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Abstract

The next-generation network provides state-of-the-art access-independent services over

converged mobile and fixed networks. Security in the converged network environment is a

major challenge. Traditional packet and protocol-based intrusion detection techniques can-

not be used in next-generation networks due to slow throughput, low accuracy and their

inability to inspect encrypted payload. An alternative solution for protection of next-genera-

tion networks is to use network flow records for detection of malicious activity in the network

traffic. The network flow records are independent of access networks and user applications.

In this paper, we propose a two-stage flow-based intrusion detection system for next-gener-

ation networks. The first stage uses an enhanced unsupervised one-class support vector

machine which separates malicious flows from normal network traffic. The second stage

uses a self-organizing map which automatically groups malicious flows into different alert

clusters. We validated the proposed approach on two flow-based datasets and obtained

promising results.

Introduction

A next-generation network (NGN) is an open platform which provides communication, mul-

timedia, and business services through a comprehensive IP-based network architecture. NGN

enables the user to use multiple QoS-enabled broadband technologies for service provisioning.

These services have been used in multiple business and social applications [1], [2]. The NGN

services are provided on converged mobile and fixed networks. The key aspect in a NGN

architecture is the separation of service, control, transport and access functions in different lay-

ers. These layers are interconnected with each other through well-defined interfaces [3]. Fig 1

shows the architecture of a next-generation network. The user equipment (UE) is connected

to the access layer. The access network layer is a combination of legacy networks e.g. PSTN,

GSM, and ISDN. The access layer is connected with a core layer. The core layer consists of

high-end routers and switches. This layer uses IP network to forward network traffic to a con-

trol layer. The control layer comprises of Soft-switches and performs call control and media
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gateway functions for NGN services. The service provisioning layers include various multime-

dia and communication NGN services e.g. VoIP, IPTV, VoD and VPN [4].

Next Generation Networks (NGNs) architecture is open for different types of access net-

works and user services. However, the convergence of heterogeneous network architectures

can have serious security implications [5, 6]. Traditional security approaches cannot fully

counter the intrusion attacks [7]. To complement traditional security measures, intrusion

detection systems (IDS) came in and become an integral part of computer networks. [8] Intru-

sion detection systems analyze host logs or network activities and raise an alarm if the suspi-

cious behavior is detected.

Despite extensive research in intrusion detection existing [9], a large number of successful

cyber attacks on government and corporate intranets have been observed recently. The Global

Information Security State Survey [10] gathers that the total number of security incidents

detected by respondents climbed to 42.8 million in 2014, an increase of 48% from 2013. The

rising trend of attacks shows that existing intrusion detection systems still need improvement,

and new approaches are imperative for defense against cyber attacks [11].

Fig 1. Next-generation network architecture.

https://doi.org/10.1371/journal.pone.0180945.g001
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The accuracy and efficiency of intrusion detection systems become more important in

the context of next-generation networks because the NGN inherits the vulnerabilities of

access networks [12]. In this paper, we have proposed a flow-based intrusion detection

model for next-generation networks. Our approach uses a two-stage process for detection of

malicious activity in network traffic. The first stage of the detection process uses one-class

support vector machine (SVM) and determines if a network flow is malicious or normal.

Although one-class SVM is supervised learning technique, we employ an enhanced version

of one-class SVM which supports unsupervised learning. The second stage process employs

a self-organizing map (SOM) to automatically cluster malicious flows in different attack

classes. We validated the proposed approach on three flow-based datasets and obtained

promising results.

The remainder of this paper is organized as follows. Section 2 gives an overview of flow-

based intrusion detection. Section 3 describes the existing work in flow-based intrusion detec-

tion systems. Section 4 gives a detail description of our proposed approach. The datasets used

for evaluation of the proposed approach are discussed in section 5. We discuss experimental

results in section 6. Finally, the conclusion is presented in Section 7.

Flow-based intrusion detection

Traditional intrusion detection systems use deep packet or state-full protocol inspection to

detect malicious activity in the network traffic. Deep packet inspection (DPI) techniques scan

the packet beyond the protocol header and inspect its content. The DPI techniques provide

complete visibility of network traffic and filter the packet content for malware, virus or any

other attack traces. [13] However, deep-packet inspection becomes impractical for high-speed

backbone links [14]. Also, the deep-packet inspection is not possible when packet content

is encrypted. In state-full protocol inspection, the complete semantics of the protocol are

checked against the specification and any out of the range value is considered an anomaly.

State-full protocol inspection techniques are protocol specific and cannot be generalized for

unknown protocols. Also, both packet and state-full protocol inspection techniques are com-

putationally costly and become a performance bottleneck [9, 15].

