK [ fðC u DÞðtÞgÞ contains no m1-open comple-

tion forest;

4. K ⊨minm C ! D if and only if forestminðK [ fðC u DÞðtÞgÞ and forestminðK [ fð:D u
:CÞðtÞgÞ contains no m1-open completion forest.

Theorem 3 Let K be a KB and C, D two concepts. The followings hold.

1. K ⊨minmc CðaÞ if and only if forestminðK [ fCðaÞgÞ contains no m2-open completion forest;

2. K ⊨minmc C 7! D if and only if forestminðK [ fð:C u DÞðtÞgÞ contains no m2-open comple-

tion forest;

3. K ⊨minmc C ⊏ D if and only if forestminðK [ fðC u DÞðtÞgÞ contains no m2-open comple-

tion forest;
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4. K ⊨minmc C ! D if and only if both forestminðK [ fðC u DÞðtÞgÞ and forestminðK [

fð:D u :CÞðtÞgÞ contains no m2-open completion forest.

Next, we use an example to demonstrate our tableaux for MIDL with instance checking.

Let A be an ABox which contains seven assertions ψi (i = 1, . . ., 7) shown in Table 6. And

consider there are three queries βi (i = 1, 2, 3) as follows:

b1 ¼ OvoVegetarianðidÞ;

b2 ¼ :OvoLactoVegetarianFood t OvoVegetarianFood t FoodðfdÞ;

b3 ¼ :OvoLactoVegetarianFood t OvoLactoVegetarianFoodðfdÞ:

Initially, the algorithm starts at FK for A [ fCðaÞg C(a) 2 {β1, β2, β3} and then a completion

forest is obtained by exhaustively applying the multi-valued expansion rules. We abbreviate

OvoVegetarian to OV, LactoVegetarianFood to LVF, OvoLactoVegetarianFood to OLVF and

OvoVegetarianFood to OVF respectively.

1. To answer β1, all forests in forestminðKÞ are both m1-closed and m2-closed.

2. To answer β2, let F be a forest which contains two nodes:

• LðidÞ ¼ fOV , ¬OV};

• LðfdÞ ¼ fLVF , ¬LVF, ¬LVF, :OLVF,OVF, Foodg and an edge Lðid; fdÞ ¼ featsg.

As a result, F 2 forestminðKÞ and F is neither m1-closed nor m2-closed. However, all min-

imally completion forests are both m1-closed and m2-closed.

3. To answer β3, let F be a forest which contains two nodes:

• LðidÞ ¼ fOV , ¬OV};

• LðfdÞ ¼ fLVF , ¬LVF, Food, :OLVF, OLVFg and an edge Lðid; fdÞ ¼ featsg.

As a result, F 2 forestminðKÞ and F is not m1-closed but m2-closed. Analogously, for any

minimally completion forest Fmin, Fmin is not m1-closed but m2-closed.

Finally, the answers of βi in A are shown in Table 7.

Table 6. Assertions in A.

ψ1 OvoVegetarian(id)

ψ2 eats(id, food)

ψ3 ¬OvoVegetarian t 8eats.OvoVegetarianFood(id)

ψ4 ¬OvoVegetarian t 8eats.OvoLactoVegetarianFood(id)

ψ5 ¬OvoLactoVegetarianFood t LactoVegetarianFood(fd)

ψ6 ¬(LactoVegetarianFood uOvoVegetarianFood)(fd)

ψ7 ¬LactoVegetarianFood t Food(fd)

https://doi.org/10.1371/journal.pone.0181056.t006

Table 7. Querying over A.

Query ⊨m ⊨minm ⊨mc
⊨minmc

β1 yes yes yes yes

β2 no no yes yes

β3 no yes no yes

https://doi.org/10.1371/journal.pone.0181056.t007
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In the end of this section, we discuss the complexity of different semantics proposed in this

paper.

Theorem 4 Let A be an ABox and C(a) be an assertion in ALC. The problem of deciding if

A⊨pCðaÞ is PSPACE-complete where ⊨p 2 {⊨m, ⊨mc
, ⊨min}.

Theorem 5 Let A be an ABox, T be a TBox and C(a) be an assertion in ALC. The problem

of deciding if ðA;T Þ⊨pCðaÞ is ExpTime-complete where ⊨p 2 {⊨m, ⊨mc
, ⊨min}.

In other words, the complexity of minimally inconsistent entailment is no harder than that

of classical entailment in DL.

6 Related works

As explained earlier, several paraconsistent DLs and non-monotonic DLs have been proposed

to inconsistency handling. In this section we compare our work with some existing paraconsis-

tent DLs and non-monotonic DLs.

Paraconsistent DL Compared with existing four-valued semantics and three-valued

semantics of DLs, our multi-valued DL provides a framework, in which existing proposals for

three-valued [5, 39] and four-valued DLs [21] can be characterized. Besides, PALC in [19],

based on the description logic ALCn
�

which extends a dual (or multiple)-interpretation seman-

tics for ALC, introduces a paraconsistent negation for tolerating inconsistency similar to the

strong negation in Nelson’s paraconsistent logic N4 [31]. In this paraconsistent DL, the para-

consistent negation corresponds to the classical negation while their classical negation corre-

sponds to the complement in our multi-valued DL. In PALC, the satisfaction of GCIs is

defined by the internal inclusion. In this sense, PALC is a fragment of multi-valued DL. Our

minimally inconsistent DL satisfies some useful properties, such as disjunctive syllogism (DS),

resolution and non-monotonicity (see Table 2) which are failed by those paraconsistent DLs

based on multi-valued DLs. The quasi-classical DL in [26, 28, 30] is a major variant of paracon-

sistent DLs, in which two semantics, namely weak semantics and strong semantics, are intro-

duced to characterize quasi-classical semantics so that DS and resolution valid. There are some

similarities and differences between minimally inconsistent semantics and quasi-classical

semantics.

