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Abstract

This study aims to develop a microscopic pedestrian behavior model considering various
interactions on pedestrian dynamics at crosswalks. Particularly, we take into account the
evasion behavior with counter-flow pedestrians, the following behavior with leader pedestri-
ans, and the collision avoidance behavior with vehicles. Aerial video data at one intersection
in Beijing, China are extracted for model calibration. A microscopic calibration approach
based on maximum likelihood estimation is applied to estimate the parameters of a modified
social force model. Finally, we validate step-wise speed, step-wise acceleration, step-wise
direction change, crossing time and lane formation phenomenon by comparing the real data
and simulation outputs.

Introduction

Studying the self-organization phenomena of pedestrian crowd is an active subject in transpor-
tation science. To date, pedestrian behavior modeling has attracted considerable attentions [1-
7]. A better understanding of the interaction behavior would help to improve microscopic
simulation and thus allow more accurate prediction of their behavior for various situations.
This also helps to evaluate the service and safety level on pedestrian related traffic, such as
pedestrian movement in urban streets and crosswalks.

Generally, existing pedestrian behavior models can be classified into three categories: mac-
roscopic, mesoscopic and microscopic models. In the last decades, mesoscopic and micro-
scopic models have attracted much attention because they enable to offer a more detailed
analysis on pedestrian behavior.

The mesoscopic models are usually based on kinetic theory and game theory, in which the
microscopic interaction can be represented through a statistical distribution of the micro-
scopic position and velocity. One of the motivations of applying kinetic theory is to model the
complexity issues of living systems such as crowds. Following the kinetic theory, Bellomo et al
developed a simulation model representing the dynamics of collective behaviors [5, 8]. Degond
et al introduced a hierarchy of kinetic and macroscopic models derived from a heuristic
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description at the micro-scale, and they developed an analogy between a Local Thermodynam-
ically Equilibrium and Nash equilibria in a game theoretic framework [9]. Wang et al [10]
developed two efficient numerical methods for a multiscale kinetic equation in the context of
crowd dynamics with emotional contagion, and they particular focused on when the particle
characteristics can cross and whose long time behavior is not flocking.

The family of microscopic models includes Cellular Automata [11, 12], social force model
[13-15], velocity-based model [16, 17], discrete choice model [18] and lattice gas model [19,
20]. To our knowledge, Cellular Automata model and social force model are popular models
for pedestrian dynamics because they are able to describe most of the self-organization phe-
nomena of large crowd. Cellular Automata are microscopic models with grid-based motion
decisions, in which a set of rules define the state/occupation of a cell in dependence of the
neighborhood of the cell, and a transition matrix is used to update the cell states in successive
time steps. However, pedestrians behave flexibly and the choice of next step is unrestricted
dynamic, which cannot be fully taken into account by only choosing one option from a limited
set of cells. The fluid crowd modeling method of Henderson [21] has been the starting point of
the social force model. Later, a magnetic-force model [22] was developed by borrowing a
motion equation used for magnetic fields. Based on these concepts, a more robust physical
force based model, i.e., social force model [11], was developed and applied to evacuation analy-
sis. The physical force based model makes it possible not only to accurately describe dynamic
pedestrian movement in space, but also to reproduce the self-organization phenomenon such
as lane formation, stop-and-go waves and turbulence [4].

Pedestrian microscopic simulation has gathered a lot of interest in the modeling of safety
analysis of pedestrian infrastructures and crowd evacuation. Lian et al. analyzed collective
movement characteristics on a four-directional intersecting flow and they found that putting
an obstacle in the center of cross area will improve traffic stability [23]. Duives et al. found that
the distance headway, the time headway, the sight angle, the interaction angle, the absolute
speed and the number of pedestrians located nearby significantly influence on the strength of
the reaction of pedestrians walking within a crowd [24]. Bellomo et al. [25] proposed to view
human crowds as a large living system in evacuation dynamics. They found that the dynamics
can be subject to the heterogeneous behaviors and social interactions. Ronchi et al [26] devel-
oped a multi-agent continuous model for large-scale evacuation safety simulation at music fes-
tivals. They found that the evacuation time curves coupled with the visual analysis allowed for
identifying the predominant factor affecting evacuation such as delay time and flows through
exits. In recent decades, a large number of studies have been focused on bi-directional flow in
pedestrian dynamics [27, 28]. The basic characteristics related to fundamental diagrams [27]
and self-organization such as lane formation [29, 30] and jamming transition [31], were inves-
tigated in experimental ground fields or actual scenes. Interestingly, there is no conclusion yet
whether the traffic flow performance is different or not between uni-directional and bi-direc-
tional flows. Teknomo found that the two-way traffic performance reduces significantly as the
number of pedestrians increase [32]. Lam et al. stated that there is no significant difference
between bidirectional flow and unidirectional flow if the densities of the opposite streams are
similar [33]. Helbing et al. stated that counter-flows could be more efficient than unidirec-
tional flows [29]. However, they compare average flows without considering the influence of
the density. Kretz et al. found that the speed and fluxes did not reduce a lot within bi-direc-
tional flow due to the self-organization phenomenon [28].