Packet and protocol-based intrusion detection systems cannot be used in next-generations

networks due to their limitations [16, 17]. An alternative solution for protection of next-gener-

ation networks is flow-based intrusion detection [15, 18]. The flow-based intrusion detection

systems use network flow records as input and try to find out if network traffic is normal or

malicious [19]. The flow records contain aggregated information of related network packets. A

network flow is defined as “a set of packets or frames passing an observation Point in the net-

work during a certain time interval. All packets belonging to a particular flow have a set of

common properties” [20]. The network flows have a number of applications including net-

work traffic accounting, billing, monitoring and security.

The network flows are collected from the network using a flow export and collection proto-

col. The process of flow export and collection is controlled by a flow export protocol. The most

common flow collection and export protocol is Cisco’s Netflow. Netflow was adapted by IETF

and has been formalized in the form of IP Flow Information Exchange (IPFIX) [20]. The

deployment of IPFIX/Netflow consists of following processes:-

• Packet capturing at observation point. Observation points collect the packets being passed

through a specific interface. The observation points can be standalone devices or a part of

flow-enabled routers. The observation process forwards the packet to a flow metering and

export process.
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• Flow metering and export process. The metering process time-stamps the packets and aggre-

gates them into network flows. The flows can be sampled or filtered according to the require-

ments. These flows are forwarded to an export process which exports the flows in IPFIX

record. These IPFIX records are forwarded to a collector process.

• Collecting process. The collecting process receives IPFIX records from exporting process.

There can be multiple collecting processes receiving IPFIX records from different exporting

processes. Accordingly there can be multiple exporting processes sending IPFIX records to

multiple collecting processes. The collecting process store and pre-process the flow data for

the flow analysis and monitoring application.

Flow-based intrusion detection systems are also based on the generic intrusion detection

model presented in [21]. The incoming flow records are collected from the network using

observation points (event-boxes). These flows can be optionally stored in a flow database

(database-boxes). Then these flows are forwarded to an analysis box for evaluation. The analy-

sis box uses anomaly detection techniques for attack detection. If any attack is detected, a

response is initiated through the response-boxes.

Related work

Flow-based intrusion detection is an active area of research. A number of flow-based tech-

niques using statistical and machine learning methods for detection of malicious flows have

been proposed. In [22], the authors proposed a flow-based intrusion detection system using

SVM based one-class classification. The one-class SVM (OC-SVM) uses malicious flows as

target class. Learning on malicious flows is fast and efficient. After learning, the OC-SVM

detects the malicious flows while normal flows are discarded. A flow-based dataset developed

by [23] is used for evaluation. The OC-SVM gives very good results with 98% accuracy and

0% false alarm rate. These malicious flows can be further analyzed for identification of attack

type.

A network anomaly detection system using multiple unsupervised clustering techniques is

presented in [24]. The technique uses a change detection algorithm to detect the malicious

flows. The malicious flows are clustered in partitions using sub-space and density-based clus-

tering. The clusters are also ranked in order of abnormality and all clusters above the detection

threshold are considered anomalies. The technique is evaluated on MAWI and KDD99 data-

sets and results show that proposed technique obtained good results using unsupervised learn-

ing algorithms.

A flow-based intrusion detection technique using block based neural network (BBNN) is

proposed in [25]. The BBNN is constructed using Field Programmable Gate Arrays (FPGAs)

for efficient and real-time processing of high volume of data. The input to a neuron block in

BBNN is a vector of values while output is calculated using sum of the weighting vector value

and a bias. The technique is evaluated on NetFlow records generated from the DARPA dataset.

The results show that detection rate of BBNN is same as off SVM, but the running time is quite

good because of hardware-based detection engine. However, the results are obtained from a

packet-based dataset which was manually labeled.

A flow-based anomaly detection system using Principle component analysis (PCA) is

proposed in [26]. The sketch data structure is used to store the hash value of network traces.

The hashed network traces are converted into entropy time-series and forwarded to a PCA

classifier. The technique is evaluated on MAWI dataset [27]. The proposed technique show

improvement in results when compared to other PCA based anomaly detectors over the same

dataset.

A two-stage flow-based intrusion detection model for next-generation networks
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A multi-layer perceptron (MLP) with heuristic optimization algorithm is suggested in [28].

The MLP interconnection weights are optimized using two heuristic techniques: Cuckoo and

Particle Swan Optimization with Gravitational Search Algorithm (PSOGSA). The method per-

forms classification of malicious and benign network flows. The technique is evaluated on the

dataset used in [22] and flow records generated from DARPA. The results show that MLP with

PSOGSA optimization gives the accuracy of 99.55% with 0.21% false alarm rate.

