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Abstract

The application of deep learning approaches to finance has received a great deal of atten-

tion from both investors and researchers. This study presents a novel deep learning frame-

work where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term

memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically

extracted deep features is introduced into stock price forecasting for the first time. The deep

learning framework comprises three stages. First, the stock price time series is decomposed

by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for

predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast

the next day’s closing price. Six market indices and their corresponding index futures are

chosen to examine the performance of the proposed model. Results show that the proposed

model outperforms other similar models in both predictive accuracy and profitability

performance.

Introduction

Stock market prediction is usually considered as one of the most challenging issues among

time series predictions [1] due to its noise and volatile features. How to accurately predict

stock movement is still an open question with respect to the economic and social organization

of modern society. During the past decades, machine learning models, such as Artificial Neural

Networks (ANNs) [2] and the Support Vector Regression (SVR) [3], have been widely used to

predict financial time series and gain high predictive accuracy [4–8]. In the literature, however,

a recent trend in the machine learning and pattern recognition communities considers that a

deep nonlinear topology should be applied to time series prediction. An improvement over

traditional machine learning models, the new one can successfully model complex real-world

data by extracting robust features that capture the relevant information [9] and achieve even

better performance than before [10]. Considering the complexity of financial time series, com-

bining deep learning with financial market prediction is regarded as one of the most charming

topics [11]. However, this field still remains relatively unexplored.
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Generally speaking, there are three main deep learning approaches widely used in studies:

convolutional neural networks [12], deep belief networks [13] and stacked autoencoders

[14]. The relevant work on deep learning applied to finance has introduced the former two

approaches into the research. For example, Ding et al. [15] combine the neural tensor network

and the deep convolutional neural network to predict the short-term and long-term influences

of events on stock price movements. Also, certain works use deep belief networks in financial

market prediction, for example, Yoshihara et al. [16], Shen et al. [17] and Kuremoto et al. [18].

However, regarding whether the stacked autoencoders method could be applied to financial

market prediction, few efforts have been made to investigate this issue. Therefore, this paper

contributes to this area and provides a novel model based on the stacked autoencoders

approach to predict the stock market.

The proposed model in this paper consists of three parts: wavelet transforms (WT), stacked

autoencoders (SAEs) and long-short term memory (LSTM). SAEs is the main part of the

model and is used to learn the deep features of financial time series in an unsupervised man-

ner. Specifically, it is a neural network consisting of multiple single layer autoencoders in

which the output feature of each layer is wired to the inputs of the successive layer. The unsu-

pervised training of SAEs is done one AE at a time by minimizing the error between the output

data and the input data. As a result, the SAEs model can successfully learn invariant and

abstract features [19].

The other two methods are incorporated to help increase predictive accuracy. LSTM is a

type of recurrent neural network (RNN), with feedback links attached to some layers of the

network. Unlike conventional RNN, it is well-suited to learn from experience to predict time

series when there are time steps with arbitrary size. In addition, it can solve the problem of a

vanishing gradient by having the memory unit retain the time related information for an arbi-

trary amount of time [20]. Evidence has proved that it is more effective than the conventional

RNN [21, 22]. Thus, we decide to use this model to predict the stock trends. WT is considered

to fix the noise feature of financial time series. It is a widely used technique for filtering and

mining single-dimensional signals [23–25]. We use it to denoise the input financial time series

and then feed them into the deep learning framework. In summary, the model we introduce in

this paper is a combination of the three methods, and we refer to this novel model as WSAEs-

LSTM hereafter.

We select six stock indices to test the prediction ability of the proposed model. Those indi-

ces include CSI 300 index in A-share market from mainland China, Nifty 50 index represent-

ing India stock market, Hang Seng index trading in Hong Kong market, Nikkei 225 index in

Tokyo, S&P500 index and DJIA index in New York stock exchange. Technically, we apply

WSAEs-LSTM to forecast the movements of each stock index and check how well our model

is in predicting stock moving trends.

It is noted that we test the performance of WSAEs-LSTM in several financial markets

instead of only one market. This is due to the concern for obtaining robust results. According

to the efficient market hypothesis (EMH), the efficiency of a market affects the predictability of

its assets. In other words, even though the predictive performances in one market are satisfied,

it is still difficult to attribute it to the role of the proposed model. Testing the model in variant

market conditions brings us the opportunity to solve the problem and shows us how robust

the predictability of our model is. The chosen markets can meet the goal described above.

They represent three development stages of financial markets. For example, the stock market

in mainland China and India are commonly perceived as developing markets. Though both of

them have experienced rapid growth during the past decades, much of their regulation is

immature. By contrast, New York stock market is recognized as the most developed market. It

is also by far the largest stock exchange and the most efficient market in the world. Besides
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those above, the stock markets in Hong Kong and Tokyo are in a kind of middle ground

between the most developed and the developing state. Thus, our sample setting can help us to

examine the validity of our proposed model in different states of the market.

