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Abstract

This study aims to develop a microscopic pedestrian behavior model considering various

interactions on pedestrian dynamics at crosswalks. Particularly, we take into account the

evasion behavior with counter-flow pedestrians, the following behavior with leader pedestri-

ans, and the collision avoidance behavior with vehicles. Aerial video data at one intersection

in Beijing, China are extracted for model calibration. A microscopic calibration approach

based on maximum likelihood estimation is applied to estimate the parameters of a modified

social force model. Finally, we validate step-wise speed, step-wise acceleration, step-wise

direction change, crossing time and lane formation phenomenon by comparing the real data

and simulation outputs.

Introduction

Studying the self-organization phenomena of pedestrian crowd is an active subject in transpor-

tation science. To date, pedestrian behavior modeling has attracted considerable attentions [1–

7]. A better understanding of the interaction behavior would help to improve microscopic

simulation and thus allow more accurate prediction of their behavior for various situations.

This also helps to evaluate the service and safety level on pedestrian related traffic, such as

pedestrian movement in urban streets and crosswalks.

Generally, existing pedestrian behavior models can be classified into three categories: mac-

roscopic, mesoscopic and microscopic models. In the last decades, mesoscopic and micro-

scopic models have attracted much attention because they enable to offer a more detailed

analysis on pedestrian behavior.

The mesoscopic models are usually based on kinetic theory and game theory, in which the

microscopic interaction can be represented through a statistical distribution of the micro-

scopic position and velocity. One of the motivations of applying kinetic theory is to model the

complexity issues of living systems such as crowds. Following the kinetic theory, Bellomo et al

developed a simulation model representing the dynamics of collective behaviors [5, 8]. Degond

et al introduced a hierarchy of kinetic and macroscopic models derived from a heuristic
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description at the micro-scale, and they developed an analogy between a Local Thermodynam-

ically Equilibrium and Nash equilibria in a game theoretic framework [9]. Wang et al [10]

developed two efficient numerical methods for a multiscale kinetic equation in the context of

crowd dynamics with emotional contagion, and they particular focused on when the particle

characteristics can cross and whose long time behavior is not flocking.

The family of microscopic models includes Cellular Automata [11, 12], social force model

[13–15], velocity-based model [16, 17], discrete choice model [18] and lattice gas model [19,

20]. To our knowledge, Cellular Automata model and social force model are popular models

for pedestrian dynamics because they are able to describe most of the self-organization phe-

nomena of large crowd. Cellular Automata are microscopic models with grid-based motion

decisions, in which a set of rules define the state/occupation of a cell in dependence of the

neighborhood of the cell, and a transition matrix is used to update the cell states in successive

time steps. However, pedestrians behave flexibly and the choice of next step is unrestricted

dynamic, which cannot be fully taken into account by only choosing one option from a limited

set of cells. The fluid crowd modeling method of Henderson [21] has been the starting point of

the social force model. Later, a magnetic-force model [22] was developed by borrowing a

motion equation used for magnetic fields. Based on these concepts, a more robust physical

force based model, i.e., social force model [11], was developed and applied to evacuation analy-

sis. The physical force based model makes it possible not only to accurately describe dynamic

pedestrian movement in space, but also to reproduce the self-organization phenomenon such

as lane formation, stop-and-go waves and turbulence [4].

Pedestrian microscopic simulation has gathered a lot of interest in the modeling of safety

analysis of pedestrian infrastructures and crowd evacuation. Lian et al. analyzed collective

movement characteristics on a four-directional intersecting flow and they found that putting

an obstacle in the center of cross area will improve traffic stability [23]. Duives et al. found that

the distance headway, the time headway, the sight angle, the interaction angle, the absolute

speed and the number of pedestrians located nearby significantly influence on the strength of

the reaction of pedestrians walking within a crowd [24]. Bellomo et al. [25] proposed to view

human crowds as a large living system in evacuation dynamics. They found that the dynamics

can be subject to the heterogeneous behaviors and social interactions. Ronchi et al [26] devel-

oped a multi-agent continuous model for large-scale evacuation safety simulation at music fes-

tivals. They found that the evacuation time curves coupled with the visual analysis allowed for

identifying the predominant factor affecting evacuation such as delay time and flows through

exits. In recent decades, a large number of studies have been focused on bi-directional flow in

pedestrian dynamics [27, 28]. The basic characteristics related to fundamental diagrams [27]

and self-organization such as lane formation [29, 30] and jamming transition [31], were inves-

tigated in experimental ground fields or actual scenes. Interestingly, there is no conclusion yet

whether the traffic flow performance is different or not between uni-directional and bi-direc-

tional flows. Teknomo found that the two-way traffic performance reduces significantly as the

number of pedestrians increase [32]. Lam et al. stated that there is no significant difference

between bidirectional flow and unidirectional flow if the densities of the opposite streams are

similar [33]. Helbing et al. stated that counter-flows could be more efficient than unidirec-

tional flows [29]. However, they compare average flows without considering the influence of

the density. Kretz et al. found that the speed and fluxes did not reduce a lot within bi-direc-

tional flow due to the self-organization phenomenon [28].