In [29], the authors have proposed a two-stage neural network for intrusion detection using

flow records. Two neural network structures, multilayer and radial basis function networks,

have been used to compare performance. The first stage detects significant changes in the traf-

fic that could be an attack. If an attack is detected, the flow data is forwarded to a second stage

classifier which determines the type of attack. The technique is evaluated on Netflow v5 rec-

ords generated from DARPA dataset. The first stage neural network gives 94.2% detection rate

and 3.4% false positive rate. For second stage, best detection rate of 99.42% is also obtained

with a false positive rate of 2.6%.

An improved nature-inspired technique for optimum-path forest clustering (OPFC) is pro-

posed in [30]. The OPFC is a k-NN graph in which nodes are weighted using a probability

density function. The authors used different optimization techniques including Bat algorithm,

Gravitational search, Harmony search and Particle swarm optimization to determine the best

value of k. The approach has been evaluated on a flow-based dataset and results show that opti-

mum-path forest clustering outperforms k-means and SOM in flow-based detection.

A ward clustering approach to detect the dictionary attacks over SSH is presented in [31].

SSH is a very common way to access the remote servers over the Internet and remains a favor-

ite attack target. The authors used two innovations of employing of checking the existence of

connection protocols, measure men of auth-packet and the next and identification of transit

point of each sub-protocol. The best results include a 99.90% detection rate for unsuccessful

SSH attack attempts and 92.80% detection of successful SSH attempts.

Although there is extensive work in flow-based intrusion detection, Our approach signifi-

cantly differs from the existing work. We have used a multi-stage approach that swiftly dis-

cards normal flows in the first stage. The second stage only process malicious flows and no

resources are wasted on unnecessary inspection of normal flows. The first stage uses one-

class classification with the malicious flow category as positive class. All normal flows are

considered outliers. Learning on malicious flows is fast and efficient because the malicious

traffic is only in a fraction of normal traffic. The second stage categorizes the flows in the dif-

ferent alert cluster based on the flow characteristics. This provides a deep insight into the

malicious traffic and under attack services. Both classification stages use unsupervised learn-

ing, therefore, no labeled training set is required. We have evaluated the proposed frame-

work on a realistic flow-based dataset, therefore, experimental results are very close to real-

world scenarios.

Proposed approach

NGN encapsulates a variety of network architectures, services, and protocols in a layered

architecture. The IPFIX/Netflow flow records provide a unified way to access traffic flow infor-

mation from the next-generation network. These flow records are collected from the network

using specialized flow-enabled network devices. The flow data is accessed by a flow analysis

application for congestion detection, billing and network security. Fig 2 shows the implemen-

tation of flow-based intrusion detection system in the NGN framework. The flow information

is collected at the provider edge and forwarded to the intrusion detection system. Provider

edge is a router installed at the boundary of the network. The intrusion detection system

A two-stage flow-based intrusion detection model for next-generation networks
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analyzes the flow records passing through the provider edge and raise an alarm if malicious

flows are detected.

We propose a two-stage intrusion detection model to detect malicious traffic in next-gener-

ation networks using network flows. Fig 3 shows the architecture of our approach. The model

analyzes the flow data to detect malicious network traffic. The intrusion detection model

consists of two stages. The first stage detection process employs a one-class support vector

machine(SVM). The one-class classifier only identifies malicious flows while all other flows

Fig 2. Flow monitoring in next-generation network architecture.

https://doi.org/10.1371/journal.pone.0180945.g002

Fig 3. Architecture of two-stage flow-based intrusion detection system.

https://doi.org/10.1371/journal.pone.0180945.g003
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are discarded. The malicious flows are forwarded to the second stage which uses self-organiz-

ing map to group similar malicious flows into different attack clusters. Every attack cluster rep-

resents a specific type of network attack.

The first stage detection

The first stage detection separates malicious and normal flows network traffic. Since we have

only one class of interest i.e. malicious, the problem is solved by using a one-class classifier

[32]. The one-class classifier recognizes objects of only one class. All input objects are either

belong to a target (positive) class or considered outliers [33]. One-class classification is used

when training dataset for only one class (target class) is available. The training datasets for

other classes are not available or difficult to obtain.

The one-class classification has already been in use for intrusion detection [34]. Available

once class classification includes density estimation, reconstruction methods and support

vector machines (SVM). We use SVM-based one-class classification techniques because

SVM techniques give accurate results for intrusion detection [35, 36]. One-class SVM con-

structs a boundary around the target class objects in the form of a hyperplane. The hyper-

plane is constructed in the feature space such that distance from the origin is maximum

[37].