For each stock index, three types of variables are used as model inputs. The first set is histor-

ical stock trading data, such as the Open, High, Low and Close price (OHLC) [26–28], and the

second is the technical indicators of stock trading. These are commonly used inputs in previ-

ous studies [29]. Apart from these, we also introduce the macroeconomic variables as the third

type of inputs. As the macro economy can hugely influence stock markets and the advantage

of our deep learning model is the ability to extract abstract and invariant features from input

variables[30, 31], we believe the addition of macroeconomic variables could improve the

model performance.

Regarding the prediction approach, a subsection predictive method described in Chan et al.

[32] is applied to get the predicted outcomes of each stock index. Then, we evaluate the mod-

el’s performance from two dimensions: predictive accuracy and profitability. The predictive

accuracy is evaluated by using three measurements: Mean absolute percentage error (MAPE),

correlation coefficient (R) and Theil’s inequality coefficient (Theil U). All of them are widely

used indicators to measure whether the predicted value is similar to the actual value [2, 23, 33,

34]. To check the profitability, we establish a buy-and-sell trading strategy [35]. The strategy is

applied to obtain the trading returns based on the predicted outcomes from the model. As a

benchmark, we also compute the returns of a buy-and-hold strategy for each stock index [32,

36]. The basic idea is that whether the trading returns based on WSAEs-LSTM can outperform

the returns of this simple trading strategy, which provides further evidence for the model’s

profitability.

To better capture the performance of WSAEs-LSTM, we also introduce other three models

and evaluate their predictive accuracy and profitability in forecasting each stock index as the

comparisons against our proposed model. The three models include the WLSTM (i.e., a com-

bination of WT and LSTM), LSTM and also the conventional RNN. The former two models

are used to check the usefulness of the SAEs method in improving the prediction performance.

The last model, RNN, is used as the performance benchmark. As it has been successfully

applied to predicting financial time series in previous literature [23, 37, 38], it helps us to get

more knowledge regarding how well our proposed model can improve performance compared

with the conventional neural network.

All the sample data of this study are collected from WIND database provided by Shanghai

Wind Information Co., Ltd, CSMAR database provided by Shenzhen GTA Education Tech.

Ltd and a global financial portal: Investing.com. It consists of around 8 years of data from Jul.

2008 to Sep. 2016. Our results show that WSAEs-LSTM outperforms the other three models

not only in predictability but also in profitability.

Our work is rooted in a growing research field regarding the application of deep learning

method to improve efficiency. For example, deep learning-based methods have dramatically

improved the state-of-the-art in image recognition [12, 39–41], speech recognition[42–44],

language translation[45, 46] and many other areas such as drug discovery [47] and genomics

[48, 49]. The main contribution of this work is that it is the first attempt to apply stacked auto-

encoders to generate the deep features of the OHLC, technical indicators and macroeconomic

conditions as a multivariate signal in order to feed to a LSTM to forecast future stock prices.

The proposed deep learning framework, WSAEs-LSTM, can extract more abstract and invari-

ant features compared with the traditional long-short term memory and recurrent neural net-

works (RNN) approaches.

The rest of this paper is organized into five sections. Section 2 presents the proposed hybrid

models with an introduction to multivariate denoising using wavelet, SAEs and LSTM. Section
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3 is a description of the inputs and data resource. Section 4 presents the details regarding our

experiment design. Section 5 summarizes the observed results and the final section concludes

our study.

Methodology

To generate the deep and invariant features for one-step-ahead stock price prediction, this

work presents a deep learning framework for financial time series using a deep learning-based

forecasting scheme that integrates the architecture of stacked autoencoders and long-short

term memory. Fig 1 shows the flow chart of this framework. The framework involves three

stages:(1) data preprocessing using the wavelet transform, which is applied to decompose the

stock price time series to eliminate noise; (2) application of the stacked autoencoders, which

has a deep architecture trained in an unsupervised manner; and (3) the use of long-short term

memory with delays to generate the one-step-ahead output. The detailed approach of each

block is further detailed as follows.

Fig 1. The flowchart of the proposed deep learning framework for financial time series. D(j) is the

detailed signal at the j-level. S(J) is the coarsest signal at level J. I(t) and O(t) denote the denoised feature and

the one-step-ahead output at time step t, respectively. N is the number of delays of LSTM.

https://doi.org/10.1371/journal.pone.0180944.g001
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Wavelet transform

Wavelet transform is applied for data denoising in this study since it has the ability to handle

the non-stationary financial time series data [50]. The key property of wavelet transform is

that it can analyze the frequency components of financial time series with time simultaneously

compared with the Fourier transform. Consequently, wavelet is useful in handling highly

irregular financial time series [51].

This study applies the Haar function as the wavelet basis function because it can not only

decompose the financial time series into time and frequency domain but also reduce the pro-

cessing time significantly [23]. The wavelet transform with the Haar function as a basis has a

time complexity of O(n) with n denoting the size of the time series [52].