Crossing behaviors at unsigalized and signalized intersections are critical factors that may

result in safety problems. A case study in China showed that the rates of compliance with traf-

fic rules at signalized intersections are influenced by crossing distance, signal timing, and

pedestrian volume [34]. Yang et al. [35] developed a microscopic simulation model for
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pedestrians’ signal non-compliance decision in the mixed traffic in China. Gorrini et al. [36]

modeled the elderly inhabitants and risky pedestrian-vehicle interaction on unsignalized inter-

sections. Feng et al. [37] built a microscopic model to simulate crossing behavior in a street to

evaluate the service level. Li et al. [38] modified the social force model by considering the

required space and the critical gaps with turning vehicles, which makes it possible to describe

the stop/go decision to the conflicting vehicles. Anvari et al. [39] simulated the interaction

between pedestrian and vehicle by using a rule-based social force model for shared space

environments.

In addition, many research focused on the model calibration and validation. Isenhour et al.

developed a pedestrian simulation tool for fire evacuation analysis and they recommended sev-

enteen verification tests according to the United States’ National Institute of Standards and

Technology [40]. Daamen and Hoogendoorn designed laboratory experiments to estimate

parameters of the Nomad pedestrian simulation model for bottlenecks in the evacuation of a

building and the simulation results showed that complex walker models can indeed be cali-

brated by empirical data [41, 42]. Campanella et al. further quantified the validation of the

Nomad pedestrian simulation model by combining multi-objective assessments such as aver-

age travel times, the speed-density fundamental relation and bottleneck capacity [43]. Seer

et al. estimated the model parameters and their distributions with nonlinear regression based

on observed trajectories [44].

To develop and calibrate microscopic pedestrian models usually requires accurate and com-

prehensive trajectory data on individual pedestrian movement. The traditional data acquisi-

tion method is to shoot video and apply tools to detect and track the individual movement of

each pedestrian. Both manual and automated tracking approaches can be found. Multiple

cameras were usually used to shot videos at intersections and manually extracted trajectories

of individual pedestrians and turning vehicles [6, 7]. The synchronization among multiple

cameras from different views was complicated and required extra effort. To facilitate trajectory

extraction process from video, some researches [44–47] conducted control experiments by

equipping participants with distinctive wear, e.g., colored hats, for better identification. With

the recent price drop of off-the-shelf unmanned aerial vehicle (UAV) products, increasing

researchers are exploring the potentials of using UAVs for pedestrian and vehicle detection

and tracking. On the basis of the authors’ ongoing work, this study will use UAVs to obtain

accurate tracking data from a top-down view for pedestrian behavior model calibration.

In summary, there is growing interest in developing a simulation model for pedestrian

dynamic behavior in various scenarios. However, only limited studies shed light on crossing

behavior such as interaction with counter-flow pedestrians, turning vehicles, and traffic regu-

lations. For practical applications such as traffic safety assessment at crosswalks, the current

pedestrian models for crowd simulation are inadequate. This study aims to fill this gap by

developing a microscopic model considering various interaction behaviors among road users

at crosswalk. Furthermore, an estimation approach for calibrating the microscopic model

based on real trajectory data is proposed. Last, the validation is conducted to confirm the

model performance on step-wise location, fundamental diagram and lane formation

phenomenon.

Model description

As shown in Fig 1, the microscopic model includes two layers, i.e., a tactical layer and an oper-

ational layer, inspired by Hoogendoorn and Bovy’s conceptual modeling framework [48]. The

desired direction of movement is determined in the tactical layer. The operational layer deter-

mines the microscopic behavior when pedestrians interact with other agents. In this layer, we
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assume that the subject pedestrian interacts with other pedestrians and vehicles. The interac-

tion with surrounding pedestrians can be further divided into two types, i.e., interaction with

counter-flow pedestrians and interaction with leading pedestrians. A repulsive force is used to

represent the interaction with counter-flow pedestrians, while an attractive force is used to

represent the interaction with leading pedestrians. The pedestrian-vehicle conflict mechanism

is also included in this model. Risk-taking pedestrians might enter the crosswalk even though

the vehicle is approaching. We model the “waiting/crossing” behavior with a bi-logit model

and develop detour route plan and repulsive force model for pedestrian-vehicle interaction.

The detail of the pedestrian behavior in the tactical and the operational layers is introduced in

the following sections.