• (Similarity). They follow four-valued semantics [43] to tolerate (classical) inconsistency,

where each concept (or role) is interpreted to a set of instances, the two types of interpreta-

tions will map every concept to a pair of sets of instances, where the former characterizes

those instances certain to belong to the concept, and the latter characterizes those instances

certain not to belong to the concept. Moreover, the (classical) negation is weakened and a

new negation (called by “complement” in our semantics and “QC-negation” in quasi-classi-

cal semantics) is introduced to characterize “clash” (or “opponent”) in the tableaux which is

developed to solve their entailment problems. Additionally, both multi-valued semantics

(incl. complete multi-valued semantics) and quasi-classical semantics are monotonic.

• (Difference). Compared to quasi-classical semantics, our minimally inconsistent semantics

is planting a non-monotonic feature in reasoning so that conclusions are more reasonable.

For instance, let A ¼ f:AðaÞ;AðaÞ, A t B(a)}, under both quasi-classical semantics and

minimally inconsistent semantics, A(a), ¬A(a) and A t B(a) are taken as contradictions.

Under quasi-classical semantics, we can draw B(a) from A while we can not draw B(a) from

A under minimally inconsistent semantics. Because three of them are contradictions, B(a)

could be any of four values following from four-valued logics. In other words, the answer

“unknown” to B(a) looks more reasonable than the answer “yes” to it. Moreover, compared

to quasi-classical semantics, our complete multi-valued semantics can capture the law of
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excluded middle and our minimally complete multi-valued semantics is equal to the classical

semantics in the scenario of (classical) consistent knowledge (i.e., the property of consis-

tency-protected). Additionally, compared to the tableau-based reasoning algorithm where a

new rule called QC-rule is added to enhance the power of reasoning [28], our tableau-based

algorithm is redefining the definitions of both clashes and closedness so that meaningless

conclusions are rejected and reasonable conclusions are inferred.

Several approaches for paraconsistent DLs are based on repairing [3, 18, 20, 23], in which a

new consistent KB or set of models of KB are restored from an inconsistent KB by removing

some knowledge causing inconsistency. There are also approaches for paraconsistent DLs

based on argumentation presented [24, 46] and based on distances [25, 29]. In argumentation-

based approaches, some partial orders (argument principles) of all consistent subsets of an

inconsistent KB are introduced so that preferred consistent subsets of the KB are selected. In

distance-based approaches, some distances functions are introduced to compute the minimal

two-valued interpretations taken as candidate models of a (possibly inconsistent) KB. Our

approach adopts a different principle from these approaches in that ours does not reject any

knowledge but tolerate inconsistent knowledge in reasoning.

As an important member of the multi-valued DL family, fuzzy description logics [8, 24] can

reason with uncertain knowledge in DL. Fuzzy DL admits truth values different from “true”

and “false”, each of which is intuitively taken as a certain degree. Usually, the set of possible

truth values is the whole interval [0, 1]. Though some properties such as MP, MT and DS are

valid in some fuzzy DL, the main difference between fuzzy logic and multi-valued logic is in

the aims, where fuzzy logic is based on fuzzy interpretations (a function from a domain to

[0, 1]), while multi-valued logic is based on multi-valued interpretations (a function from a

domain to a set of discrete values).

Non-monotonic DL Three major formalisms of non-monotonic reasoning (default logic

[7], autoepistemic logic [12, 13], and circumscription [7, 34]) have been adapted to DLs. The

big difference between our minimally inconsistent reasoning and those non-monotonic rea-

soning in DLs inherits the difference between paraconsistent logic (which deals with contra-

dictions of static KBs) and non-monotonic logic (which handles with contradictions arising

from further evidence). A detailed comparison is as follows:

• The power of tolerating inconsistency is different. Our extension maintains the paraconsis-

tency which could be applied to deal with inconsistencies while the ability of those non-

monotonic extensions in handling contradictions (where some contradictions are treated as

exceptions) is limited. In the default extension of DLs [7], there might not be a default exten-

sion of a default KB because of inconsistency [37]. In the autoepistemic extension of DLs

[12, 13], inconsistencies between ontologies and rules are hardly tolerated [36]. In the cir-

cumscription extension of DL [7, 34], each circumscribed TBox must be consistent so that

the partial order�CP over models of that TBox can be definable.

• The strategy of tolerating inconsistency is different. Our two minimally inconsistent seman-

tics are introducing multi-valued semantics to weaken the negation ¬, so that the inconsis-

tency could be taken as a “part”. However, those current non-monotonic DLs introduce

some new “operators” in syntax and within semantics of those operators, the inconsistency

is treated as “exception”. In the default extension of DLs [7], open default rules are intro-

duced to express a non-monotonic relation between concepts. In the autoepistemic exten-

sion of DLs [12, 13], epistemic operators are defined as new constructors of DLs. In the

circumscription extension of DLs [7, 34], concept circumscription patterns CP are intro-

duced to limit the extension of concepts by restricting nonname individuals.
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• The principle of semantics is different. Our four semantics are all multi-valued while those

non-monotonic semantics are two-valued.

Recently, a non-monotonic DL named ALC þ Tmin proposes a non-monotonic reasoning

about prototypical properties and inheritance with exceptions in DL [15, 33]. In the following,

we compare our work to the non-monotonic DL ALC þ Tmin. Indeed, the differences dis-

cussed above between our minimally inconsistent DL and existing non-monotonic DLs also

exist between our minimally and ALC þ Tmin as follows:

• As discussed in [33], the fact that a KB may have no minimal model leads to a explosive rea-

soning while our two minimally inconsistent semantics are paraconsistent.

• In syntax, a typicality operator T is introduced to capture non-exceptions. Though the com-

plement of a concept is introduced in syntax to characterize the (minimally) multi-valued

inconsistency, our four semantics are suitable for classical KBs and all techniques are feasible

in classical DLs since classical DL is taken as a subfragment of MVDL.

• Our four semantics are all multi-valued while the semantics of ALC þ Tmin is two-valued.