For continuous wavelet transform (CWT), the wavelet function can be defined by:

�a;tðtÞ ¼
1
ffiffiffi
a
p �

t � t

a

� �
ð1Þ

where a and τ are the scale factor and translation factor, respectively. ϕ(t) is the basis wavelet,

which obeys a rule named the wavelet admissibility condition [53]:

C� ¼

Z 1

0

jFðoÞj

o
do <1 ð2Þ

where ϕ(ω) is a function of frequency ω and also the Fourier transform of ϕ(t). Let x(t) denote

a square-integrable function (x(t) � L2(R)); then CWT with the wavelet ϕ can be defined as:

CWTxða; tÞ ¼
1
ffiffiffi
a
p

Z þ1

� 1

xðtÞ�
t � t

a

� �
dt ð3Þ

where �ðtÞ denotes its complex conjugate function. The inverse transform of the continuous

wavelet transform can be denoted as:

xðtÞ ¼
1

C�

Z þ1

0

da
a2

Z þ1

� 1

CWTxða; tÞ�a;tðtÞdt ð4Þ

The coefficients of the continuous wavelet transform have a significant amount of redun-

dant information. Therefore, it is reasonable to sample the coefficients in order to reduce

redundancy. Decomposing time series into an orthogonal set of components results in discrete

wavelet transform (DWT). Mallat[54] proposed filtering the time series using a pair of high-

pass and low-pass filters as an implementation of discrete wavelet transform. There are two

types of wavelets, father wavelets φ(t) and mother wavelets ψ(t), in the Mallat algorithm. Father

wavelets φ(t) and mother wavelets ψ(t) integrate to 1 and 0, respectively, which can be formu-

lated as:

Z

φðtÞdt ¼ 1;

Z

cðtÞdt ¼ 0 ð5Þ

The mother wavelets describe high-frequency parts, while the father wavelets describe low-

frequency components of a time series. The mother wavelets and the father wavelets in the j-
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level can be formulated as[55]:

φj;kðtÞ ¼ 2�
j
2φð2� j � kÞ ð6Þ

cj;kðtÞ ¼ 2�
j
2cð2� j � kÞ ð7Þ

Financial time series can be reconstructed by a series of projections on the mother and

father wavelets with multilevel analysis indexed by k � {0,1,2, . . .} and by j � {0,1,2, . . .J}, where

J denotes the number of multi-resolution scales. The orthogonal wavelet series approximation

to a time series x(t) is formulated by:

xðtÞ ¼
X

k

sJ;kφJ;kðtÞ þ
X

k

dJ;kcJ;kðtÞ þ
X

k

dJ� 1;kcJ� 1;kðtÞ þ . . .þ
X

k

d1;kc1;kðtÞ ð8Þ

where the expansion coefficients sJ,k and dJ,k are given by the projections

sJ;k ¼
Z

φJ;kxðtÞdt ð9Þ

dj;k ¼

Z

cj;kxðtÞdt ð10Þ

The multi-scale approximation of time series x(t) is given as:

SJðtÞ ¼ SksJ;kφJ;kðtÞ ð11Þ

DjðtÞ ¼ Skdj;kcj;kðtÞ ð12Þ

Then, the brief form of orthogonal wavelet series approximation can be denoted by:

xðtÞ ¼ SJðtÞ þ DJðtÞ þ DJ� 1ðtÞ þ � � � þ D1ðtÞ ð13Þ

where SJ(t) is the coarsest approximation of the input time series x(t). The multi-resolution

decomposition of x(t) is the sequence of {SJ(t),DJ(t),DJ−1(t),. . .D1(t)}. When the financial time

series is very rough, the discrete wavelet transformation can be applied repeatedly by which

the risk of overfitting can be reduced. As a result, the two-level wavelet is applied twice in this

study for data preprocessing as suggested in [23].

Stacked autoencoders

Deep learning is a series of models that have the ability to extract deep features from input data

with deep neural network architecture. Deep learning models usually have more than three

layers. The deep network is typically initialized by unsupervised layer-wise training and then

tuned by supervised training with labels that can progressively generate more abstract and

high-level features layer by layer [56]. According to recent studies [57, 58], better approxima-

tion to nonlinear functions can be generated by deep learning models than those models with

a shallow structure.

Several deep neural network architectures have been proposed in recent studies, including

deep Boltzmann machines (DBMs) [59], deep belief networks (DBNs) [13] and stacked auto-

encoders (SAEs) [14]. Restricted Boltzmann machines (RBMs) [60], convolutional neural net-

works (CNNs) [61], and autoencoders[14] are the frequently used layer-wise training models.

In this paper, autoencoders is applied for layer-wise training for the OHLC variables and tech-

nical indicators, while SAEs is adopted as the corresponding deep neural network architecture.