Desired direction

As shown in Fig 2, the desired direction is assumed to be determined by the desired exit posi-

tion of the crosswalk. The desired exit position is defined as the intersecting point of the curve

of crosswalk edge and the desired walking trajectory. Assumed that the shape of crosswalk is

rectangular, the desired exit position can be represented by using the perpendicular distance

to the crosswalk boundary (stop line side) when the pedestrian exits the crosswalk. We

assumed that the distribution of exit positions is influenced by origin-destination (OD). More

Fig 1. Model framework. The microscopic model includes two layers, i.e., a tactical layer and an operational

layer. The desired direction of movement is determined in the tactical layer. The operational layer determines

the microscopic behavior when pedestrians interact with other agents.

https://doi.org/10.1371/journal.pone.0180992.g001
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specifically, the exit position distribution is assumed to have a peak on the right side or left

side and the side of skewness is dependent on the OD direction. However, most probability

distributions (including Gamma, lognormal, and Weibull) cannot represent a distribution

with right-side skewness and they assume that the random variable spreads over the whole

range of the real number axis, but in practice, the exit position makes sense only within the

width of the crosswalk. To fill this gap, the concept of truncated normal distribution is intro-

duced, which is able to represent a distribution with arbitrary skewness and a specified range

as shown in Fig 3. The probability density function is given by:

f x; m;s; a; bð Þ ¼
f ðxÞ

R b
a f ðxÞdx

ð1Þ

f xð Þ ¼
1
ffiffiffiffiffiffi
2p
p

s
e�
ðx� mÞ2

2s2 ð2Þ

R b
a f ðxÞdx ¼ F

b � m

s

� �

� F
a � m

s

� �
ð3Þ

where x denotes the exit position; a and b denote the lower bound and upper bound of the

truncated range, respectively, which are constrained by the crosswalk width; Φ denotes the

cumulative distribution function of a standard normal distribution; μ and σ are the parameters

to be estimated, which denote the mean and standard deviation of the non-truncated distribu-

tion, respectively.

Fig 2. Desired exit position and desired direction. The desired direction is assumed to be determined by

the desired exit position of the crosswalk. The desired exit position is defined as the intersecting point of the

curve of crosswalk edge and the desired walking trajectory.

https://doi.org/10.1371/journal.pone.0180992.g002
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We assumed that the distribution of exit position is influenced by the OD direction, cross-

walk length dl, crosswalk width dw and pedestrian density ρ. μ and σ can be expressed as the

following regression functions.

m ¼ b0M0 þ b1M1 þ b2M2 þ b3dl þ b4dw þ b5rþ b6 ð4Þ

s ¼ c0M0 þ c1M1 þ c2M2 þ c3dl þ c4dw þ c5rþ c6 ð5Þ

whereM0,M1, and M2 are the dummy variables representing eight directions of the OD on a

crosswalk; b0,. . .,b6,c0,. . .,c6 are the model coefficients to be estimated.

Driving force

The step-wise decision process of movement is assumed to include two steps. First, the pedes-

trian selects the velocity direction based on the desired direction and subsequently the desired

speed. Second, the pedestrian adjusts the speed to avoid the conflict with other pedestrians and

vehicles.

Pedestrians are assumed to move with individual desired speed vd
a

and desired direction e!a

to the next destination. The desired direction e!a is determined by the current position P!a

and the exit position P!e at crosswalk. A deviation of the current speed vector v!a from the

desired speed vector vd
a
e!a leads to a force to recover to the desired speed within a certain

relaxation time τα.

F!d ¼
1

ta

vd
a
e!a � v!a

� �
ð6Þ

e!a ¼
P!e � P!a

kP!e � P!ak
ð7Þ

Fig 3. Truncated normal distribution. The concept of truncated normal distribution is able to represent a distribution with arbitrary skewness and a specified

range.

https://doi.org/10.1371/journal.pone.0180992.g003
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According to the empirical analysis [29], the desired speed vd
a

is approximately normal dis-

tribution. To compensate for delays at signalized crosswalk, the desired speed is assumed to

increase in the course of waiting time due to the traffic light. Assumed that the desired speed is

influenced by the waiting time tw and pedestrian density ρ, we formulate the regression func-

tion for desired speed as follows.

vd
a
¼ a0tw þ a1rþ a2 þ e ð8Þ

e � Nð0; ðsd
a
Þ

2
Þ ð9Þ

where a0, a1, and a2 are the model coefficients to be estimated; sd
a

is the standard deviation of

the error term.