Mathematically, we assume that xi is a training example from a dataset X = {x1, . . ., xm} in

the input space. Let ϕ is a mapping function which maps the input feature space X to a high

dimensional feature space H. The dot product in H can be computed using following simple

kernel function:-

Kðx; yÞ ¼ ð�ðxÞ:�ðyÞÞH ð1Þ

To separate the input examples from the origin with maximum margin using a hyperplane,

following quadratic condition is applied

minw;x;r
1

2
kwk2

þ
1

mn

Xm

i¼1

xi � r ð2Þ

Subject to

ðw:�ðxiÞÞ � r � xi; xi � 0 ð3Þ

The ξi is a slack variable used to penalize the outliers. The ρ is the offset and w is weight vec-

tor. The ν 2 (0,1) is a user-defined error control parameter and sets an upper bound on the

fraction of outliers and a lower bound on the number of support vectors. A function f(x) is

defined which takes the value +1, if x falls within the hyperplane and −1 otherwise. Solving the

above the minimization problem, the decision function for classification is defined:

f ðxÞ ¼ sgnððw:�ðxÞÞ � rÞ ð4Þ

The one-class SVM is a supervised learning algorithm and requires a labeled training set

for target class examples. To use one-class SVM with unsupervised learning, we employ an

enhancement proposed in [38]. The enhancement considers the normal flows in the training

dataset as outliers and removes them before training. The enhanced SVM introduces a variable

ηwhich represents an estimate that an instance in the unlabeled training set belongs to the tar-

get class (malicious flows) or is an outlier (normal flows). The η has value near to 0 for all outli-

ers and eliminates the effect of outliers in the SVM training. Another variable β controls the

maximum number of points that are allowed to be outliers. Using enhancement proposed in
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[38], the Eq (2) can be written as:

minw;rminZi

1

2
kwk2

þ

1

mn

Xm

i¼1

Zimaxið0; r � w�ðxiÞÞ � r

subject to eTZ � mb

ð5Þ

The minimization problem shown in Eq 5 is a non-convex problem which means that is very

difficult to find a global minimum point. The problem is solved using the concave convex pro-

cedure [38]:

Let g(h(w)), where h(w) = max(0, ρ − wϕ(x)) and g(u) = infβ20,1[βT μ], using concave duality,

the objective function is reformulated as follows:

minw;r;ZEvex þ Ecave

Evex ¼
jjwjj

2
þ ZhðwÞ; Ecave ¼ g�Z

ð6Þ

where g� is the concave dual of g. Evex and Ecave are concave and convex differentiable functions.

The enhanced one-class SVM requires that malicious flows in unlabeled training dataset

should be in sufficiently large quantity than normal flows. To ensure that majority of flows in

the unlabeled training dataset are malicious, we propose the use of honeypot-based flow collec-

tion architecture to generate the unlabeled dataset for the training of one-class SVM [39]. Fig 4

shows the malicious flow collection process using honeypot. The honeypot is directly con-

nected with the external routing interface. The flow records collected through honeypot are

mostly malicious [40] and may also contain some non-malicious traffic. The unlabeled flows

are forwarded to the one-class SVM classifier. These malicious flows are used for training of of

enhanced one-class SVM as shown in Fig 5. The one-class SVM employs an outlier detection

step which removes any non-malicious flows from the dataset. Only malicious flows are uti-

lized to build a malicious flow classification profile.

After training, the one-class SVM is used to process the flows being extracted from the net-

work. The one-class SVM separates malicious flows from the network traffic. The malicious

flows are forwarded to the second stage detection process while normal flows are discarded.

The second stage detection

The first stage detection process only separates malicious flows from the network. It does not

associate an attack class with malicious flows. These malicious flows require a manual inspec-

tion to determine the attack type and corrective actions. Although malicious flows are in a

small fraction as compared to normal network traffic, these flows can still be in large numbers

in the NGN environment. Manual inspection of such large number of flow is a difficult task.

To group similar malicious flows together, we employ the second stage detection process.

The second stage detection process automatically place malicious flows into different attack

clusters.

We use a self-organizing map (SOM) for clustering of malicious flows into different attack

clusters [41]. The SOM is a neural network consisting of an input and output neuron layers.

The neurons in the input layer inter-connects with neurons in output layer through unsuper-

vised competitive learning network [42]. The competitive learning is a winner-take-all

approach and consists of two steps; competition and cooperation. In the competition phase, a

neuron in output layer is selected among all competing neurons using minimum Euclidean

A two-stage flow-based intrusion detection model for next-generation networks
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distance. The neuron whose weight vector comes the closest to the input vector is declared

winner.