Crossing behaviors at unsigalized and signalized intersections are critical factors that may
result in safety problems. A case study in China showed that the rates of compliance with traf-
fic rules at signalized intersections are influenced by crossing distance, signal timing, and
pedestrian volume [34]. Yang et al. [35] developed a microscopic simulation model for
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pedestrians’ signal non-compliance decision in the mixed traffic in China. Gorrini et al. [36]
modeled the elderly inhabitants and risky pedestrian-vehicle interaction on unsignalized inter-
sections. Feng et al. [37] built a microscopic model to simulate crossing behavior in a street to
evaluate the service level. Li et al. [38] modified the social force model by considering the
required space and the critical gaps with turning vehicles, which makes it possible to describe
the stop/go decision to the conflicting vehicles. Anvari et al. [39] simulated the interaction
between pedestrian and vehicle by using a rule-based social force model for shared space
environments.

In addition, many research focused on the model calibration and validation. Isenhour et al.
developed a pedestrian simulation tool for fire evacuation analysis and they recommended sev-
enteen verification tests according to the United States’ National Institute of Standards and
Technology [40]. Daamen and Hoogendoorn designed laboratory experiments to estimate
parameters of the Nomad pedestrian simulation model for bottlenecks in the evacuation of a
building and the simulation results showed that complex walker models can indeed be cali-
brated by empirical data [41, 42]. Campanella et al. further quantified the validation of the
Nomad pedestrian simulation model by combining multi-objective assessments such as aver-
age travel times, the speed-density fundamental relation and bottleneck capacity [43]. Seer
et al. estimated the model parameters and their distributions with nonlinear regression based
on observed trajectories [44].

To develop and calibrate microscopic pedestrian models usually requires accurate and com-
prehensive trajectory data on individual pedestrian movement. The traditional data acquisi-
tion method is to shoot video and apply tools to detect and track the individual movement of
each pedestrian. Both manual and automated tracking approaches can be found. Multiple
cameras were usually used to shot videos at intersections and manually extracted trajectories
of individual pedestrians and turning vehicles [6, 7]. The synchronization among multiple
cameras from different views was complicated and required extra effort. To facilitate trajectory
extraction process from video, some researches [44-47] conducted control experiments by
equipping participants with distinctive wear, e.g., colored hats, for better identification. With
the recent price drop of off-the-shelf unmanned aerial vehicle (UAV) products, increasing
researchers are exploring the potentials of using UAVs for pedestrian and vehicle detection
and tracking. On the basis of the authors” ongoing work, this study will use UAVs to obtain
accurate tracking data from a top-down view for pedestrian behavior model calibration.

In summary, there is growing interest in developing a simulation model for pedestrian
dynamic behavior in various scenarios. However, only limited studies shed light on crossing
behavior such as interaction with counter-flow pedestrians, turning vehicles, and traffic regu-
lations. For practical applications such as traffic safety assessment at crosswalks, the current
pedestrian models for crowd simulation are inadequate. This study aims to fill this gap by
developing a microscopic model considering various interaction behaviors among road users
at crosswalk. Furthermore, an estimation approach for calibrating the microscopic model
based on real trajectory data is proposed. Last, the validation is conducted to confirm the
model performance on step-wise location, fundamental diagram and lane formation
phenomenon.

Model description

As shown in Fig 1, the microscopic model includes two layers, i.e., a tactical layer and an oper-
ational layer, inspired by Hoogendoorn and Bovy’s conceptual modeling framework [48]. The
desired direction of movement is determined in the tactical layer. The operational layer deter-
mines the microscopic behavior when pedestrians interact with other agents. In this layer, we
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Fig 1. Model framework. The microscopic model includes two layers, i.e., a tactical layer and an operational
layer. The desired direction of movement is determined in the tactical layer. The operational layer determines
the microscopic behavior when pedestrians interact with other agents.

https://doi.org/10.1371/journal.pone.0180992.9001

assume that the subject pedestrian interacts with other pedestrians and vehicles. The interac-
tion with surrounding pedestrians can be further divided into two types, i.e., interaction with
counter-flow pedestrians and interaction with leading pedestrians. A repulsive force is used to
represent the interaction with counter-flow pedestrians, while an attractive force is used to
represent the interaction with leading pedestrians. The pedestrian-vehicle conflict mechanism
is also included in this model. Risk-taking pedestrians might enter the crosswalk even though
the vehicle is approaching. We model the “waiting/crossing” behavior with a bi-logit model
and develop detour route plan and repulsive force model for pedestrian-vehicle interaction.
The detail of the pedestrian behavior in the tactical and the operational layers is introduced in
the following sections.