Interaction with counter-flow pedestrians

According to the social force theory [13], each conflicting pedestrian within the subject pedes-

trian’s visual range is assumed to generate a repulsive force to the subject pedestrian, as shown

in Fig 4(A). In the original social force model, it is usually assumed that the magnitude of

the repulsive force increases monotonically as the relative distance decreases. However, this

assumption is not realistic, considering the fact that the repulsive effect might be quite weak if

Fig 4. Collision avoidance with counter-flow pedestrians. (a) It is usually assumed that the magnitude of the repulsive force increases

monotonically as the relative distance decreases. (b) It shows the case of valid and invalid conflicts.

https://doi.org/10.1371/journal.pone.0180992.g004
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no potential conflict exists or the relative time to potential conflict point will be quite long. Fig

4(B) shows the case of valid and invalid conflicts. The potential conflict does not exist if their

future trajectories have no intersect by keeping their current walking directions. The relative

time to the potential conflict should be infinite and the repulsive effect does not exist if two

pedestrians stop walking even though they are very close. As shown in Fig 5, the relative time

to collision (RTTC) is defined as the time difference between the first road user arriving at the

potential conflicting location and the second road user arriving at this location if they keep

their current speeds. Here, we use the concept of time to conflict point (TTCP) to identify the

valid conflict situation. TTCP is defined as the expected time for two pedestrians to pass the

intersection point of their trajectories if they keep their current speeds and directions. The

Fig 5. Definition of TTCP. The relative time to collision (RTTC) is defined as the time difference between the first road user arriving at the potential conflicting

location and the second road user arriving at this location if they keep their current speeds.

https://doi.org/10.1371/journal.pone.0180992.g005
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TTCP for the subject pedestrian α and the conflicting pedestrian β can be given as follows.

TTCPa ¼
kP!c � P!ak

k v!ak
cosh v!a; P

!
c � P!ai ð10Þ

TTCPb ¼
kP!c � P!bk

k v!bk
cosh v!b; P

!
c � P!bi ð11Þ

Where

P!b is the current position of the conflicting pedestrian β;

P!c is the intersection point of the two pedestrian trajectories.

The positive values of TTCPs of both pedestrians indicate that the conflict exists, while the

negative values indicate that one pedestrian had passed the conflict point and no potential col-

lision will occur.

Accordingly, TTCP can be formulated as follows.

Tab ¼
jTTCPa � TTCPbj; if TTCPa > 0 and TTCPb > 0

þ1; otherwise
ð12Þ

(

The relative time (Tαβ) to the conflict point instead of the relative distance is considered as

the influential factors to the repulsive force. The repulsive force (F!r
ab

) of conflicting pedestri-

ans can be presented as follows.

F!r
ab
¼
Pn

i¼1
Ar

b
e
� Tab

Br
ab n!bi

ð13Þ

where Ar
b

is the interaction strength coefficient, Br
ab

is the interaction range coefficient for the

relative time, n is the number of conflicting pedestrians, n!bi
is the normalized vector which is

pointing from pedestrian βi to α.

Interaction with leading pedestrians

We observed that pedestrians preferred to follow the leading pedestrians and joined the group

with similar walking directions to avoid intensive interaction with the counter-flow pedestri-

ans. In crowded situations, pedestrians can keep a stable speed and move smoothly by follow-

ing the leading pedestrians without interactions with the counter-flow pedestrians frequently.

Such leader-follower behavior naturally caused the lane formation phenomenon especially

when the pedestrian flow became crowded. Even though the lane formation could be also gen-

erated without explicitly considering the leader-follower behavior, the generated “lanes” were

weak and were easy to breakdown in our original model. To present the collective behavior

that result in the swarming effect when the pedestrian density become high at signalized inter-

sections, the attractive force from the leading pedestrians is also formulated.

As shown in Fig 6, it is assumed that the subject pedestrian will be attracted by the “foot-

prints” of the pedestrians ahead with the same movement direction [49]. These “footprints”

will disappear in the course of time with a rate 1/T where T can be regarded as the lifecycle of

“footprints”. Different from the repulsive force, the function of the attractive force is not only

related to the distance to “footprints”, but also related to the lifecycle of “footprints”. Accord-

ing to Helbing’s study [49], the attractive force (F!tr) generated from “footprints” can be

Model specification and validation
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formulated as follows.

F!tr ¼ Dt
PT=Dt

n¼1

P
b
Aa

b
exp � Ba

b
kP!aðtÞ � P!bi

ðt � nDtÞk �
nDt
T

� �

n!abi
ðt � nDtÞ ð14Þ

where Δt denotes the discretization interval of lifecycle T, n is the number of interval, P!bi
ðt �

nDtÞ is the position of the “footprint” of pedestrian βi at time (t−nΔt), n!abi
ðt � nDtÞ is the

normalized vector pointing from pedestrian a to the “footprint” of pedestrian βi at time (t
−nΔt),Aa

b
and Ba

b
are the coefficients to be estimated.

Interaction with turning vehicles

Pedestrian-vehicle conflicts frequently occur due to the shared signal phase and risk-taking

behavior. Drivers are usually required to yield to crossing pedestrians in a right-turn-permit-

ted signal phase (right-hand traffic). However, in developing countries such as China, certain

drivers might undertake risky behavior such as entering the crosswalk even if pedestrians are

approaching. On the other hand, some risk-taking pedestrians enter the crosswalk before the

green light or at the beginning of the red light, which also increase the severe conflict with the

vehicles. Since this study mainly focuses on the crossing behavior of pedestrian, the behavior

of vehicle is not discussed here. To model the pedestrian behavior during the pedestrian-vehi-

cle interaction process, a three-layer strategy is implemented. In the upper layer, the pedestrian

can choose to wait or cross to avoid the conflict when a vehicle is approaching. If the pedes-

trian chooses to cross, he/she will plan a detour route to avoid the potential collision in the

middle strategy layer. Then, a repulsive force from the turning vehicle further acts on the

pedestrian moving behavior in the lower layer.