Moreover, though both our minimally inconsistent DL and ALC þ Tmin (including DLs

with circumscription [10, 34]) introduce some “minimal model” semantics to infer more rea-

sonable/defeasible conclusions by minimizing inconsistent/atypical information, they are

based on slightly different strategies. Under our minimally inconsistent semantics, minimal

models are selected from multi-valued models while under the semantics of ALC þ Tmin, min-

imal models are selected from two-valued models containing less exceptions. As a result, they

could bring different conclusions. Let us recall the example presented in [33] as follows:

Let Kjohn ¼ ðT john;AjohnÞ where the TBox T john ¼ fTðAthletÞ v Confident, T(Athlet) u
Finnish v ¬Confident} and the ABox Ajohn ¼ fAthletðjohnÞ, Finnish(john)}. As discussed in

[33], T(Athlet)(john) is no longer derivable while it can be still derivable under our minimally

inconsistent semantics. Moreover, our minimally inconsistent DL is multi-valued while

ALC þ Tmin is (classically) two-valued. For instance, Confident(john) is no longer derivable

under the semantics of ALC þ Tmin. Instead, ¬Confident(john) can be inferred under the

semantics of ALC þ Tmin. However, under our minimally inconsistent semantics of internal

inclusion, we can infer both Confident(john) and ¬Confident(john) are true. That is to say, Con-
fident(john) is a classical “contradiction”. Finally, though both minimally complete multi-

valued DL and ALC þ Tmin have the same power as DL in treating classical consistent KB,

they have slightly different capability in treating inconsistent KB.

Besides, a preferential tableau algorithm in [16] for circumscription in DLs minimizes the

extension of concepts while our tableau algorithm minimizes inconsistency. Additionally,

compared with argumentative reasoning [27, 46], localizing reasoning in sub-KBs, our

approach investigates whole KBs. The argumentative reasoning is too cautious in the sense

that a query could be answered only by exhaustedly arguing, thus losing potentially useful con-

clusions in the argumentative reasoning. In the MKNF extension of DLs [36], two modal oper-

ators: K and not are introduced as new syntax constructors to tolerate inconsistency between

ontologies and rules.

In the last of this section, we compare to our previous processings [39, 40]. In previous pro-

ceedings, we present a minimally inconsistent semantics [40] based on our proposed paradix-

cal semantics [39]. In this paper, we propose a multi-valued framework which can produce 12

semantics including the two semantics defined in [40] and four-valued semantics under three

kinds of inclusion [21, 43]. In other words, seven kinds of semantics are new. Structurally, Sec-

tion 3 extends our previous proceedings [39] and some existing properties stated in [21, 43].
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Section 4 extends our previous proceedings [40] by adding investigations of seven kinds of

new semantics. Section 5 is totally new.

7 Conclusions and future works

In this paper, we have proposed a framework for multi-valued paraconsistent DLs. Several

major proposals for paraconsistent DLs can be embedded in our framework. We have also

introduced a non-monotonic paraconsistent extension of the classical DL, with which incon-

sistency in reasoning can be minimized. The suitability of the framework and the minimally

inconsistent DL is justified by several important properties. In particular, MIDL overcomes

some shortcomings of existing paraconsistent DLs and non-monotonic DLs. The paper mainly

focuses on the theoretical research of reasoning with inconsistent ontologies based on multi-

valued logic. The implementation of this framework is beyond this paper. There are some

paraconsistent reasoners with ontologies such as ParOWL [43], PROSE [26, 30], and

QC-OWL [47]. In this paper, we have developed a new tableaux for multi-valued DLs and

showed that the tableau is sound and complete for the minimally inconsistent DL. Such a tab-

leaux can be taken as a framework for implementing multi-valued DLs and their non-

monotonic extensions. The proposed tableau can also be used to develop new tableaux for

other non-monotonic DLs. In the future, we plan to implement the proposed algorithm and

explore applications of this nonclassical reasoning in ontology management. Meanwhile, we

consider the extension of this semantics to expressive DL languages since the finite model

property does not hold in some of expressive DL.

Appendix: Proofs

Proof of Lemma 2. Let ⊨p be a paraconsistent entailment. Assume that ⊨p satisfies DS, DI

and transitivity. Given a ABox A1 ¼ fAðaÞ;:AðaÞg, A1 is inconsistent. Because ⊨p satisfies

DI, A1 ⊨pA t BðaÞ. Let A2 ¼ fAðaÞ;:AðaÞ;A t BðaÞg. We conclude that A1 ⊨pA2. Because

⊨p satisfies DS, we conclude that A2 ⊨pBðaÞ. Then, A1 ⊨pBðaÞ since ⊨p satisfies transitivity.

Proof of Proposition 1. Those claims hold by applying the analogous proofs in [43].

Proof of Proposition 2. This claim holds by applying the analogous proofs in [43].

Proof of Proposition 3. Given a classical KB K, consider a contradiction ¬A u A(a) where A
and a do not appear in K, we conclude that ModmðSFðKÞÞ 6¼ ; and

ModmðSFðKÞÞ 6¼� ModmðSFðf:A u AðaÞgÞÞ. Therefore, ¬A u A(a) is desired.

Proof of Proposition 4. Those claims hold by applying the analogous proofs in [21] and [43].

Proof of Proposition 5. We need to show that ⊨m satisfies the property of monotonicity.

That is, let K1;K2;K3 be three extended KBs and K1 � K3, K1 ⊨m K2 implies K3 ⊨m K2. By

the definition of ⊨m, if K1 � K3 then ModmðK3Þ � ModmðK1Þ. Because for any KB K whose

axioms are enumerated as φ1, . . ., φn, we conclude that ModmðKÞ ¼ Modmðfφ1
gÞ \ . . . \

ModmðfφngÞ by Definition 1 and Definition 2. Then Modm(φ) \(Modm({φ1})\� � �\

Modm({φn}))âŠ†Modm({φ1})\� � �\Modm({φn}) for any φ. Therefore, ModmðK3Þ � ModmðK1Þ.