Desired direction

As shown in Fig 2, the desired direction is assumed to be determined by the desired exit posi-
tion of the crosswalk. The desired exit position is defined as the intersecting point of the curve
of crosswalk edge and the desired walking trajectory. Assumed that the shape of crosswalk is
rectangular, the desired exit position can be represented by using the perpendicular distance
to the crosswalk boundary (stop line side) when the pedestrian exits the crosswalk. We
assumed that the distribution of exit positions is influenced by origin-destination (OD). More
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Fig 2. Desired exit position and desired direction. The desired direction is assumed to be determined by
the desired exit position of the crosswalk. The desired exit position is defined as the intersecting point of the
curve of crosswalk edge and the desired walking trajectory.

https://doi.org/10.1371/journal.pone.0180992.9002

specifically, the exit position distribution is assumed to have a peak on the right side or left
side and the side of skewness is dependent on the OD direction. However, most probability
distributions (including Gamma, lognormal, and Weibull) cannot represent a distribution
with right-side skewness and they assume that the random variable spreads over the whole
range of the real number axis, but in practice, the exit position makes sense only within the
width of the crosswalk. To fill this gap, the concept of truncated normal distribution is intro-
duced, which is able to represent a distribution with arbitrary skewness and a specified range
as shown in Fig 3. The probability density function is given by:

£ "

X u,0,a,b) = ——"—
Tt D) =

e 22 (2)

o (x)dx = cp(b - “) —o(*2F) (3)

[

where x denotes the exit position; a and b denote the lower bound and upper bound of the
truncated range, respectively, which are constrained by the crosswalk width; @ denotes the
cumulative distribution function of a standard normal distribution; ¢ and o are the parameters
to be estimated, which denote the mean and standard deviation of the non-truncated distribu-
tion, respectively.
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Fig 3. Truncated normal distribution. The concept of truncated normal distribution is able to represent a distribution with arbitrary skewness and a specified
range.

https://doi.org/10.1371/journal.pone.0180992.g003

We assumed that the distribution of exit position is influenced by the OD direction, cross-
walk length dj, crosswalk width d,, and pedestrian density p. y and o can be expressed as the
following regression functions.

= b,M, + b,M, + b,M, + b,d, + b,d, + b.p + b, (4)

0 =M, + M, + M, + cd + cyd, +¢p + ¢ (5)

where My, M;, and M, are the dummy variables representing eight directions of the OD on a
crosswalk; by,. . .,be,Co»- - -,Cg are the model coefficients to be estimated.

Driving force

The step-wise decision process of movement is assumed to include two steps. First, the pedes-
trian selects the velocity direction based on the desired direction and subsequently the desired
speed. Second, the pedestrian adjusts the speed to avoid the conflict with other pedestrians and
vehicles.

Pedestrians are assumed to move with individual desired speed v and desired direction ¢,
—
to the next destination. The desired direction ¢, is determined by the current position P,
—
and the exit position P, at crosswalk. A deviation of the current speed vector ¥, from the

desired speed vector v* ¢, leads to a force to recover to the desired speed within a certain
relaxation time 7.

—
Fd = T_x (V:?a - 701) (6)
P -7
?1: —>£ —)a (7)
[P, — P
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According to the empirical analysis [29], the desired speed v/ is approximately normal dis-
tribution. To compensate for delays at signalized crosswalk, the desired speed is assumed to
increase in the course of waiting time due to the traffic light. Assumed that the desired speed is
influenced by the waiting time t,, and pedestrian density p, we formulate the regression func-
tion for desired speed as follows.

vy =agt, +ap+a,+e (8)

e~ N(0,(a5)") ©)

where ay, a,, and a, are the model coefficients to be estimated; ¢ is the standard deviation of
the error term.