A deep learning framework for financial time series
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Single layer AE is a three-layer neural network; it is illustrated in Fig 2. The first layer and

the third layer are the input layer and the reconstruction layer with k units, respectively. The

second layer is the hidden layer with n units, which is designed to generate the deep feature for

this single layer AE. The aim of training the single layer AE is to minimize the error between

the input vector and the reconstruction vector. The first step of the forward propagation of sin-

gle layer AE is mapping the input vector to the hidden layer, which is illustrated in the boxed

area of Fig 2, while the second step is to reconstruct the input vector by mapping the hidden

vector to the reconstruction layer. The two steps can be formulated as:

aðxÞ ¼ f ðW1x þ b1Þ ð14Þ

x0 ¼ f ðW2aðxÞ þ b2Þ ð15Þ

where x � Rk and x' � Rk are the input vector and the reconstructed vector, respectively. a(x) is

the hidden vector generated by the single layer AE. W1 and W2 are the weight of the hidden

layer and the reconstruction layer, respectively. b1 and b2 are the bias of the hidden layer and

the reconstruction layer, respectively. f is the activate function, which has many alternatives

such as sigmoid function, rectified linear unit (ReLU) and hyperbolic tangent. In this paper, f
is set to be a sigmoid function as in Chen et al. [19]. The optimization function for minimizing

the error between the input vector and the reconstruction vector can be formulated as

argminW1 ;b1 ;W2 ;b2
½J� ¼ argmin

W1 ;b1 ;W2 ;b2

½ð1=2ÞSm
i¼1
kxi � x0ik þ Jwd þ Jsp� ð16Þ

where J is the squared reconstruction error of the single layer AE. xi and x0i are the ith value of

the input vector and its corresponding reconstruction vector. m is the size of the training data-

set, which is the number of trading days in the training stage in this paper. Jwd and Jsp are the

Fig 2. The flowchart of the single layer autoencoder. The model learns a hidden feature a(x) from input x

by reconstructing it on x’. Here,W1 and W2 are the weight of t he hidden layer and the reconstruction layer,

respectively. b1 and b2 are the bias of the hidden layer and the reconstruction layer, respectively.

https://doi.org/10.1371/journal.pone.0180944.g002
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weight decay term and the sparse penalty term, which can be formulated as:

Jwd ¼ ð1=2ÞlðkW1k
2

F þ kW2k
2

FÞ ð17Þ

Jsp ¼ bSm
t¼1

KLðr k r̂t Þ ð18Þ

where k�kF is the Frobenius norm. λ and β controls the weight decay term and the sparse pen-

alty term. KL(�) denotes the Kullback-Leibler Divergence. ρ is the sparsity parameter, and only

a few of the hidden units can be larger than the sparsity parameter. r̂t is the average activation

of the tth hidden layer among the training dataset, which can be formulated as:

r̂t ¼ ð1=mÞS
k
i¼1

atðxiÞ ð19Þ

where at(xi) denotes the kth unit of the tth hidden layer among the whole training dataset. The

gradient descent algorithm is widely used for solving the optimization problem in SAEs [19,

31]. As a result, the gradient descent algorithm is applied to complete parameter optimization

as suggested in Yin et al. [62].

Stacked autoencoders is constructed by stacking a sequence of single-layer AEs layer by

layer [14]. Fig 3 illustrates an instance of an SAE with 5 layers that consists of 4 single-layer

autoencoders. The single-layer autoencoder maps the input daily variables into the first hidden

vector. After training the first single-layer autoencoder, the reconstruction layer of the first sin-

gle layer autoencoder is removed, and the hidden layer is reserved as the input layer of the sec-

ond single-layer autoencoder. Generally speaking, the input layer of the subsequent AE is the

hidden layer of the previous AE. Each layer is trained using the same gradient descent algo-

rithm as a single-layer AE by solving the optimization function as formulated in Eq (16) and

feeds the hidden vector into the subsequent AE. It is noteworthy that the weights and bias of

the reconstruction layer after finishing training each single-layer AE is cast away. In this work,

the number of input daily variables for each dataset ranges from 18 to 25; then, the size of

Fig 3. Instance of a stacked autoencoders with 5 layers that is trained by 4 autoencoders.

https://doi.org/10.1371/journal.pone.0180944.g003
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hidden layer is set to 10 by trial and error. Depth plays an important role in SAE because it

determines qualities like invariance and abstraction of the extracted feature. In this work, the

depth of the SAE is set to 5 as recommended in Chen et al. [19].

Long-short term memory

Long short-term memory is one of the many variations of recurrent neural network (RNN)

architecture [20]. In this section, the model of RNN and its LSTM architecture for forecasting

the closing price is introduced. We start with the basic recurrent neural network model and

then proceed to the LSTM model.

The RNN is a type of deep neural network architecture [43, 63] that has a deep structure in

the temporal dimension. It has been widely used in time series modelling [21, 22, 64–69]. The

assumption of a traditional neural network is that all units of the input vectors are independent

of each other. As a result, the traditional neural network cannot make use of the sequential

information. In contrast, the RNN model adds a hidden state that is generated by the sequen-

tial information of a time series, with the output dependent on the hidden state. Fig 4 shows an

RNN model being unfolded into a full network. The mathematical symbols in Fig 4 are as

follows:

1. xt is the input vector at time t.