Because K1 ⊨m K2, ModmðK1Þ � ModmðK2Þ. Then K3 ⊨m K2.

Proof of Proposition 6.

1. If T ⊨m C ⊏ D and T ⊨m D ⊏ E then for any base interpretation I , I ⊨m T implies

pþðCI Þ � pþðDI Þ and pþðDI Þ � pþðEI Þ. Then pþðCI Þ � pþðEI Þ, that is, I ⊨m C ⊏ E.

2. T ⊨m :E ⊏ :D and T ⊨m :D ⊏ :C then T ⊨m :E ⊏ :C by the proof of (1). It directly

follows from (1) since I ⊨m C ! D, I ⊨m C ⊏ D; I ⊨m :D ⊏ :C.

Proof of Proposition 7. We prove this proposition in a construction method.
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• For any base interpretation I , if I ⊨m K then there exists some four-valued interpretation

I4 obtained by restricting I in the language of four-valued DL. Because K contains no com-

plement of any concept. Thus I4 ⊨4K.

• For any four-valued interpretation I4, if I4 ⊨4K then I is a base interpretation such that

I ⊨m K.

Proof of Proposition 8. This proposition directly follows the definition of complete base

interpretations.

Proof of Proposition 9. It directly follows Proposition 2 since K contains no complement of

some concept.

Proof of Proposition 10. We prove this proposition in a construction method.

• For any base interpretation I , if I ⊨mcK then there exists some paradoxical interpretation

Ip obtained by restricting I in the language of paradoxical DL. Because K contains no com-

plement of any concept. Thus Ip ⊨LPK.

• For any paradoxical interpretation Ip, if Ip ⊨LPK then there exists some complete base

interpretation I such that I ⊨m K. Since Ip is complete, I ⊨mcK.

Proof of Proposition 11. It directly follows Proposition 4 if we consider complete base inter-

pretations instead of base interpretations.

Proof of Proposition 12. If T ⊨mc
C 7! D and T ⊨mc

D 7! E then for any base interpretation

I , I ⊨mc
T implies D

I
n p� ðCIÞ � pþðDIÞ and D

I
n p� ðDIÞ � pþðEIÞ. Because D is conflict-

free, pþðDIÞ ¼ D
I
n p� ðDIÞ. Then D

I
n p� ðCIÞ � pþðEIÞ, that is, I ⊨mc

C 7! E.

Proof of Proposition 13. Let Δ = {a, . . .} be a domain. For any complete base interpretation I
on Δ, I is a multi-valued model of the empty KB. Because I is complete,

pþðCI [ p� ðCIÞ ¼ D
I
. Then aI 2 pþððC t :CÞIÞ. Therefore, I ⊨mc

C t :CðaÞ.
Proof of Lemma 3 Let S be a set of all concept names and role names occurring in K (obvi-

ously, S is finite). We will prove this lemma in two steps:

• For any KB K (in satisfiable form) in ALC, there exists some finite multi-valued model of K.

By Proposition 2,ModmðKÞ 6¼ ;, K is multi-valued consistent. In [21, 30, 43], K is four-

valued consistent if and only if gðKÞ is consistent where γ is a transformation function

defined as follows: assume that all concepts are in negation normal form (NNF), that is, the

negation ¬ only occurs in front of concept names, (we use :_ C to denote the NNF of ¬C (see

Section 5)

– γ(>) =>; γ(?) =?; and γ(R) = R for any role R;

– γ(A) = A and γ(¬A) = B where B is a fresh concept name, for any A;

– γ(C1 t C2) = γ(C1) t γ(C2) and γ(C1 u C2) = γ(C1) u γ(C2);

– γ(8R.C) = 8R.γ(C); and γ(9R.C) = 9R.γ(C).

Analogously, we can conclude that K is complete multi-valued consistent if and only if

gðKÞ [ T þ is consistent where

T þ :¼ f> v gðAÞ t gð:AÞ j for all concept nameA occurring in Kg:

(Note that T þ is added to ensure that each complete multi-valued interpretation can be
translated into an (classical) interpretation.) Since ALC has the finite model property

[1, 45], for any KB K in ALC, if K is consistent then there exists some finite model of K.
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Then we can conclude that for any KB K in multi-valued ALC, if K is multi-valued con-

sistent then there exists some finite multi-valued model of K.

• If K is multi-valued consistent then there exists some minimally multi-valued model of K.

On the contrary, suppose that K has no minimally multi-valued models. Let I1 be a multi-

valued model of K since K has at least one multi-valued model. Then there would be an infi-

nite sequence fI1; I2; . . .g of minimally multi-valued models for I such that

I �S I1�S I2�S . . .. We note that the number of concept names in S is finite since S is

finite. By Definition 1 and Definition 2, there must exist some concept name A 2 S such that

pþðAI Þ \ p� ðAI Þ is infinite. This is impossible as I is a finite model. In other words, every

multi-valued model of K is infinite. Thus, we have arrived at a contradiction according to

the first item.

Proof of Proposition 14. It directly follows Proposition 2 since we can assume that φ contains

neither any concept name nor any role name occurring in K.

Proof of Proposition 17. If K is consistent then Mod�mc
ðKÞ ¼ Modmc

ðKÞ. Because I is com-

plete, pþðCIÞ \ p� ðCIÞ ¼ D
I

for any concept C. Assume that there exists some concept C and

a 2 Δ such that aI 2 pþðCIÞ \ p� ðCIÞ. Let I 0 be a complete base interpretation obtained as

CI 0 ¼ hpþðCIÞ n faIg; p� ðCIÞi (or CI 0 ¼ hpþðCIÞ; p� ðCIÞ n faIgi). Because

I ⊨m CðaÞ; I ⊨m :CðaÞ and K is consistent, we conclude that I 0 is also a complete multi-val-

ued model of K. However, I 0≼S I but I :≼S I 0 which contradicts I is minimally complete

multi-valued model of K. Therefore, pþðCIÞ \ p� ðCIÞ ¼ ;.