Interaction with counter-flow pedestrians

According to the social force theory [13], each conflicting pedestrian within the subject pedes-
trian’s visual range is assumed to generate a repulsive force to the subject pedestrian, as shown
in Fig 4(A). In the original social force model, it is usually assumed that the magnitude of

the repulsive force increases monotonically as the relative distance decreases. However, this
assumption is not realistic, considering the fact that the repulsive effect might be quite weak if

’
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P.o

N
A
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N
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Y . \ 'l, NO
@ conflict
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’

Counter-flow
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(b)

Fig 4. Collision avoidance with counter-flow pedestrians. (a) It is usually assumed that the magnitude of the repulsive force increases
monotonically as the relative distance decreases. (b) It shows the case of valid and invalid conflicts.

https://doi.org/10.1371/journal.pone.0180992.9004
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Fig 5. Definition of TTCP. The relative time to collision (RTTC) is defined as the time difference between the first road user arriving at the potential conflicting
location and the second road user arriving at this location if they keep their current speeds.

https://doi.org/10.1371/journal.pone.0180992.9005

no potential conflict exists or the relative time to potential conflict point will be quite long. Fig
4(B) shows the case of valid and invalid conflicts. The potential conflict does not exist if their
future trajectories have no intersect by keeping their current walking directions. The relative
time to the potential conflict should be infinite and the repulsive effect does not exist if two
pedestrians stop walking even though they are very close. As shown in Fig 5, the relative time
to collision (RTTC) is defined as the time difference between the first road user arriving at the
potential conflicting location and the second road user arriving at this location if they keep
their current speeds. Here, we use the concept of time to conflict point (TTCP) to identify the
valid conflict situation. TTCP is defined as the expected time for two pedestrians to pass the
intersection point of their trajectories if they keep their current speeds and directions. The
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TTCP for the subject pedestrian « and the conflicting pedestrian 3 can be given as follows.

[

TTCP, = Wcosﬁ’w P.-P) (10)
P -7, . - -

T =, oV Pem Pyl (11)

Where

p is the current position of the conflicting pedestrian f;

ol

¢ is the intersection point of the two pedestrian trajectories.

The positive values of TTCPs of both pedestrians indicate that the conflict exists, while the
negative values indicate that one pedestrian had passed the conflict point and no potential col-
lision will occur.

Accordingly, TTCP can be formulated as follows.

(12)

|TTCP, — TTCPy|, if TTCP, > 0 and TTCP, > 0
off = .
400, otherwise

The relative time (T,) to the conflict point instead of the relative distance is considered as

the influential factors to the repulsive force. The repulsive force (f);ﬁ) of conflicting pedestri-

ans can be presented as follows.

—Tup

— nooy T
F,= Zi:lA/;eB’ﬂ W/;,. (13)

where A is the interaction strength coefficient, B, is the interaction range coefficient for the
relative time, # is the number of conflicting pedestrians, 7,3{ is the normalized vector which is

pointing from pedestrian S; to c.

Interaction with leading pedestrians

We observed that pedestrians preferred to follow the leading pedestrians and joined the group
with similar walking directions to avoid intensive interaction with the counter-flow pedestri-
ans. In crowded situations, pedestrians can keep a stable speed and move smoothly by follow-
ing the leading pedestrians without interactions with the counter-flow pedestrians frequently.
Such leader-follower behavior naturally caused the lane formation phenomenon especially
when the pedestrian flow became crowded. Even though the lane formation could be also gen-
erated without explicitly considering the leader-follower behavior, the generated “lanes” were
weak and were easy to breakdown in our original model. To present the collective behavior
that result in the swarming effect when the pedestrian density become high at signalized inter-
sections, the attractive force from the leading pedestrians is also formulated.

As shown in Fig 6, it is assumed that the subject pedestrian will be attracted by the “foot-
prints” of the pedestrians ahead with the same movement direction [49]. These “footprints”
will disappear in the course of time with a rate 1/T where T can be regarded as the lifecycle of
“footprints”. Different from the repulsive force, the function of the attractive force is not only
related to the distance to “footprints”, but also related to the lifecycle of “footprints”. Accord-

ing to Helbing’s study [49], the attractive force (F)tr) generated from “footprints” can be
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Fig 6. Trail of “footprint”. The subject pedestrian will be attracted by the “footprints” of the pedestrians
ahead with the same movement direction.
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formulated as follows.

At
F,= Atzfiﬁ‘zﬁA;exp(—B;n?y(t) — P (t—nA)| - ”T) W (t—nAt)  (14)

N
where At denotes the discretization interval of lifecycle T, n is the number of interval, P, (t —
nAt) is the position of the “footprint” of pedestrian f3; at time (t-nAt), Wx/i, (t — nAt) is the
normalized vector pointing from pedestrian a to the “footprint” of pedestrian f3; at time (¢
—nAt), A and Bj are the coefficients to be estimated.