Mathematically, for each input v 2 V, i� neuron is declared “winner” if:

i� ¼ argminijjwi � vjj ð7Þ

In cooperation, the weights of the winner and its neighboring neurons are adjusted using a

time decay function. The effect of weight adjustment is high at the origin and decreases with

the distance and time. The range of the neighborhood is defined by a Gaussian function:

sðtÞ ¼ s0e
� 2s0

t
tmð Þ ð8Þ

where

σ0 = Initial value of neighborhood range

t and tm = The current and maximum iteration respectively

σ(t) = The range of neighborhood at t stage.

After a winning neuron is selected, the weights of neighboring neuron vectors are adjusted:

wiðt þ 1Þ ¼ wiðtÞ þ ZðtÞsðtÞðv � wiðtÞÞ ð9Þ

In the above equation, t represents the current stage and η(t) is the learning rate. The continuous

Fig 4. Malicious flow collection process.

https://doi.org/10.1371/journal.pone.0180945.g004
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process of competition and cooperating marks the cluster on topographic self-organizing map.

Each neuron on the output layer denotes the resultant clusters. The number of the output clus-

ters has to be set before the clustering by a user defined parameter k.

The SOM requires a training set of malicious flows to create profiles for different attack

clusters. We define the number of attack cluster and corresponding labels using the domain

knowledge of the network environment. We manually give an attack label to all clusters in the

SOM by analyzing the network flows in the cluster. During clustering process, all incoming

flows are compared with all clusters and the label of the closest cluster is given to the malicious

flow.

The datasets

The proposed model has been evaluated on three flow-based datasets. The first dataset was

developed in University of Twente and is publicly available [23]. We have created the second

dataset ourselves by combining network flows of various malware and Advance Persistent

Threats (APTs) with normal flow traffic. The third dataset consists of SIP traffic data. The flow

records in all datasets are in Netflow v5 format. The Netflow v5 is a widely used flow export

and collection protocol and supported by all major hardware manufacturers [43]. We have

used 9-tuple flow records in the experiment. The details of attributes in the 9-tuple flow rec-

ords is given in Table 1.

Sperotto’s dataset

The Sperotto’s dataset consists of 14.2M flow records collected through a “Honeypot” deploy-

ment in University of Twente network [23]. The honeypot was directly connected to the inter-

net to ensure maximum exposure to attacks. Three common services SSH, HTTP and FTP

were run over the honeypot. Information about the flows is extracted from the log files of

Fig 5. Training of one-class SVM using malicious flow.

https://doi.org/10.1371/journal.pone.0180945.g005
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receptive services. Part of the traffic in the dataset is the side effect of alerts and is not consid-

ered malicious. During the flow collection, one hacker installed an IRC proxy over the honey-

pot. The traffic generated due to IRC is also non-malicious. The alert types and number of

flows corresponding to each alert type are shown in Table 2.

The four time related attributes start-time start-msec, end-time and end-msec in the original

dataset are computed to a single attribute of duration in milliseconds [22]. Also the dataset

itself does not contain any normal traffic, we have included a large number of normal flows in

the dataset. The normal flows have been collected by ourselves from a medium-size network

of legitimate users. The behavior of users during the normal flow collection period include

browsing web, streaming videos, online games and remote server access.

The Sperotto’s dataset is very large, therefore we have extracted a subset of network flows

from the dataset using random sampling. Table 3 gives details of network flows in the training

and test dataset. The training dataset contains 10000 malicious flows and 500 normal flows.

The testing dataset consists of 11740 malicious and 124240 normal flows.

APT and malware dataset

The Sperotto’s dataset has a limited variety of malicious traffic. Most of the malicious traffic

only consists of SSH attacks flows. To evaluate the performance of the proposed IDS against

modern attacks, we experimented with the latest malware and advance persistent threats

Table 2. Detailed flows in Sperotto’s dataset.

Alert Type No. of flows Category

SSH 13942629 Malicious

FTP 13 Malicious

HTTP 9798 Malicious

AUTH-IDENT 191339 Side effect

IRC 7383 Side effect

OTHERS 18970 Side effect

https://doi.org/10.1371/journal.pone.0180945.t002

Table 3. Test and training dataset—Sperotto dataset.

Training dataset Testing dataset

Malicious Normal Malicious Normal

10000 500 11740 124240

https://doi.org/10.1371/journal.pone.0180945.t003

Table 1. Detailed attributes for Netflow v5 flow records.