In the upper layer of decision making, we assume that there are two types of pedestrian giv-

ing-way maneuvers when the pedestrian-vehicle conflict occurs: waiting until the vehicle

passes by and crossing before the vehicle passes by. We expect that the probability of choosing

crossing is lower if the pedestrian reaches the potential conflict point later than the vehicle.

Therefore, a binary logit model can be utilized to describe this behavior, in which the utility

function can be formulated by the relative time to the potential conflict point as shown in Fig

7. The “waiting/crossing” strategy is formulated as follows.

Pr crossingð Þ ¼
expðKÞ

1þ expðKÞ
ð15Þ

Fig 6. Trail of “footprint”. The subject pedestrian will be attracted by the “footprints” of the pedestrians

ahead with the same movement direction.

https://doi.org/10.1371/journal.pone.0180992.g006
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K ¼ e0Tttc þ e1 ð16Þ

Tttc ¼ Tveh � Tped ð17Þ

where Pr(crossing) is the probability of choosing “crossing”, Tttc is the relative time to the

potential conflict point, Tveh is the time to the potential conflict point for the vehicle, Tped is the

time to the potential conflict point for the pedestrian, e0 and e1 are the coefficients to be

estimated.

In the middle strategy layer, we assume that pedestrians can identify possible routes to

avoid the collision with vehicles based on the occupied location of conflicting vehicles. Pedes-

trians move through the desired route from their origin to destination via intermediate desti-

nations. A link-node network as shown in Fig 8 can be used to describe this strategy layer. The

initial link cost is set to be the distance between the adjacent cells and is dynamically updated

using a penalized value that depends on the occupation of vehicle. It should be noted that the

detour movement is determined by the combination effect of the desired route and the repul-

sive force from the conflicting vehicle.

As shown in Fig 8, the walking space is divided into separate cells where each cell is con-

nected to each other by directed links. The size of each cell is usually set to 40×40 cm2 [11].

The initial link cost is set to the distance between the adjacent cells and is dynamically updated

using a penalized value that depends on whether the cell is occupied by the turning vehicles.

And then, a shortest path algorithm is applied to find the optimal route. It is assumed that

pedestrians move with individual desired speeds along the optimal route. The desired moving

direction is determined by the current position and the next node (center of the next cell)

along the optimal route. Then, the driving force is updated as follows.

F!d ¼
1

ta

vd
a
e!detour � v!a

� �
ð18Þ

where e!detour is the moving direction along the detour route.

Fig 7. Pedestrian-vehicle conflict. There are two types of pedestrian giving-way maneuvers when the pedestrian-vehicle conflict

occurs: waiting until the vehicle passes by and crossing before the vehicle passes by.

https://doi.org/10.1371/journal.pone.0180992.g007
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In the lower strategy layer, the microscopic moving behavior is assumed to be affected by

the vehicle force field once the vehicle enters the personal interaction range. Similar to the

force from an obstacle, the repulsive force is determined by the pedestrian position and the

direction of speed. Since the size of a vehicle is much larger than the pedestrian, it cannot be

regarded as a point. As shown in Fig 9, a vehicle is now represented by an ellipse with the

radius r(φVα) which depends on the angle between the moving direction of the vehicle and the

moving direction of a close-by pedestrian. The radius can be formulated as follows.

r φVa

� �
¼

w
1 � ð1 � w2=l2Þcos2ðφVa

Þ
ð19Þ

where w is the width of the turning vehicle and l is the length of the turning vehicle.

Accordingly, the repulsive force from a conflicting vehicle can be presented as follows.

F!Va ¼ Ave

rðφVa
Þ � dðφVa

Þ

Bv n!Va; if v!a � n
!

aV > 0

0; otherwise

ð20Þ

8
><

>:

where d(φVα) is the distance between the central of pedestrian α and the central of vehicle V,

n!Va is the normalized vector pointing from the central of pedestrian V and the central of vehi-

cle α, and n!aV is the normalized vector pointing from the central of pedestrian α and the cen-

tral of vehicle V.

Fig 8. Middle layer: Route plan. The walking space is divided into separate cells where each cell is connected to each other by

directed links.

https://doi.org/10.1371/journal.pone.0180992.g008
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Resultant force

The sum of the force terms exerted to pedestrian α from the desired destination, the counter-

flow pedestrians, leading pedestrians, and turning vehicles can be expressed as follows.