Interaction with turning vehicles

Pedestrian-vehicle conflicts frequently occur due to the shared signal phase and risk-taking
behavior. Drivers are usually required to yield to crossing pedestrians in a right-turn-permit-
ted signal phase (right-hand traffic). However, in developing countries such as China, certain
drivers might undertake risky behavior such as entering the crosswalk even if pedestrians are
approaching. On the other hand, some risk-taking pedestrians enter the crosswalk before the
green light or at the beginning of the red light, which also increase the severe conflict with the
vehicles. Since this study mainly focuses on the crossing behavior of pedestrian, the behavior
of vehicle is not discussed here. To model the pedestrian behavior during the pedestrian-vehi-
cle interaction process, a three-layer strategy is implemented. In the upper layer, the pedestrian
can choose to wait or cross to avoid the conflict when a vehicle is approaching. If the pedes-
trian chooses to cross, he/she will plan a detour route to avoid the potential collision in the
middle strategy layer. Then, a repulsive force from the turning vehicle further acts on the
pedestrian moving behavior in the lower layer.

In the upper layer of decision making, we assume that there are two types of pedestrian giv-
ing-way maneuvers when the pedestrian-vehicle conflict occurs: waiting until the vehicle
passes by and crossing before the vehicle passes by. We expect that the probability of choosing
crossing is lower if the pedestrian reaches the potential conflict point later than the vehicle.
Therefore, a binary logit model can be utilized to describe this behavior, in which the utility
function can be formulated by the relative time to the potential conflict point as shown in Fig
7. The “waiting/crossing” strategy is formulated as follows.

exp(K)

P (crossing) = TTep® (15)
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K=¢T, +e (16)

T,

ttc

=T

veh

- Tped ( 17)

where P,(crossing) is the probability of choosing “crossing”, Ty is the relative time to the
potential conflict point, T\, is the time to the potential conflict point for the vehicle, Ty, is the
time to the potential conflict point for the pedestrian, ey and e, are the coefficients to be
estimated.

In the middle strategy layer, we assume that pedestrians can identify possible routes to
avoid the collision with vehicles based on the occupied location of conflicting vehicles. Pedes-
trians move through the desired route from their origin to destination via intermediate desti-
nations. A link-node network as shown in Fig 8 can be used to describe this strategy layer. The
initial link cost is set to be the distance between the adjacent cells and is dynamically updated
using a penalized value that depends on the occupation of vehicle. It should be noted that the
detour movement is determined by the combination effect of the desired route and the repul-
sive force from the conflicting vehicle.

As shown in Fig 8, the walking space is divided into separate cells where each cell is con-
nected to each other by directed links. The size of each cell is usually set to 40x40 cm® [11].
The initial link cost is set to the distance between the adjacent cells and is dynamically updated
using a penalized value that depends on whether the cell is occupied by the turning vehicles.
And then, a shortest path algorithm is applied to find the optimal route. It is assumed that
pedestrians move with individual desired speeds along the optimal route. The desired moving
direction is determined by the current position and the next node (center of the next cell)
along the optimal route. Then, the driving force is updated as follows.

F>d = Ti (Vj?detour - V)a) (18)

o

where €, is the moving direction along the detour route.

Distance (m)
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Fig 7. Pedestrian-vehicle conflict. There are two types of pedestrian giving-way maneuvers when the pedestrian-vehicle conflict
occurs: waiting until the vehicle passes by and crossing before the vehicle passes by.

https://doi.org/10.1371/journal.pone.0180992.g007
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directed links.
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In the lower strategy layer, the microscopic moving behavior is assumed to be affected by
the vehicle force field once the vehicle enters the personal interaction range. Similar to the
force from an obstacle, the repulsive force is determined by the pedestrian position and the
direction of speed. Since the size of a vehicle is much larger than the pedestrian, it cannot be
regarded as a point. As shown in Fig 9, a vehicle is now represented by an ellipse with the
radius r(¢y,) which depends on the angle between the moving direction of the vehicle and the
moving direction of a close-by pedestrian. The radius can be formulated as follows.

r((PW) = 1— (]_ — W2/12)C052((PW<) (19)

where w is the width of the turning vehicle and / is the length of the turning vehicle.
Accordingly, the repulsive force from a conflicting vehicle can be presented as follows.

r((PV1> — d((PVx)
F>Voc = Ave BV i>Va<7 l.f 7»1 : H>on > 0 (20)

0, otherwise

where d(¢v,,) is the distance between the central of pedestrian « and the central of vehicle V,
7, is the normalized vector pointing from the central of pedestrian V and the central of vehi-

cle o, and 7', is the normalized vector pointing from the central of pedestrian & and the cen-
tral of vehicle V.
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Fig 9. Lower layer: Repulsive force. A vehicle is now represented by an ellipse with the radius which

depends on the angle between the moving direction of the vehicle and the moving direction of a close-by
pedestrian.

https://doi.org/10.1371/journal.pone.0180992.9009

Resultant force
The sum of the force terms exerted to pedestrian o from the desired destination, the counter-

flow pedestrians, leading pedestrians, and turning vehicles can be expressed as follows.