Attribute Description

Source IP The source IP address

Destination IP The destination IP address

Packets Number of packets in flow

Octets Number of bytes in flow

Duration The duration of flow in milliseconds

Source Port Source port number

Destination Port Destination port number

TCP Flags Cumulative OR of TCP flags

Protocol The transport layer protocol such 6 = TCP, 17 = UDP

https://doi.org/10.1371/journal.pone.0180945.t001
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(APTs). We have generated flow records for different malware and APTs using packet capture

files obtained from Contagio Malware Dump (http://contagiodump.blogspot.com/). We have

used Sality, Asprox, TBot and Nuclear malware traffic. The network flow records of these mal-

ware and APTs are combined with normal flow traffic used earlier with Sperotto’s dataset.

Table 4 shows the details of flow records in training and test dataset. The training dataset con-

tains 3524 malicious and 350 normal flow records while test dataset has 5286 and 24387 flow

records.

SIP dataset

The third dataset is a labeled VoIP dataset consisting of SIP packet traces [44]. The dataset has

two sets of SIP traces collected from two different VoIP testbed networks. The first testbed

uses Asterisk PBX server and the second testbed uses the OpenSIP proxy with RADIUS serv-

ers. We have only considered the OpenSIPs traces for evaluation in our experiment. The

testbed configuration includes OpenSIP proxy and-and normal and malicious traffic genera-

tors. The normal traffic is emulated by groups of VoIP bots. Each group of bots connects with

the internal and external interface of the SIP proxy respectively. The malicious traffic is gener-

ated using the Inviteflood and Splitter attack tools. The dataset is available in the form of SIP

packet traces. We have used ntops’ nProbes tool to extract Netflow v5 based flow records from

the SIP packet traces. The details of flow records in the dataset are given in Table 5. Table 6

gives details of network flows in training and test dataset.

Results and discussion

Experimental setup

We have designed our experiment using R and the Waikato Environment for Knowledge

Analysis (WEKA). In first step, we have applied the R tool to remove the outlier from one-

class SVM training set. The majority of flows in the unlabeled dataset are malicious with some

normal flows. The enhanced one-class SVM marks the normal flows in the training dataset as

Table 4. Test and training dataset—Malware and APT dataset.

Training dataset Testing dataset

Malicious Normal Malicious Normal

3524 350 5286 24367

https://doi.org/10.1371/journal.pone.0180945.t004

Table 5. Detail of flow records—SIP dataset.

Traffic Type No. of flows Category

InviteFlood SIP traffic 6496 Malicious

Splitter SIP traffic 3927 Malicious

Normal SIP traffic 7901 Normal

https://doi.org/10.1371/journal.pone.0180945.t005

Table 6. Test and training dataset—SIP dataset.

Training dataset Testing dataset

Malicious Normal Malicious Normal

2083 300 10423 7901

https://doi.org/10.1371/journal.pone.0180945.t006
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outliers and does not use them during learning. The self-organizing map(SOM) in the second

stage detection process also uses malicious flows to create different attack clusters. We manu-

ally set the number of attack cluster in SOM to six using domain knowledge of the evaluation

environment. Each alert cluster relates to specific attack types or a service that is under attack.

Sperotto’s dataset results

In the first experiment, we have used Sperotto’s dataset for the evaluation. Both detection

stages of the IDS use the dataset shown in Table 3 for learning. Table 7 shows the confusion

matrix for outlier detection process in one-class SVM training. The one-class SVM successfully

removes 98.40% normal flows from the training dataset. The remaining 9161 flows out of

10000 are used by the one-class SVM for learning the malicious behavior. The six attack clus-

ters include the incoming and outgoing flow traffic for the SSH and HTTP services and two

additional clusters for placement of unknown alerts and miss-classified network flows.

We process the test dataset shown in Table 3 after learning the malicious flow behavior. In

the first stage of the detection process, the one-class SVM marks 11730 flows as malicious out

of 11740 total flows. The flows marked malicious also contain 1301 normal flows as false posi-

tives. The flows identified as malicious by one-class SVM in first stage are forwarded to second

stage. The second stage detection process categorizes the flows in different attack clusters. The

total number of flows marked malicious by first stage are 13031 including 1301 false positives.

The first stage detection process has a detection rate of 89%. The SOM process all malicious

flows and places them in the closest attack cluster. The clustering results and the actual number

of flows in every cluster are given in Table 8.