2. st is the hidden state at time t; it is calculated based on the input vector and the previous hid-

den state. st is calculated by:

st ¼ f ðUxt þWst� 1Þ ð20Þ

where f is the activate function, which has many alternatives such as sigmoid function and

ReLU. The initial hidden state s0 for calculating the first hidden state s1 is typically initial-

ized to zero.

3. ot is the output at time t, which can be formulated as:

ot ¼ f ðVstÞ ð21Þ

Fig 4. A recurrent neural network and the unfolding architecture. U, V and W are the weights of the

hidden layer, the output layer and the hidden state, respectively.xt and ot are the input vector and output result

at time t, respectively.

https://doi.org/10.1371/journal.pone.0180944.g004
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4. U and V are the weights of the hidden layer and the output layer, respectively. W are transi-

tion weights of the hidden state.

Although RNN models the time series well, it is hard to learn long-term dependencies

because of the vanishing gradient problem [22]. LSTM is an effective solution for combating

vanishing gradients by using memory cells [70]. A memory cell is composed of four units: an

input gate, an output gate, a forget gate and a self-recurrent neuron, which is illustrated in Fig

5. The gates control the interactions between neighboring memory cells and the memory cell

itself. Whether the input signal can alter the state of the memory cell is controlled by the input

gate. On the other hand, the output gate can control the state of the memory cell on whether it

can alter the state of other memory cell. In addition, the forget gate can choose to remember or

forget its previous state.

Fig 6 shows an LSTM model being unrolled into a full network, which describes how the

value of each gate is updated. The mathematical symbols in Fig 6 are as follows:

1. xt is the input vector to the memory cell at time t.

2. Wi, Wf, Wc, Wo, Ui, Uf, Uc, Uo and Vo are weight matrices.

3. bi, bf, bc and bo are bias vectors.

4. ht is the value of the memory cell at time t.

Fig 5. The architecture of an LSTM memory cell.

https://doi.org/10.1371/journal.pone.0180944.g005

Fig 6. The repeating module in an LSTM. Here,xt and ht are the input vector and output result to the memory cell at time t, respectively. ht

is the value of the memory cell. it, ft and ot are values of the input gate, the forget gate and the output gate at time t, respectively. ~Ct are

values of the the candidate state of the memory cell at time t.

https://doi.org/10.1371/journal.pone.0180944.g006
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5. it and ~Ct are values of the input gate and the candidate state of the memory cell at time t,
respectively, which can be formulated as:

it ¼ sðWixt þ Uiht� 1 þ biÞ ð22Þ

~Ct ¼ tanhðWcxt þ Ucht� 1 þ bcÞ ð23Þ

6. ft and Ct are values of the forget gate and the state of the memory cell at time t, respectively,

which can be calculated by:

ft ¼ sðWfxt þ Uf ht� 1 þ bf Þ ð24Þ

Ct ¼ it � ~Ct þ ft � Ct� 1 ð25Þ

7. ot and ht are values of the output gate and the value of the memory cell at time t, respec-

tively, which can be formulated as:

ot ¼ sðWoxt þ Uoht� 1 þ VoCt þ boÞ ð26Þ

ht ¼ ot � tanhðCtÞ ð27Þ

The architecture of a LSTM network includes the number of hidden layers and the number

of delays, which is the number of past data that account for training and testing. Currently,

there is no rule of thumb to select the number of delays and hidden layers [21, 22]. In this

work, the number of hidden layers and delays are set to 5 and 4 by trial and error. The financial

time series is divided into three subsets: training set, validation set, and testing set, with a pro-

portion of 80% training, 10% validation, and 10% testing. The back-propagation algorithm is

used to train the WSAEs-LSTM model as well as the models in the experimental control group

including WLSTM, LSTM and RNN. The learning rate, batch size and number of epochs are

0.05, 60 and 5000, respectively. The speed of convergence is controlled by the learning rate,

which is a decreasing function of time. Setting the number of epochs and the learning rate to

5000 and 0.05 can achieve the convergence of the training. The experimental result will

become stable once convergence is achieved though the combinations of parameters are varied

[30].

Data descriptions

In this part, we present details regarding our sample selection and the input variables we

choose for model prediction. Also, the data resources are provided in this section.

Sample selection and input variables

The six stock indices we choose are CSI 300, Nifty 50, Hang Seng index, Nikkei 225, S&P500

and DJIA index. As we noted before, market state may potentially impact the validity of the

neural network. Samples from different market conditions can be helpful in solving this prob-

lem. The S&P500 and DJIA index are trading in New York stock exchange, which is com-

monly considered as the most advanced financial market in the world. Therefore, they denote
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such markets with highest development level. On the contrary, financial markets in both

mainland China and India are often classified as new markets. In fact, most of their market

institutions are still far from being fully completed. Thus, we choose CSI 300 and Nifty 50 to

represent developing markets. In addition to the markets described above, Hang Seng index in

Hong Kong and Nikkei 225 index in Tokyo represent a market condition that falls between

the developed and developing market. To be honest, financial markets in Hong Kong and

Tokyo are usually considered as developed markets in most scenarios. However, in this paper,

compared with US stock market, we could say that these two markets are not as mature as US

markets. Therefore, those six stock indices give us a natural setting to test the robust of model

performances based on different market conditions.