— — — — — —
F(t) = F,(t)+ F,(t) + F,(t) + F,(t) + F, (21)

— — —
where F (t;) is the resultant force at time #, F ,(%,) is the driving force at time #;, F (%) is
—
the repulsive force from conflicting pedestrian at time t, F , (t,) is the attractive force from
—
leading pedestrians at time f;, F ,(¢,) is the repulsive force from conflicting vehicle at time #,

= . .
F _ is the fluctuation term.
The step-wise speed and position can be expressed as follows:

V(1) =7, (t,) + F (t)At (22)

P(4) = P(t ) + 7, ()M + 3 F (1)(Ar) (23)

where

V', (t): the updated speed at time t;;

V' (ti_1): the previous speed at time t;_j;

At: the simulation time step which is set to 0.04s in this study;

?a(tk): the updated position at time #;

_) . .o . .
P ,(t—1): the previous position at time #;_;.
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Fig 10. Collection of trajectories for model calibration. Empirical data were extracted using aerial videos captured by
an optical camera with a 1920 x 1080 resolution mounted on a quadrotor with the flight altitude of about 40m-60m above
the ground.

https://doi.org/10.1371/journal.pone.0180992.9010

Calibration methodology

As shown in Fig 10, the empirical data were extracted using aerial videos captured by an optical
camera with a 1920 x 1080 resolution mounted on a quadrotor with the flight altitude of about
40m-60m above the ground. The trajectories of pedestrians and turning vehicles at one intersec-
tion in Beijing, China were extracted from the video every 0.04s for model calibration. The dataset
consists of the trajectories of 904 pedestrians and 156 turning vehicles. In total, 55,300 position
samples are available. The available observations are trajectory profiles based on time series. From
these data, all relevant quantities can be derived either directly or by applying finite differences,
such as positions, velocities, accelerations, distances between pedestrians, and direction change.

To reproduce reasonable pedestrian trajectories in simulation, we calibrate the regression
models (Egs (4,5,8 and 15)) and the social force model (Eq (21)) based on maximum likelihood
estimation (MLE). Because the social force model is two-dimensional (include x and y direc-
tion), a two-dimensional MLE [50] is introduced to calibration. The random error of Eq (21)
is assumed to have a bivariate normal probabilistic density function with zero mean and a vari-
ance-covariance matrix (Z). Accordingly, the likelihood Ly of a single prediction step is directly
related to the probability density function of the normal distribution as follows.

( ) 1 (F)(fk,ﬂp)77(tk))’r2’l(F’(!k,ﬂp)fﬁ(lk))
2
K\ %

=———e€ 24
on|xg|'? @4)
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0, = [t,,A}, B, Ay, By, Ay, By (25)

where @’(t,) is the observed acceleration at time t, 6, the model parameters to be estimated.
For a set of N independent individuals and each individual has M; time steps, the two-
dimensional normal likelihood function can be formulated as follows.

(7,(:,{.91,)77,.@,())%*1 (F),(tk.ﬂp)fﬁ’,(tk))
7

16, =TI IL |z|2

1 1 Zz IZk 1 F (te0p)— 1(tk)) z*l(f,(rk.%)f?,(%))
= (26)

(Qn)M]MZ'“MN |Z|M1M2“'MN/2

To facilitate the computation, the likelihood function is usually converted into a log-likeli-
hood function as follows.

MM, ---M

lnL(OP) =—-MM,- - M,n(2r) — Nin(|1Z))

——Z, S (F (4,6, - @,(8) 2 (F (4,6, - @,(1) (27)

The maximum log-likelihood estimates of model parameters are obtained such that Eq (27)
is maximized. This could be achieved by minimizing the negative log-likelihood, i.e., -InL(6,),
in Matlab program. We use the “fminunc” function in Matlab to find a minimum of the nega-
tive log-likelihood function with several variables.

Calibration result

Table 1 shows the parameter estimation for the distribution of exit position in Egs (4) and (5).
A parameter has statistical significance at a 95% confidence level if the p-value is less than 0.05.
All of the parameters are statistically significant, indicating that the explanatory variables are
meaningful. A positive sign of parameters means that the dependent variable increases as the
explanatory variable value increases, while a negative sign means that the dependent variable

Table 1. Parameter estimation for exit position.