The HTTP IN, HTTP OUT and SSH IN categories remain consistent and similar number

of flows are available in the output clusters. The actual number of flows in HTTP IN category

is 2127 while the output cluster contains 2154 flows. Therefore only 27 flows are placed

incorrectly. The HTTP OUT cluster has 2113 flows in input dataset and its output cluster

contains 2085 with 28 flows placed in the incorrect cluster. The SSH IN cluster has 4140

flows in the input set while output cluster contains 3992 flows. In this case, 148 flows have

been incorrectly classified. The actual number flows for SSH OUT category is 3360 while

the output cluster has 4006 flows. The SSH OUT category has the highest number of incor-

rectly classified flows i.e. 646. Also 770 and 24 flows are placed in Other-I and II clusters

Table 7. Confusion matrix for outlier detection during one-class SVM training—Sperotto’s dataset.

Classified as Malicious Normal (Outliers)

Malicious 9161 839

Normal (Outliers) 8 492

https://doi.org/10.1371/journal.pone.0180945.t007

Table 8. Clustering malicious flows in second stage process—Sperotto’s dataset.

Alert Cluster Actual No of Flows Flows in attack cluster

HTTP IN 2127 2154

HTTP OUT 2113 2085

SSH IN 4140 3992

SSH OUT 3360 4006

Other-I 0 770

Other-II 0 24

Total 11740 13031

https://doi.org/10.1371/journal.pone.0180945.t008
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respectively. This relatively high rate of miss classification is due to the 1301 false positives

(normal flows) of the first stage detection process. The comparison of clusters with actual

flows in the input set is given in Fig 6.

Malware and APT dataset results

In the second experiment, we have used malware and APT flow-based dataset for evaluation.

The two-stage intrusion detection model is trained using the dataset shown in Table 4. The

enhanced one-class SVM removes the normal flows from the training dataset leaving only the

malicious flows. Table 9 shows the confusion matrix for outlier detection process in one-class

SVM training. The one-class SVM successfully removes 94.28% normal flows from the train-

ing dataset. The remaining 2857 flows are used by the one-class SVM and SOM for learning

the malicious behavior and creation of attack clusters.

The trained one-class SVM is presented with a test dataset of 29654 flows. It classifies 5226

flows as malicious out of total 5286 flows. The detected malicious flows also include 434 nor-

mal flows. The malicious flows detected in first stage are forwarded to SOM clustering algo-

rithm in second stage detection process. The number of malicious flows is 5226 including 434

false positives. We manually set the number of attack cluster in SOM to six which include four

clusters for malware and APTs and two additional clusters to place the un-clustered flows. The

SOM places the malicious flows into closet matching attack clusters. The clustering results and

the actual number of flows in every cluster are given in Table 10.

Fig 6. SOM clustering results comparison—Sperotto’s dataset.

https://doi.org/10.1371/journal.pone.0180945.g006

Table 9. Confusion matrix for outlier detection during one-class SVM training—Malware and APT dataset.

Classified as Malicious Normal (Outliers)

Malicious 2857 330

Normal (Outliers) 20 667

https://doi.org/10.1371/journal.pone.0180945.t009
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1312 out of 1669 flows of Sality malware are placed in correct cluster. The Asprox attack

cluster has 3649 flows while the actual number of flows is 3336. Some network flows of Sality

malware are placed into Asprox cluster because Asprox malware traffic is not uniform. The

false positives of the first stage detection process are separated into Other-I and Other-II clus-

ters. Fig 7 compares the result of clustering with actual flows.

SIP dataset results

In the third experiment, the SIP dataset given in Table 6, has been used for the evaluation. In

the first stage detection, the enhanced one-class SVM uses the unlabeled training dataset for

learning. The one-class SVM marks the normal flows as outliers and does not use them from

learning. Table 11 shows the confusion matrix for outlier detection process. The one-class

SVM successfully removes 94.05% normal flows from the training dataset. The remaining

flows are used by the one-class SVM for learning the malicious behavior.

After training, the one-class SVM process the test dataset. The one-class SVM correctly

marks 10339 flows as malicious out of 10423 total malicious flows. There is no normal flow

Table 10. SOM clustering results—Malware and APT dataset.

Alert Cluster Actual Flows Flows in attack cluster

Sality outgoing 1669 1312

Asprox outgoing 3336 3649

TBot outgoing 133 200

Nuclear outgoing 88 64

Other-I 0 2

Other-II 0 59

Total 5286 5226

https://doi.org/10.1371/journal.pone.0180945.t010

Fig 7. Malware and APT clustering results comparison.

https://doi.org/10.1371/journal.pone.0180945.g007
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marked as malicious. The malicious flows identified in the first stage detection are forwarded

to the second stage. The second stage uses the SOM for clustering of malicious flows according

to attack types. We have used the same training dataset used in the first stage for training of

SOM. Since there are two types of malicious flows in the dataset, we have set the number of

clusters to four. The two additional clusters are used to contain the flows which SOM fails to

associate with any attack type. The results of clustering process are given in Table 12. The first

cluster consists of malicious flows belonging to the SIP flood. The SOM is able to cluster 4848

flows out of total 6224 flows. The actual number of in second attack cluster is 4815. However

the resulting cluster consists of 4834 flows which also includes some flows belonging to first

attack cluster. The number of un-clustered flows is 657 which are placed in Other-I and

Other-II cluster. Fig 8 compares the results of clustered flows with actual flows.