We select three sets of variables as the inputs. Table 1 describes the details. The first set of

variables in Panel A is the historical trading data of each index. Following the previous litera-

ture, the data includes Open, High, Low, and Close price (OHLC variables) as well as the trad-

ing volume. These variables present the basic trading information of each index. Another set

of inputs is 12 widely used technical indicators of each index. Panel B gives the details.

The final set of inputs is the macroeconomic variable. Without a doubt, the macroeconomic

conditions across regions also play critical roles in influencing the performance of the stock

market. Zhao et al. [71] concludes that the fluctuation of RMB exchange rate can influence the

trend of A-share markets in mainland China. Therefore, the addition of macroeconomic vari-

ables can be helpful in introducing more information into neural network prediction. We

select two kinds of macro variables: the exchange rate and the interest rate. Both rates may

affect the money flow in the stock market and then finally impact the performance of stocks.

Specifically, we choose US dollar index as the proxy for exchange rate. It is acknowledged that

Table 1. Description of the input variables.

Name Definition/Implication

Panel A. Daily Trading Data

Open/Close

Price

nominal daily open/close price

High/Low Price nominal daily highest/lowest price

Trading volume Daily trading volume

Panel B. Technical Indicator

MACD Moving average convergence divergence: displays trend following characteristics and

momentum characteristics.

CCI Commodity channel index: helps to find the start and the end of a trend.

ATR Average true range: measures the volatility of price.

BOLL Bollinger Band: provides a relative definition of high and low, which aids in rigorous

pattern recognition

EMA20 20 day Exponential Moving Average

MA5/MA10 5/10 day Moving Average

MTM6/MTM12 6/12 month Momentum: helps pinpoint the end of a decline or advance

ROC Price rate of change: shows the speed at which a stock’s price is changing

SMI Stochastic Momentum Index: shows where the close price is relative to the midpoint of

the same range.

WVAD Williams’s Variable Accumulation/Distribution: measures the buying and selling

pressure.

Panel C. Macroeconomic Variable

Exchange rate US dollar Index

Interest rate Interbank Offered Rate

https://doi.org/10.1371/journal.pone.0180944.t001
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US dollar plays the most important role in the monetary market. Therefore, it alone could be

enough to capture the impact from the monetary market to the stock market. Regarding the

interest rate, we select the interbank offered rate in each market as the proxy, namely, Shanghai

Interbank Offered Rate (SHIBOR), Mumbai Interbank Offered Rate (MIBOR), Hong Kong

Interbank Offered Rate (HIBOR), Tokyo Interbank Offered Rate (TIBOR) and Federal funds

rate in US.

Data resource

All of our sample data are from WIND database (http://www.wind.com.cn) provided by

Shanghai Wind Information Co., Ltd, CSMAR database (http://www.gtarsc.com) provided by

Shenzhen GTA Education Tech. Ltd. and a global financial portal: Investing.com. The sample

period in this paper is from 1st Jul. 2008 to 30th Sep. 2016. All of our variables are daily data

and can be available on Figshare website (figshare.com/s/acdfb4918c0695405e33, DOI:10.

6084/m9.figshare.5028110).

Specifically, it is noted that we do not present the priori time series analysis in this paper.

Indeed, the application of classic time series models, such as Auto Regressive Integrated Mov-

ing Average (ARIMA), usually requires strict assumptions regarding the distributions and sta-

tionarity of time series. As financial time series are usually known to be very complex, non-

stationary and very noisy, it is necessary for one to know the properties of the time series

before the application of classic time series models [72, 73]. Otherwise, the forecasting effort

would be ineffective. However, by using artificial neural networks, a priori analysis of time

series is not indispensable. First, ANNs do not require prior knowledge of the time series struc-

ture because of their black-box properties [74]. Also, the impact of the stationarity of time

series on the prediction power of ANNs is quite small. Related evidence has shown that it is

feasible to relax the stationarity condition to non-stationary time series when applying ANNs

to predictions [75]. Therefore, we simplify the process for priori data analysis and directly put

the data into the model.

Experiment design

We present the details regarding how we obtain the predicted value and evaluate the perfor-

mance of each model.

Prediction approach

The prediction procedure follows the subsection prediction method described in Chan et al.

[32]. In particular, this procedure consists of three parts. The first part is the training part,

which is used to train the model and update model parameters. The second part is the validat-

ing part. We use it to tune hyper-parameters and get an optimal model setting. The last one is

the test part, where we use the optimal model to predict data. Specifically, as the data are lim-

ited, our time frame for each part is inconsistent with that in Chan et al. [32]. In the training

part, we use the past two years’ worth of data to train the models. The following period of three

months (a calendar quarter) is employed to the validating part. In the test part, in line with

popular portfolio management practice, we predict the quarterly performance of each model.