F!ðtkÞ ¼ F!dðtkÞ þ F!r
ab
ðtkÞ þ F!trðtkÞ þ F!VðtkÞ þ F!ε ð21Þ

where F!ðtkÞ is the resultant force at time tk, F
!

dðtkÞ is the driving force at time tk, F
!r

ab
ðtkÞ is

the repulsive force from conflicting pedestrian at time tk, F
!

trðtkÞ is the attractive force from

leading pedestrians at time tk, F
!

VðtkÞ is the repulsive force from conflicting vehicle at time tk,

F!ε is the fluctuation term.

The step-wise speed and position can be expressed as follows:

v!aðtkÞ ¼ v!aðtk� 1Þ þ F!ðtkÞDt ð22Þ

P!a tkð Þ ¼ P!a tk� 1ð Þ þ v!a tkð ÞDt þ
1

2
F!ðtkÞðDtÞ

2
ð23Þ

where

v!aðtkÞ: the updated speed at time tk;

v!aðtk� 1Þ: the previous speed at time tk−1;

Δt: the simulation time step which is set to 0.04s in this study;

P!aðtkÞ: the updated position at time tk;

P!aðtk� 1Þ: the previous position at time tk−1.

Fig 9. Lower layer: Repulsive force. A vehicle is now represented by an ellipse with the radius which

depends on the angle between the moving direction of the vehicle and the moving direction of a close-by

pedestrian.

https://doi.org/10.1371/journal.pone.0180992.g009
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Calibration methodology

As shown in Fig 10, the empirical data were extracted using aerial videos captured by an optical

camera with a 1920 × 1080 resolution mounted on a quadrotor with the flight altitude of about

40m-60m above the ground. The trajectories of pedestrians and turning vehicles at one intersec-

tion in Beijing, China were extracted from the video every 0.04s for model calibration. The dataset

consists of the trajectories of 904 pedestrians and 156 turning vehicles. In total, 55,300 position

samples are available. The available observations are trajectory profiles based on time series. From

these data, all relevant quantities can be derived either directly or by applying finite differences,

such as positions, velocities, accelerations, distances between pedestrians, and direction change.

To reproduce reasonable pedestrian trajectories in simulation, we calibrate the regression

models (Eqs (4,5,8 and 15)) and the social force model (Eq (21)) based on maximum likelihood

estimation (MLE). Because the social force model is two-dimensional (include x and y direc-

tion), a two-dimensional MLE [50] is introduced to calibration. The random error of Eq (21)

is assumed to have a bivariate normal probabilistic density function with zero mean and a vari-

ance-covariance matrix (Σ). Accordingly, the likelihood Lk of a single prediction step is directly

related to the probability density function of the normal distribution as follows.

Lk θp
� �

¼
1

2pjΣj1=2
e�
ðF!ðtk ;θpÞ� a

!
ðtkÞÞ

T
Σ� 1ðF!ðtk ;θpÞ� a!ðtkÞÞ
2 ð24Þ

Fig 10. Collection of trajectories for model calibration. Empirical data were extracted using aerial videos captured by

an optical camera with a 1920 × 1080 resolution mounted on a quadrotor with the flight altitude of about 40m-60m above

the ground.

https://doi.org/10.1371/journal.pone.0180992.g010

Model specification and validation

PLOS ONE | https://doi.org/10.1371/journal.pone.0180992 July 17, 2017 14 / 23

https://doi.org/10.1371/journal.pone.0180992.g010
https://doi.org/10.1371/journal.pone.0180992


θp ¼ ½ta;A
r
b
;Br

ab
;Aa

b
;Ba

b
;AV ;BV � ð25Þ

where a!ðtkÞ is the observed acceleration at time tk, θp the model parameters to be estimated.

For a set of N independent individuals and each individual hasMi time steps, the two-

dimensional normal likelihood function can be formulated as follows.

LðθpÞ ¼
QN

i¼1

QMi
k¼1

1

2pjΣj
1
2

e�
ð F!iðtk ;θpÞ� a

!
iðtkÞÞ

T
Σ� 1ðF!iðtk ;θpÞ� a

!
iðtkÞÞ

2

¼
1

ð2pÞ
M1M2 ���MN

1

jΣjM1M2 ���MN=2
e�
PN

i¼1

PMi
k¼1
ðF!iðtk ;θpÞ� a

!
iðtkÞÞ

T
Σ� 1ðF!iðtk ;θpÞ� a

!
iðtkÞÞ

2 ð26Þ

To facilitate the computation, the likelihood function is usually converted into a log-likeli-

hood function as follows.

lnL θp
� �

¼ � M1M2 � � �MNln 2pð Þ �
M1M2 � � �MN

2
ln jΣjð Þ

�
1

2

PN
i¼1

PMi
k¼1
ðF!iðtk; θpÞ � a!iðtkÞÞ

TΣ� 1ðF!iðtk; θpÞ � a!iðtkÞÞ ð27Þ

The maximum log-likelihood estimates of model parameters are obtained such that Eq (27)

is maximized. This could be achieved by minimizing the negative log-likelihood, i.e., -lnL(θp),
in Matlab program. We use the “fminunc” function in Matlab to find a minimum of the nega-

tive log-likelihood function with several variables.