Proof of Proposition 18. Let K;K0 be two KBs.

1. We need to show that if K⊨m K0 then K⊨mcK
0. K⊨m K0 impliesModmðKÞ � ModmðK0Þ

andModmcðKÞ � ModmðKÞ. For any I 2 ModmcðKÞ, I 2 ModmðK
0Þ. Thus I 2 ModmcðK

0Þ

because I is complete. ThenModmcðKÞ � ModmcðK
0Þ. That is, K⊨mcK

0. However, let

A ¼ fAðaÞ;:A t BðaÞg be an ABox. Then, A⊨minm BðaÞ while A ⊭m BðaÞ. Therefore,

⊨m � ⊨minm .

2. We need to show that if K⊨m K0 then K⊨minm K0. K⊨m K0 impliesModmðKÞ � ModmðK0Þ
andModminm ðKÞ � ModmðKÞ. ThusModminm ðKÞ � ModmðK

0Þ. That is, K⊨minm K0. However,

let A ¼ fAðaÞ;:A t BðaÞg be an ABox. Then A⊨minm BðaÞ while A⊭mBðaÞ. Therefore,

⊨m � ⊨minm .

3. We need to show that if K⊨mcK
0 then K⊨minmc K0. K⊨mcK

0 impliesModmcðKÞ � ModmcðK
0Þ

andModminmc ðKÞ � ModmcðKÞ. ThusModminmc ðKÞ � ModmcðK
0Þ. That is, K⊨minmc K0. However,

let A ¼ fAðaÞ;:A t BðaÞg be an ABox. Then, A⊨minmc BðaÞ while A⊭mc BðaÞ. Therefore,

⊨m � ⊨minmc .

Proof of Theorem 1. We use Definition 9 and Proposition 4 to prove two directions of the

theorem.

• (soundness) Assume that there exists an m1-open completion forest F 2 forestðKÞ. That is,

for each node LðxÞ 2 F , LðxÞ contains no C2 clash in form of either fA;Ag or f:A;:Ag.
Next, we will show that an induced base interpretation I from F is a multi-valued model of

K. That is, for any φ 2 K, we have I ⊨m φ.

1. φ = R(a, b). For any Rðx; yÞ 2 A, R 2 Lðhx; yiÞ in F . Thus if aI ¼ x, bI ¼ y and

ðx; yÞ 2 pþðRI Þ. Thus I ⊨m Rða; bÞ.
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2. φ = C(a). We will prove that C 2 LðxÞ in F and aI ¼ x, then I ⊨m CðaÞ by induction of

subconcepts occurring in C.

– Basic step: C = A, if aI ¼ x then A 2 LðxÞ in F . Thus aI 2 pþðAI Þ, that is, I ⊨m AðaÞ.

– Induction step: assume that if Ci 2 LðxÞ in F and aI ¼ x, then I ⊨m CiðaÞ (i = 1, 2).

a. If :C1 2 LðxÞ in F then aI 2 p� ðCI
1 Þ. Thus I ⊨m :C1ðaÞ.

b. If C1
�2 LðxÞ in F then aI =2 pþðCI

1 Þ. Thus I ⊨m C1ðaÞ.

c. If ðC1 u C2Þ 2 LðxÞ in F then C1;C2 2 LðxÞ by the u -rule. By assumption, aI 2

pþðCI
1 and aI 2 pþðCI

2 Þ. Thus I ⊨m C1 u C2ðaÞ.

d. If ðC1 t C2Þ 2 LðxÞ in F then C1 2 LðxÞ or C2 2 LðxÞ by the t -rule. By assump-

tion, aI 2 pþðCI
1 Þ or aI 2 pþðCI

2 Þ. Thus I ⊨m C1 t C2ðaÞ.

e. If 8R:C1 2 LðxÞ in F and R 2 Lðhx; yiÞ then C1 2 LðyÞ by the 8-rule. Thus if

ðaI ; bI Þ 2 pþðRI Þ and bI ¼ y then bI 2 pþðCI
1 Þ. Thus I ⊨m 8R:C1ðaÞ.

f. If 9R:C1 2 LðxÞ in F then there exists some y such that R 2 Lðhx; yiÞ and C1 2 LðyÞ
by the 9-rule. If bI ¼ y then ðaI ; bI Þ 2 pþðRI Þ and bI 2 pþðCI

1 Þ. Thus

I ⊨m 9R:C1ðaÞ.

3. φ = C 7! D. By the second item of Proposition 4, for any base interpretation I 0,
I 0 ⊨m C 7! D if and only if I 0 ⊨m :C t DðaÞ for all a. By the 7!-rule, for all node x in

F , :_C t D 2 LðxÞ. Thus we can use the proof of Item 2 (above) to prove that

I ⊨m :C t DðaÞ for all a.

4. φ = C⊏D. By the third item of Proposition 4, for any base interpretation I 0,
I 0 ⊨m C ⊏ D if and only if I 0 ⊨m C t DðaÞ for all a. By the 7!-rule, for all node x in F ,

� C t D 2 LðxÞ. Thus we can use the proof of Item 2 (above) to prove that I ⊨m C t
DðaÞ for all a.

5. φ = C! D. By the forth item of Proposition 4, for any base interpretation I 0,
I 0 ⊨m C ! D if and only if both I 0⊨m C t DðaÞ and I 0 ⊨m :C t :DðaÞ for all a. By

the!-rule, for all node x in F , f� C t D;:_C t :_D2 LðxÞ. Thus we can use the

proof of Item 2 (above) to prove that I ⊨m C ! D if and only if both I ⊨m C t DðaÞ
for all a.

• (completeness) We need to show that if every completion forest F 2 forestðKÞ is m1-closed

then K has no any multi-valued model. Assume that I is a multi-valued model of K.