Equation Variables Description Parameters Estimates p-value
Eq (4) Mo A dummy denotes whether the OD direction is from N to F bo 0.68 0.00
M A dummy denotes whether the OD direction is straight by -1.14 0.00
M, A dummy denotes whether the destination is on the stop line side bo -2.42 0.00
a Crosswalk length bs -0.032 0.05
dy Crosswalk width by 0.11 0.03
Pedestrian density bs 1.98 0.01
Constant be 5.33 0.00
Eq (5) Mo A dummy denotes whether the OD direction is from N to F Co 0.22 0.00
M, A dummy denotes whether the OD direction is straight c -0.058 0.05
Mo A dummy denotes whether the destination is on the stop line side Co -0.083 0.04
d Crosswalk length C3 0.00024 0.05
dy Crosswalk width Cs 0.062 0.03
o) Pedestrian density Cs 1.70 0.00
Constant Cs 0.86 0.05
https://doi.org/10.1371/journal.pone.0180992.t001
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Table 2. Parameter estimation for desired speed.

Variable Coefficient Estimate p-value
Waiting time (t,,) ao 0.0027 0.00
Pedestrian density (o) ay -0.56 0.00
Constant a 1.35 0.00
Standard deviation of error term a9 0.54 0.00

2

https://doi.org/10.1371/journal.pone.0180992.t002

decreases as the explanatory variable value increases. Interestingly, it is found that the increase
in crosswalk length, crosswalk width and pedestrian density will lead to the increase of varia-
tion of exit position.

Table 2 shows the parameter estimation for the desired speed expressed by Eqs (8 and 9).
All of the parameters are statistically significant. This result indicates that the desired speed
increases with increasing waiting time because the parameter sign for waiting time is positive,
whereas the desired speed decreases with increasing pedestrian density because the parameter
sign for pedestrian density is negative.

Table 3 shows the parameter estimation for acceleration behavior in Eqs (15-17) when a
conflicting vehicle is approaching. The positive sign of ey indicates that pedestrians tend to
cross if the arrival time to the potential conflict point is earlier than that of the conflicting vehi-
cle. In such a situation, the conflict with the vehicle might be alleviated if the vehicle maintains
speeds or decelerates. However, the conflict becomes severe if the vehicle chooses to accelerate.

Table 4 shows the calibration results for the social force model. The estimates are plausible
in terms of their magnitude. According to the p-value at the 95% confidence level, all the
parameters in the modified social force model are significant.

Model Performance
Error analysis

Fig 11(A) and 11(B) show the pedestrian trajectories from real data and simulation outputs,
respectively. To quantify the trajectory performance, Fig 11(C) illustrates the location errors in
x and y directions. It is found that 82.9% of the step-wise location errors are within 0.05m in x
direction and 0.3m in y direction. To further illustrate the simulation performance, we com-
pare the step-wise walking speed, step-wise acceleration, step-wise direction change and cross-
ing time in observation and simulation. The comparison of the step-wise walking speed is
shown in Fig 12(A). The average absolute error of walking speed in simulation is 0.16m/s. The
speed distributions of the simulated environment match closely the observed data according
to the t-value. Fig 12(B) shows the comparison of step-wise acceleration distributions. The
observed and simulated values are not significantly different (t-value<1.96), which confirms
the social force generated by the proposed model is reasonable. Fig 12(C) shows the distribu-
tion of the step-wise direction change between current and previous directions. Zero degree
means the pedestrian keeps the current direction and move straight. The angle variation can
reflect the frequency of interactions with conflicting pedestrians or other factors. According to
the simulation results, most of the pedestrians keep their directions or only change a small

Table 3. Parameter estimation for “waiting/crossing” strategy.

Variables Coefficient Estimates p-value
Relative time to the potential conflicting point when the pedestrian conflict with a moving vehicle ( Ty.) = 0.031 0.00
Constant ey -0.46 0.00

https://doi.org/10.1371/journal.pone.0180992.t003

PLOS ONE | https://doi.org/10.1371/journal.pone.0180992 July 17,2017 16/23


https://doi.org/10.1371/journal.pone.0180992.t002
https://doi.org/10.1371/journal.pone.0180992.t003
https://doi.org/10.1371/journal.pone.0180992

@. PLOS | ONE Model specification and validation

Table 4. Calibration results for social force model.