Discussion

We uses network flow records for intrusion detection in next-generation networks. The net-

work flows consist of a fraction of complete network traffic. The use of network flow reduces

the amount of data processed by the intrusion detection system. Therefore, our flow-based

IDS is efficient as compared to traditional packet-based intrusion detection systems. Another

advantage of flow-based inspection is independence of detection process from underlying pro-

tocols and network architecture.

We have designed a two-stage intrusion detection framework. The first stage uses a compu-

tational fast detection process and only recognizes malicious flows. In the first stage, the

normal flows are discarded while malicious flows are forwarded to the second stage. Since

malicious flows are in small quantity as compared to normal flows, the second stage can use a

computationally expensive technique for the detailed intrusion detection. The intrusion detec-

tion process gives deep insights into the malicious traffic and associates an attack type with the

malicious flows. The application of computationally expensive intrusion detection techniques

is difficult in traditional single-stage detection systems due to the processing of both normal

and malicious flows. Therefore the two-stage detection is efficient as compared to a single-

stage detection.

The techniques used in both detection stages are based on unsupervised learning. There-

fore, no labeled datasets are required for training of detection algorithms.

Our two-stage detection uses an enhanced one-class SVM in the first stage. One-class SVM

techniques give better results for intrusion detection in malicious flow records. However, the

Table 11. Confusion matrix for outlier detection during one-class SVM training—SIP dataset.

Classified as Malicious Normal (Outliers)

Malicious 1701 91

Normal (Outliers) 30 170

https://doi.org/10.1371/journal.pone.0180945.t011

Table 12. SOM clustering results—SIP dataset.

Alert Cluster Actual Flows Clustering results

SIP Flood 6224 4848

SIP Spitter 4815 4834

Other-I 0 162

Other-II 0 495

Total 10339 10339

https://doi.org/10.1371/journal.pone.0180945.t012
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accuracy of one-class SVM is very sensitive to the value of ν parameter [36]. The ν is an upper

bound on the fraction of outliers (normal flows) and lower bound on the number of support

vectors. We have experimented with different values of ν to obtain best possible results. The

optimization of ν parameter is also a promising research area, and different techniques have

been proposed to find out the optimal value of ν [45]. A limitation of enhanced one-class SVM

is the requirement that malicious flows in the training set are in sufficiently higher than nor-

mal flows. In second stage detection, we have used SOM for automatic clustering of malicious

flows. The results show that SOM correctly places the majority of flows in the correct cluster.

However, domain knowledge of the traffic is required to determine the number and label of

attack clusters. Our system uses unsupervised learning techniques, and no labeled datasets are

required for training.

We have evaluated the proposed IDS on the three flow-based datasets. The results demon-

strate that our proposed technique is accurate in the separation of malicious flows and group-

ing of malicious flows in different attack clusters.

Conclusion

In this paper, we have proposed a two-stage flow-based intrusion detection model for next-

generation networks. Next-generation networks provide voice, video and data services on a

converged IP-based network. Our flow-based intrusion detection system is particularly useful

in the context of next-generation networks (NGN) where different networks are converged to

an all IP platform. Our proposed model processes the flow data in a two-stage detection pro-

cess. The first stage uses a one-class SVM for efficient detection of malicious flows. The one-

class SVM discards all normal traffics and forward the malicious traffic to second stage detec-

tion process. Due to the two-stage intrusion detection process, only malicious flows are ana-

lyzed in detail. Another important feature of our system is the use of unsupervised learning.

The unsupervised learning does not need a labeled training datasets which are difficult to

Fig 8. SOM clustering results comparison—SIP dataset.

https://doi.org/10.1371/journal.pone.0180945.g008
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obtain for next generation networks. We have validated the approach on three flow-based

datasets and results show that the proposed model gives promising results. In future, the pro-

posed intrusion detection model can be implemented using additional flow attributes. The

IPFIX /Netflow v9 define around 280 flow attributes which provide in-depth information

about the network traffic. These additional attributes can be used to build intrusion detection

schemes for detection of novel and stealth attacks.
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