Next, we use I to trigger the application of the multi-valued expansion rules such that they

yield an m1-open completion F . To this purpose, a function π is inductively defined to map

each node of F to an element of DI such that, for each x; y 2 nodesðFÞ,

ðiÞ C 2 LðxÞ ) pðxÞ 2 pþðCÞ;

ðiiÞ if y is an R� child of x; then ðpðxÞI ; pðyÞIÞ 2 pþðRIÞ:
ð4Þ

It can be shown that the following claim holds:

Let F be a completion forest and π be a function that satisfies Eq (4). If a multi-valued

expansion rule is applicable to F , then this rule can be applied such that it yields a

Minimally inconsistent reasoning in Semantic Web

PLOS ONE | https://doi.org/10.1371/journal.pone.0181056 July 27, 2017 28 / 35

https://doi.org/10.1371/journal.pone.0181056


completion forest F 0 and a (possibly extended) π that satisfy Eq (4).

We consider the various multi-valued expansion rules as follows:

1. u -rule: If C1 u C2 2 LðxÞ, then pðxÞ 2 pþððC1 u C2Þ
I
Þ. This implies pðxÞ 2 pþðCI

1 Þ

and pðxÞ 2 pþðCI
2 Þ, and hence the rule can be applied without violating Eq (4).

2. t -rule: If C1 t C2 2 LðxÞ, then pðxÞ 2 pþððC1 t C2Þ
I
Þ. This implies pðxÞ 2 pþðCI

1 Þ

or pðxÞ 2 pþðCI
2 Þ. Hence the rule can add a concept C 2 {C1, C2} to LðxÞ such that C 2

LðxÞ ) pðxÞ 2 pþðCI Þ holds.

3. 9-rule: If 9R:C 2 LðxÞ, then pðxÞ 2 pþðð9R:CÞI Þ and, there exists an element t 2 DI

such that ðpðxÞ; tÞ 2 pþðRI Þ and t 2 pþðCI Þ since I is a multi-valued model of K. The

application of 9-rule generates a new variable y with Lðhx; yiÞ ¼ fRg and LðyÞ ¼ fCg.
Hence we set π: = π[t y] (i.e., t is replaced by y) which yields a function that satisfies

Eq (4) for the modified forest.

4. 8-rule: If 8R:C 2 LðxÞ, then pðxÞ 2 pþðð8R:CÞI Þ and, if y is an R-successor of x, then

also ðpðxÞ;pðyÞÞ 2 pþðRI Þ due to Eq (4). Because I is a multi-valued model of K,

pðyÞ 2 pþðCI Þ. Hence 8-rule can be applied without Eq (4).

5. 7!-rule: If C 7! D 2 T then for all x 2 nodesðFÞ, :_C t D 2 LðxÞ. Thus

pðxÞ 2 pþðð:_C t DÞI Þ. Hence 7!-rule can be applied without Eq (4).

6. ⊏-rule: If C ⊏ D 2 T then for all x 2 nodesðFÞ, C t D 2 LðxÞ. Thus

pðxÞ 2 pþððC t DÞI Þ. Hence ⊏-rule can be applied without Eq (4).

7. !-rule: If C ! D 2 T then for all x 2 nodesðFÞ, fC t D;:_C t :_Dg � LðxÞ. Thus

pðxÞ 2 pþððC t DÞI Þ and pðxÞ 2 pþððf:_C t :_DÞI Þ. Hence!-rule can be applied

without Eq (4).

For the initial completion forest consisting of a finite set of nodes xa whose LðxaÞ ¼
fC 2 closðAÞ j CðaÞ 2 Ag and aI ¼ xa. We can give a function π satisfies Eq (4) by set-

ting π(xa): = sa for some sa 2 DI with sa 2 pþðCI Þ since I is a multi-valued model of K.

Whenever a rule is applicable to FK, it can be applied in a way that maintains Eq (4),

and, must terminate by the analogous proof of [1]. Eq (4) implies that any completion

forest F generated by these rule-applications must be open as there is only possibility for

a C2 clash in the following case, and it is easy to see that it can not hold in F : F can not

contain a node x such that either fA; Ag 2 LðxÞ or f:A;:Ag 2 LðxÞ since for any

A 2 LðxÞ, pðxÞ 2 pþðAI Þ and I is a multi-valued model of K.

2. To prove the second item of Theorem 1, we introduce induced complete base interpreta-

tion IF from F where for any concept A, pþðAIÞ [ pþðAIÞ ¼ D
I
.

We can use the analogous technique of the first item to prove the second item. For simplifi-

cation, we show those differences here since complete multi-valued models are multi-valued

models.

• (soundness) Assume that there exists an m2-open completion forest F 2 forestðKÞ. That is,

for each node LðxÞ 2 F , LðxÞ contains neither C2 clash in form of either fA;Ag or

f:A;:Ag nor C3 clash in form of fA;:Ag.
Next, we will show that an induced complete base interpretation I from F is a complete

multi-valued model of K. That is, for any φ 2 K, we have I ⊨mc φ. We only need to show

that IF is complete in the following cases: assume that pþðCI
i Þ [ pþðCI

i Þ ¼ DI (i = 1, 2).
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1. C = ¬C1. Because pþð:CI
1 Þ ¼ p� ðCI Þ and p� ð:CI

1 Þ ¼ pþðCI Þ, pþð:CI
1 Þ [ p

� ðCI Þ ¼

DI .

2. C ¼ C1 . pþðC1
I Þ [ p� ðC1

I Þ ¼ ðDI n pþðC1
I ÞÞ [ DI n p� ðC1

I ÞÞ ¼ DI n ðpþðC1
I Þ \

p� ðC1
I ÞÞ ¼ DI since pþðC1

I Þ \ p� ðC1
I Þ ¼ ;. Otherwise, assume that

aI 2 pþðC1
I Þ \ p� ðC1

I Þ. Thus fC1 ;_C1g � LðaI Þ. Then there exists some C3 clash

fA;:Ag in some node of F which contradicts F is m2-open.