Parameters Equation Estimates p-value
Ty (6) 0.46 0.00
Al (13) 0.19 0.00
B, (13) 1.35 0.00
Al (14) 0.22 0.01
B; (14) 0.13 0.02
Ay (20) 0.93 0.02
By (20) 1.54 0.02

https://doi.org/10.1371/journal.pone.0180992.1004

angle in each time step, which agree with the statistics in the observed dataset. Fig 12 It was
found that there are about 95% of the pedestrians finishing crossing within 36s. It is also con-
sistent with the empirical observation.

Fundamental diagram

Since the pedestrian flow characteristic can be represented by fundamental diagram, we com-
pare the speed-density and flow-density diagrams in real data and simulation outputs to dem-
onstrate the model performance. The spatial mean speed and density are calculated by taking a
cell 40x40 cm? in the crosswalk as the measurement area. We calculate the speed and density
every 1s. As shown in Fig 13, the simulated fundamental diagrams are in good agreement with
the observed ones. But the scattered points are more scattered in observed data. It could be
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Fig 11. Trajectory comparison. (a) shows the pedestrian trajectories from real data and (b) shows simulation outputs.
https://doi.org/10.1371/journal.pone.0180992.9011
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Fig 13. Fundamental diagrams of pedestrian flow. The simulated fundamental diagrams are in good agreement with the observed ones.
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explained by the stochastic moving behavior because the moving direction and speed are quite
flexible in the real situation especially in free-flow situation. However, the stochastic moving
behavior has not been fully reproduced by simulation even though we applied a complex social
force model and several behavior strategies. To improve the performance of fundamental dia-
gram, the personal heterogeneity and stochasticity should be investigated in the future study.

Lane formation

Lane formation is one of the most interesting phenomena that characterize pedestrian flow.
Such a phenomenon is caused by conflict avoidance and leader-follower behavior. To demon-
strate this phenomenon, a crowded scenario is set for the simulation. The bi-direction pedes-
trian demand is set to be 57 pedestrians per signal cycle according to the video recording. Fig
14 shows the evolution of the lane formation in one signal cycle. The snapshot at 10 s shows
the bi-directional pedestrian flow without conflict with opposite pedestrians. At this moment,
the lane formation phenomenon is not significant because the conflict from the front pedes-
trian is not intense. However, the southbound pedestrian flow begins to form a group when
the pedestrians perceive a serious conflict from the counter-flow. The group formation can be
explained by the attractive effect of the front “footprints”, which improves the smoothness
when a large counter-flow crowd arrives. The snapshot at 15s shows the beginning of conflict
occurrence. At this point, the lane formation phenomenon begins to occur. The lane forma-
tion from the north side appears first and can be explained by the observation that the pedes-
trian crowd with a smaller group size perceives the conflict earlier than the opposite pedestrian
crowd with a larger group size. Earlier lane formation enables easier progress through the
pedestrian counter-flow. The simulation shows that lane formation occurs when the bi-direc-
tion pedestrian flow meets, which is consistent with the observed scenario. The snapshot at 20
s shows that the “lane” is formed when the bi-directional pedestrian flow merges. The observed
scenario shows that the southbound pedestrian flow forms one “lane”, and this “lane” separates
the opposite flow into two “lanes”. In this manner, intensive interaction with the opposite
pedestrians can be reduced, and a higher and more stable speed is possible. The “lanes” gener-
ated by the proposed model are consistent with the observed “lanes”. It was found that the
“lanes” have a similar size and maintain a relatively stable shape for the crossing period using
the proposed model.

Conclusions and future work

A two-layer microscopic model is presented to simulate the interactions between pedestrians
and vehicles at signalized intersections. A modified social force model considering the evasion
behavior with counter-flow pedestrians, the following behavior with the leader pedestrians,
and the collision avoidance behavior with vehicles was developed. The calibration is under-
taken using the trajectory data (samples are given in S1 Table) of pedestrians and vehicles at
one intersection in Beijing, China. The parameters of the developed model are calibrated by a
two-dimensional MLE. Finally, the model performance is verified by comparing observed and
estimated pedestrian flow characteristics, such as speed, acceleration, direction change, funda-
mental diagram and lane formation.

This simulation tool is recommended to be used by public authorities to gain more knowl-
edge about how pedestrians and drivers interact with each other in the crosswalk. Further-
more, the cause of pedestrian-vehicle conflict can be identified in advance by simulation,
which enables to provide information about potential safety problems prior to facility
implementation.
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(b) Lane formation in simulation
Fig 14. Lane formation phenomenon. The evolution of the lane formation in one signal cycle.
https:/doi.org/10.1371/journal.pone.0180992.9014
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