This process continues for six years on each quarter from Oct. 2010 to Sep. 2016. Finally, for

each stock index, there are 24 quarterly and 6 yearly predicted results. The prediction proce-

dure is illustrated in Fig 7.

To simplify the demonstration of results, we report the yearly performance instead of the

quarterly performance in this paper. Thus, the performance of predictive accuracy and trading
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returns of the models is presented in six-year periods. Details regarding the interval of the six

years can be found in Table 2.

Performance measurement

We discuss performance measurements in this part. We first demonstrate the accuracy mea-

surements selected to judge the predictive performance. Next, we argue how we test the profit-

ability performance of each model.

Predictive accuracy performance. Previous papers select several indicators to measure

how well the model predicts the trend of financial markets [2, 23, 33, 34]. In this paper, we fol-

low their method and choose three classical indicators (i.e., MAPE, R and Theil U) to measure

the predictive accuracy of each model. The definitions of these indicators are as follows:

MAPE ¼

XN

t¼1
j
yt � y�t
yt
j

N
ð28Þ

R ¼

XN

t¼1
ðyt � yt Þðy�t � y�t Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

t¼1
ðyt � yt Þ

2
ðy�t � y�t Þ

2

q ð29Þ

Theil U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1
ðyt � y�t Þ

2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1
ðytÞ

2

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1
ðy�t Þ

2

q ð30Þ

In these equations, yt is the actual value and y�t is the predicted value. N represents the pre-

diction period. MAPE measures the size of the error. It is calculated as the relative average of

the error. R is a measure of the linear correlation between two variables. Theil U is a relative

Fig 7. Continuous dataset arrangement for training, validating and testing during the whole sample

period.

https://doi.org/10.1371/journal.pone.0180944.g007

Table 2. Time interval of the six prediction years.

Year Time Interval

Year 1 2010.10.01–2011.09.30

Year 2 2011.10.01–2012.09.30

Year 3 2012.10.01–2013.09.30

Year 4 2013.10.01–2014.09.30

Year 5 2014.10.01–2015.09.30

Year 6 2015.10.01–2016.09.30

https://doi.org/10.1371/journal.pone.0180944.t002
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measure of the difference between two variables. It squares the deviations to give more weight

to large errors and to exaggerate errors. If R is bigger, it means that the predicting value is simi-

lar to the actual value, while if MAPE and Theil U are smaller, this also indicates that the pre-

dicted value is close to the actual value [23, 76].

Profitability performance. A buy-and-sell trading strategy is created based on the pre-

dicted results of each model. The implication is that under the same trading strategy, we want

to find the most valuable model that could earn the highest profits for investors. Actually, the

buy-and-sell trading strategy is widely used for profitability performance [35].

The strategy recommends that investors buy when the predicted value of the next period is

higher than the current actual value. On the contrary, it recommends that investors sell when

the predicted value is smaller than the current actual value. Specifically, the strategy can be

described by the following equations:

Buy signal : y�tþ1
> yt ð31Þ

Sell signal : y�tþ1
< yt ð32Þ

The yt denotes the current actual value, and y�tþ1
is the predicted value for the following

time period. The definition of strategy earnings is:

R ¼ 100�
Xb

t� 1

ytþ1 � yt þ ðyt � Bþ ytþ1 � SÞ
yt

þ
Xs

t� 1

yt � ytþ1 þ ðytþ1 � Bþ yt � SÞ
yt

� �

ð33Þ

where R is the strategy returns. b and s denote the total number of days for buying and selling,

respectively. B and S are the transaction costs for buying and selling, respectively.

Due to the difficulty in executing the short sale of a basket of stocks in spot markets and the

huge transaction costs it produces, we execute this strategy by trading the corresponding index

future contracts instead of using stock indices. However, a main concern before this execution

is that whether the index futures closely move with their underlying stock indices. In fact, evi-

dence from both theoretical and empirical literature all proves the close connections between

stock indices and their corresponding index futures [77–81]. Moreover, to get stronger evi-

dence, we further test the long-term relationships between the six stock indices and their cor-

responding index futures. Results from Spearman correlation and cointegration test show that

all of our indices have a stable long-term relationship with their corresponding index futures

(S1 Table). Therefore, we believe our predictive results from spot markets can be successfully

applied into their corresponding index future markets.

Based on the above trading rule, we sell short the index future contracts when the predicted

price is below the current price and buy the contracts when the predicted price is higher than

the current one. We notice that some markets have more than one future product trading in

the market. For example, both Hang Seng and S&P 500 index have two types of future prod-

ucts: the standard future contract and the mini future contract. However, unlike the previous

two markets, China only has the standard CSI 300 index future. Thus, for the purpose of con-

sistency among markets, we select the standard future product to execute the trading strategy.

To make the results more realistic, we consider the influence of transaction cost on profit.

As the cost rates are different among the markets and would be occasionally adjusted for the

regulation purpose, we unify the cost rates among our sample markets into one rate within our

sample period in order to simplify the calculation procedure. Finally, the chosen cost rate of

unilateral trading is 0.01%.