3. C = C1 u C2. pþððC1 u C2Þ
I
Þ [ p� ððC1 u C2Þ

I
Þ ¼ ðpþðCI

1 Þ \ pþðCI
2 ÞÞ [ ð p� ðCI

1 Þ [

p� ðCI
2 ÞÞ ¼ DI \ DI ¼ DI .

4. C = C1 t C2. pþððC1 t C2Þ
I
Þ [ p� ððC1 t C2Þ IÞ ¼ ðpþðCI

1 Þ [ pþðCI
2 ÞÞ [ ðp� ðCI

1 Þ \

p� ðCI
2 ÞÞ ¼ DI \ DI ¼ DI .

5. C = 9R.C1 and φ = 8R.C1. We can conclude that pþðð9R:C1Þ IÞ [ p� ðð9R:C1Þ
I
ÞÞ ¼ DI

and pþðð8R:C1Þ
I
Þ [ p� ðð8R:C1Þ

I
ÞÞ ¼ DI .

Therefore, for any m2 completion forest F , its induced base interpretation I from F is a

multi-valued model of K by the proof of the first item of the theorem and we can show

that I is complete. Thus K is complete multi-valued consistent.

• (completeness) Next, we need to prove that if every completion forest F in forestðKÞ is m2-

closed then K has no any complete multi-valued model, i.e., multi-valued model. Assume that

I is a complete multi-valued model of K. Analogously, for the initial completion forest con-

sisting of a finite set of nodes xa whose LðxaÞ ¼ fC 2 closðAÞ j CðaÞ 2 Ag and aI ¼ xa. We

can give a function π satisfies Eq (4) by setting π(xa): = sa for some sa 2 DI with sa 2 pþðCI Þ

since I is a complete multi-valued model of K. Whenever a rule is applicable to FK, it can be

applied in a way that maintains Eq (4), and, must terminate by the analogous proof of [1].

Eq (4) implies that any completion forest F generated by these rule-applications must be

open as there are only two possibilities for clashes in the following cases, and it can not hold

in F :

1. (C2 clash) F can not contain a node x such that either fA;Ag 2 LðxÞ or f:A;:Ag 2
LðxÞ since for any A 2 LðxÞ, pðxÞ 2 pþðAI Þ and I is a multi-valued model of K.

2. (C3 clash) F can not contain a node x such that fA;:Ag 2 LðxÞ since for any

A 2 LðxÞ, pðxÞ 2 pþðAI Þ and I is a complete multi-valued model of K.

Proof of Proposition 19. By Definition 3, D
I1 ¼ D

I2 if I 1≼S I 2, by Definition 7, nodesðF 1Þ

¼ nodesðF 2Þ if F 1 ⊴S F 2 and Definition 9, D
I1 ¼ nodesðF 1Þ and D

I2 ¼ nodesðF 2Þ.

On the one hand, if F 1 ⊴S F 2, then for any node x, fA;:Ag 2 LðxÞ in F 1 implies

fA;:Ag 2 LðxÞ in F 2 for any A 2 NA by Definition 7. Because I 1 ⊨F 1, by the definition,

x 2 pþðAI1Þ and x 2 pþðð:AÞI1Þ implies x 2 pþðAI1Þ \ p� ðAI1Þ. Because I 2 ⊨F 2, we can

analogously conclude that x 2 pþðAI2Þ and x 2 pþðð:AÞI2Þ implies x 2 pþðAI2Þ \ p� ðAI2Þ.

Thus for any node x, x 2 pþðAI1Þ \ p� ðAI1Þ implies x 2 pþðAI2Þ \ p� ðAI2Þ. Then,

pþðAI1Þ \ p� ðAI1Þ � pþðAI2Þ \ p� ðAI2Þ. Moreover, there exists some node x such that

fA;:Ag � LðxÞ in F 2 but fA;:Ag⊈LðxÞ in F 1 for some concept A 2 NC. That is,

pþðAI1Þ \ p� ðAI1Þ � pþðAI2Þ \ p� ðAI2Þ. Therefore, I 1≼S I 2 by Definition 3.

On the other hand, if I 1≼S I 2, for all concept name A, pþðAI1Þ \ p� ðAI1Þ � pþðAI2Þ \ p�

ðAI2Þ. Because I i ⊨F i (i = 1, 2), for all x, by the definition, if x 2 nodesðF 1Þ and xI1 2

pþðAI1Þ \ p� ðAI1Þ then xI2 2 pþðAI2Þ \ p� ðAI2Þ since nodesðF 1Þ ¼ nodesðF 2Þ and by the

Minimally inconsistent reasoning in Semantic Web

PLOS ONE | https://doi.org/10.1371/journal.pone.0181056 July 27, 2017 30 / 35

https://doi.org/10.1371/journal.pone.0181056


definition, all nodes in F i are taken as different individuals. Thus fA;:Ag � LðxÞ in F 1

implies fA;:Ag � LðxÞ in F 2. Therefore, F 1 ⊴S F 2.

Proof of Theorem 2. We can use Proposition 4 and the first item of Theorem 1 and its results

to prove this theorem. For simplification, we delete all details of the proof and instead, present

a brief proof.

By Proposition 4 and the first item of Theorem 1, K⊨m CðaÞ if and only if forestðK [
fCðaÞg contains no m1-open completion forest.

• (soundness) If forestminðK [ fCðaÞgÞ contains some m1-open completion forest F then

there exists some multi-valued model I of K [ fCðaÞg by the proof of the first item of Theo-

rem 1. By Proposition 19, I 2 Modminm ðKÞ and I ⊨m CðaÞ which contradicts K⊨m CðaÞ.