Calibration result

Table 1 shows the parameter estimation for the distribution of exit position in Eqs (4) and (5).

A parameter has statistical significance at a 95% confidence level if the p-value is less than 0.05.

All of the parameters are statistically significant, indicating that the explanatory variables are

meaningful. A positive sign of parameters means that the dependent variable increases as the

explanatory variable value increases, while a negative sign means that the dependent variable

Table 1. Parameter estimation for exit position.

Equation Variables Description Parameters Estimates p-value

Eq (4) M0 A dummy denotes whether the OD direction is from N to F b0 0.68 0.00

M1 A dummy denotes whether the OD direction is straight b1 -1.14 0.00

M2 A dummy denotes whether the destination is on the stop line side b2 -2.42 0.00

dl Crosswalk length b3 -0.032 0.05

dw Crosswalk width b4 0.11 0.03

ρ Pedestrian density b5 1.98 0.01

Constant b6 5.33 0.00

Eq (5) M0 A dummy denotes whether the OD direction is from N to F c0 0.22 0.00

M1 A dummy denotes whether the OD direction is straight c1 -0.058 0.05

M2 A dummy denotes whether the destination is on the stop line side c2 -0.083 0.04

dl Crosswalk length c3 0.00024 0.05

dw Crosswalk width c4 0.062 0.03

ρ Pedestrian density c5 1.70 0.00

Constant c6 0.86 0.05

https://doi.org/10.1371/journal.pone.0180992.t001
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decreases as the explanatory variable value increases. Interestingly, it is found that the increase

in crosswalk length, crosswalk width and pedestrian density will lead to the increase of varia-

tion of exit position.

Table 2 shows the parameter estimation for the desired speed expressed by Eqs (8 and 9).

All of the parameters are statistically significant. This result indicates that the desired speed

increases with increasing waiting time because the parameter sign for waiting time is positive,

whereas the desired speed decreases with increasing pedestrian density because the parameter

sign for pedestrian density is negative.

Table 3 shows the parameter estimation for acceleration behavior in Eqs (15–17) when a

conflicting vehicle is approaching. The positive sign of e0 indicates that pedestrians tend to

cross if the arrival time to the potential conflict point is earlier than that of the conflicting vehi-

cle. In such a situation, the conflict with the vehicle might be alleviated if the vehicle maintains

speeds or decelerates. However, the conflict becomes severe if the vehicle chooses to accelerate.

Table 4 shows the calibration results for the social force model. The estimates are plausible

in terms of their magnitude. According to the p-value at the 95% confidence level, all the

parameters in the modified social force model are significant.

Model Performance

Error analysis

Fig 11(A) and 11(B) show the pedestrian trajectories from real data and simulation outputs,

respectively. To quantify the trajectory performance, Fig 11(C) illustrates the location errors in

x and y directions. It is found that 82.9% of the step-wise location errors are within 0.05m in x

direction and 0.3m in y direction. To further illustrate the simulation performance, we com-

pare the step-wise walking speed, step-wise acceleration, step-wise direction change and cross-

ing time in observation and simulation. The comparison of the step-wise walking speed is

shown in Fig 12(A). The average absolute error of walking speed in simulation is 0.16m/s. The

speed distributions of the simulated environment match closely the observed data according

to the t-value. Fig 12(B) shows the comparison of step-wise acceleration distributions. The

observed and simulated values are not significantly different (t-value<1.96), which confirms

the social force generated by the proposed model is reasonable. Fig 12(C) shows the distribu-

tion of the step-wise direction change between current and previous directions. Zero degree

means the pedestrian keeps the current direction and move straight. The angle variation can

reflect the frequency of interactions with conflicting pedestrians or other factors. According to

the simulation results, most of the pedestrians keep their directions or only change a small

Table 2. Parameter estimation for desired speed.

Variable Coefficient Estimate p-value

Waiting time (tw) a0 0.0027 0.00

Pedestrian density (ρ) a1 -0.56 0.00

Constant a2 1.35 0.00

Standard deviation of error term sd
a

0.54 0.00

https://doi.org/10.1371/journal.pone.0180992.t002

Table 3. Parameter estimation for “waiting/crossing” strategy.

Variables Coefficient Estimates p-value

Relative time to the potential conflicting point when the pedestrian conflict with a moving vehicle (Tttc) e0 0.031 0.00

Constant e1 -0.46 0.00

https://doi.org/10.1371/journal.pone.0180992.t003
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angle in each time step, which agree with the statistics in the observed dataset. Fig 12 It was

found that there are about 95% of the pedestrians finishing crossing within 36s. It is also con-

sistent with the empirical observation.

Fundamental diagram

Since the pedestrian flow characteristic can be represented by fundamental diagram, we com-

pare the speed-density and flow-density diagrams in real data and simulation outputs to dem-

onstrate the model performance. The spatial mean speed and density are calculated by taking a

cell 40×40 cm2 in the crosswalk as the measurement area. We calculate the speed and density

every 1s. As shown in Fig 13, the simulated fundamental diagrams are in good agreement with

the observed ones. But the scattered points are more scattered in observed data. It could be

Table 4. Calibration results for social force model.

Parameters Equation Estimates p-value

τα (6) 0.46 0.00

Ar
b

(13) 0.19 0.00

Br
ab

(13) 1.35 0.00

Aa
b

(14) 0.22 0.01

Ba
b

(14) 0.13 0.02

AV (20) 0.93 0.02

BV (20) 1.54 0.02

https://doi.org/10.1371/journal.pone.0180992.t004

Fig 11. Trajectory comparison. (a) shows the pedestrian trajectories from real data and (b) shows simulation outputs.

https://doi.org/10.1371/journal.pone.0180992.g011
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Fig 12. Simulation performance on speed, acceleration, direction change and crossing time. (a) shows the

average absolute error of walking speed. (b) shows the comparison of step-wise acceleration distributions. (c) shows

the distribution of the step-wise direction change between current and previous directions. (d) shows the distribution of

the crossing time at crosswalk.

https://doi.org/10.1371/journal.pone.0180992.g012

Fig 13. Fundamental diagrams of pedestrian flow. The simulated fundamental diagrams are in good agreement with the observed ones.

https://doi.org/10.1371/journal.pone.0180992.g013
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explained by the stochastic moving behavior because the moving direction and speed are quite

flexible in the real situation especially in free-flow situation. However, the stochastic moving

behavior has not been fully reproduced by simulation even though we applied a complex social

force model and several behavior strategies. To improve the performance of fundamental dia-

gram, the personal heterogeneity and stochasticity should be investigated in the future study.

Lane formation

Lane formation is one of the most interesting phenomena that characterize pedestrian flow.

Such a phenomenon is caused by conflict avoidance and leader-follower behavior. To demon-

strate this phenomenon, a crowded scenario is set for the simulation. The bi-direction pedes-

trian demand is set to be 57 pedestrians per signal cycle according to the video recording. Fig

14 shows the evolution of the lane formation in one signal cycle. The snapshot at 10 s shows

the bi-directional pedestrian flow without conflict with opposite pedestrians. At this moment,

the lane formation phenomenon is not significant because the conflict from the front pedes-

trian is not intense. However, the southbound pedestrian flow begins to form a group when

the pedestrians perceive a serious conflict from the counter-flow. The group formation can be

explained by the attractive effect of the front “footprints”, which improves the smoothness

when a large counter-flow crowd arrives. The snapshot at 15s shows the beginning of conflict

occurrence. At this point, the lane formation phenomenon begins to occur. The lane forma-

tion from the north side appears first and can be explained by the observation that the pedes-

trian crowd with a smaller group size perceives the conflict earlier than the opposite pedestrian

crowd with a larger group size. Earlier lane formation enables easier progress through the

pedestrian counter-flow. The simulation shows that lane formation occurs when the bi-direc-

tion pedestrian flow meets, which is consistent with the observed scenario. The snapshot at 20

s shows that the “lane” is formed when the bi-directional pedestrian flow merges. The observed

scenario shows that the southbound pedestrian flow forms one “lane”, and this “lane” separates

the opposite flow into two “lanes”. In this manner, intensive interaction with the opposite

pedestrians can be reduced, and a higher and more stable speed is possible. The “lanes” gener-

ated by the proposed model are consistent with the observed “lanes”. It was found that the

“lanes” have a similar size and maintain a relatively stable shape for the crossing period using

the proposed model.

Conclusions and future work

A two-layer microscopic model is presented to simulate the interactions between pedestrians

and vehicles at signalized intersections. A modified social force model considering the evasion

behavior with counter-flow pedestrians, the following behavior with the leader pedestrians,

and the collision avoidance behavior with vehicles was developed. The calibration is under-

taken using the trajectory data (samples are given in S1 Table) of pedestrians and vehicles at

one intersection in Beijing, China. The parameters of the developed model are calibrated by a

two-dimensional MLE. Finally, the model performance is verified by comparing observed and

estimated pedestrian flow characteristics, such as speed, acceleration, direction change, funda-

mental diagram and lane formation.

This simulation tool is recommended to be used by public authorities to gain more knowl-

edge about how pedestrians and drivers interact with each other in the crosswalk. Further-

more, the cause of pedestrian-vehicle conflict can be identified in advance by simulation,

which enables to provide information about potential safety problems prior to facility

implementation.
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Fig 14. Lane formation phenomenon. The evolution of the lane formation in one signal cycle.

https://doi.org/10.1371/journal.pone.0180992.g014
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