• (completeness) assume that I is a minimally multi-valued model of K and a multi-valued

model of CðaÞ. Next, we use I to trigger the application of the multi-valued expansion rules

such that they yield an m1-open minimally conflicting completion F . The process is the

same as the proof of the first item of Theorem 1. Because all minimally multi-valued model

of K are multi-valued models of K, thus I is a multi-valued model of K [ fCðaÞg. By the

previous proof, we can an m1-open forest F with I ⊨ F . By Proposition 19, F 2
forestminðKÞ which contradicts the pre-condition.

Proof of Theorem 3. It analogously follows the second item of Theorem 1 and Proposition 19.

Proof of Theorem 4. Let A� ¼ A [ fCðaÞg.

1. Firstly, we need to show that the problem of deciding whether A⊨min CðaÞ is PSPACE by

employing the so-called trace technique in [1].

a. We denote j A� j as the size of A�. Intuitively j A� j is the length required to write A�

down, where we assume that the length required to write atomic concept, the negation

of concept name and atomic role is “1”. Formally, we define the size of extended ABoxes

as follows:

j A�j ¼
P

CðaÞ2A�ÞðjCj þ 1Þ þ
P

Rða;bÞ2A� 3;

jAj ¼ 1 for a concept name Aðincl: >;?Þ;

j :Dj ¼ jDj ¼ j Dj þ 1;

j D1 u D2j ¼ jD1 t D2j ¼ j D1j þ jD2j þ 1;

j 9R:Dj ¼ j8R:Dj ¼ j Dj þ 2:

b. The multi-valued tableau algorithm generates a completion forest in a monotonic way.

In a completion forest, for each individual name in A�, the forest contains a root node,

which we will call an old node. The edges between old nodes all stem from role assertions

in A�, and thus may occur without restrictions. Other nodes, called new nodes, are gen-

erated by the 9-rule; we call the other rules augmenting rules, because they only augment

the labels of existing nodes. In contrast to edges between old nodes, edges between new

nodes are of a particular shape: each new node is found in a completion forest with an

old node at its root.

c. Initially, for an old node xa, LðxaÞ contains the concepts D from the assertions

a : D 2 A�. Other concepts are added by the signed expansion rules, and we observe
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that these expansion rules only add subconcepts of the concepts occurring in A�. Since

there are at most jA�j such subconcepts, each node label can be stored in space polyno-

mial in |A|. Moreover, for each concept A� in the label of a new node x, the (unique) pre-

decessor of x contains a larger concept. Hence the maximum size of concepts in node

labels strictly decreases along a path of new nodes, and thus the depth of each comple-

tion forest in our completion graph is bounded by maxfjDj j a : D 2 A�g.

d. Finally, we note that the multi-valued expansion rules can be applied in an arbitrary

order: the correctness proof for the algorithm does not rely on a specific application

order. Hence we can use the following order: first, all augmenting rules are exhaustively

applied to old nodes. Next, we treat each old node in turn, and build the tree rooted at it

in a depth first manner. That is, for an old node xa, we deal in turn with each existential

restriction 9R:D 2 LðxaÞ: we apply the 9-rule in order to generate an R-successor x0

with Lðx0Þ ¼ fDg, apply the 8-rule exhaustively to this R-successor of xa (which may

add further signed concepts to Lðx0Þ), and recursively apply the same procedure to x0,

i.e., exhaustively apply the augmenting rules, and then deal with the existential restric-

tions one at a time.

e. On the other hand, a new completion forest will be added by applying the t -rule one

time. The jforestsðFA� Þj is in size linear in jA�j and the new nodes is in size linear in

jA�j. It is not hard to find that given two forests F 1;F 2, checking if F 1 ⊴S F 2 requires

space polynomial in jA�j. The problem of computing all minimally conflicting comple-

tion forests forestsminðFA� Þ requires at most space polynomial in jforestsminðFA� Þj �

jforestsðFA� Þj and jA�j. For each forest F 2 forestsminðFA� Þ, if some node of F con-

tains a C2-clash or C3-clash then we turn to check other forest. Thus we can investigate

the m1-closed or m2-closed condition keeping a single branch in memory at any time.

This branch is of length linear in jA�j, and can thus be stored with all its labels in size

polynomial in jA�j. Therefore, continuing the investigation of all forests in the same

manner, our algorithm only requires space polynomial in jA�j.

2. Secondly, we can conclude that the problem deciding whether A⊨minCðaÞ is PSPACE-

hard.

The problem of deciding whether A⊨mcCðaÞ is harder than that of problem of deciding

whether A⊨m CðaÞ, the problem of deciding whether A⊨minm CðaÞ is harder than that of

problem of deciding whether A⊨m CðaÞ and the problem of deciding whether

A⊨minmc CðaÞ is harder than that of problem of deciding whether A⊨mcCðaÞ. Moreover, the

problem of deciding whether A⊨m CðaÞ is equivalent to the problem of deciding whether

A⊨4 CðaÞ for any ABox A and any assertion C(a) in ALC which is PSPACE-hard stated

in [21]. Thus the problem of deciding whether A⊨p CðaÞ, where ⊨p 2 {⊨m, ⊨mc
, ⊨min} is

PSPACE-hard.

Therefore, the problem of deciding whether A⊨p CðaÞ, where ⊨p 2 {⊨m, ⊨mc
, ⊨min} is

PSPACE-complete.

Proof of Theorem 5. Because the problem of deciding whether ðA;T Þ⊨4 φ is ExpTime-

complete [21], we only need to show that their problems are in ExpTime since their problems

are hard than the four-valued entailment. We can employ the transformation algorithm, stated

in [21] to reduce the four-valued entailment problem into the classical entailment by addition-

ally transforming A into ¬A and then the multi-valued entailment problem can be reduced to

the classical entailment. The complexity of the classical entailment in general ALC KBs is in

ExpTime-complete [1]. The multi-valued entailment problem is ExpTime. Because given a set
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of completion forests, we can compute all conflicting completion forests in a polynomial time.

Thus the minimally inconsistent entailment problem is also ExpTime.
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