In addition to the buy-and-sell trading strategy, we also incorporate the buy-and-hold trad-

ing strategy providing a passive threshold in testing the profitability of proposed models
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according to previous literature [32, 36]. The trading returns of each model will be compared

against the returns of the buy-and-hold strategy. Specifically, as holding the future contract for

a long time would be subject to great risk in reality, we execute the buy-and-hold strategy by

trading in the spot stock market instead of trading in index future market. The computation

procedure of transaction costs in the spot stock market follows the rule that we describe above.

Finally, the unified cost in the spot market is 0.25% for buying and 0.45% for selling.

Results

For each stock index, we show the yearly predicted data from the four models and the corre-

sponding actual data in the graph. Fig 8 illustrates Year 1 results and the remaining figures for

Year 2 to Year 6 can be found in S1–S5 Figs. According to Fig 8 and S1–S5 Figs, we can find

that LSTM and RNN have larger variations and distances to the actual data than WSAEs-

LSTM and WLSTM. Furthermore, comparing WSAEs-LSTM with WLSTM, the former out-

performs the latter: WSAEs-LSTM has less volatility and is closer to the actual trading data

than WLSTM. Specifically, the advantage of WSAEs-LSTM in predicting is more obvious in

less developed markets than in developed market.

Fig 8. Displays the actual data and the predicted data from the four models for each stock index in

Year 1 from 2010.10.01 to 2011.09.30.

https://doi.org/10.1371/journal.pone.0180944.g008
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Predictive accuracy test

The results of predictive accuracy test for each model are reported from Tables 3 to 5. Each

table includes the testing results in two stock indices trading in similar market condition.

Within each table, each panel demonstrates predictive performance measuring in one of our

three accuracy indicators. We separately report the six yearly results and the average value

over the six years for each stock index at the same time.

Table 3 records the model performance in forecasting CSI 300 and Nifty 50. It can be seen

from the table that WSAEs-LSTM shows much better performance than the other three mod-

els in predicting both stock indices. For example, in predicting CSI 300 index, the average

Table 3. Predictive accuracy in developing markets.

CSI 300 index Nifty 50 index

Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

Panel A. MAPE

WSAEs-LSTM 0.025 0.014 0.016 0.011 0.033 0.016 0.019 0.024 0.019 0.019 0.019 0.018 0.017 0.019

WLSTM 0.025 0.029 0.021 0.020 0.038 0.033 0.028 0.034 0.038 0.030 0.025 0.020 0.029 0.029

LSTM 0.067 0.077 0.047 0.036 0.053 0.055 0.056 0.043 0.034 0.035 0.035 0.027 0.029 0.034

RNN 0.062 0.087 0.052 0.060 0.059 0.075 0.066 0.051 0.038 0.034 0.032 0.036 0.035 0.038

Panel B. R

WSAEs-LSTM 0.861 0.959 0.955 0.957 0.975 0.957 0.944 0.878 0.834 0.665 0.972 0.774 0.924 0.841

WLSTM 0.841 0.801 0.919 0.864 0.977 0.803 0.868 0.803 0.533 0.312 0.958 0.722 0.844 0.695

LSTM 0.440 0.273 0.629 0.742 0.962 0.656 0.617 0.596 0.601 0.027 0.904 0.515 0.772 0.569

RNN 0.614 0.363 0.670 0.343 0.943 0.555 0.581 0.506 0.661 0.263 0.929 0.278 0.704 0.557

Panel C. Theil U

WSAEs-LSTM 0.017 0.009 0.011 0.007 0.023 0.011 0.013 0.016 0.013 0.013 0.013 0.012 0.012 0.013

WLSTM 0.018 0.019 0.014 0.013 0.024 0.022 0.018 0.023 0.025 0.021 0.016 0.014 0.018 0.019

LSTM 0.042 0.049 0.030 0.024 0.031 0.036 0.035 0.030 0.023 0.025 0.024 0.018 0.020 0.024

RNN 0.044 0.053 0.037 0.041 0.036 0.046 0.043 0.034 0.024 0.024 0.021 0.026 0.023 0.025

https://doi.org/10.1371/journal.pone.0180944.t003

Table 4. Predictive accuracy in relatively developed markets.

Hang Seng index Nikkei 225 index

Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

Panel A. MAPE

WSAEs-LSTM 0.016 0.017 0.012 0.011 0.021 0.013 0.015 0.020 0.016 0.017 0.014 0.016 0.018 0.017

WLSTM 0.020 0.027 0.017 0.018 0.028 0.021 0.022 0.033 0.025 0.032 0.025 0.022 0.027 0.028

LSTM 0.025 0.027 0.024 0.020 0.023 0.023 0.024 0.036 0.030 0.031 0.029 0.028 0.030 0.031

RNN 0.036 0.042 0.030 0.035 0.031 0.032 0.034 0.041 0.039 0.036 0.034 0.034 0.033 0.036

Panel B. R

WSAEs-LSTM 0.944 0.924 0.920 0.927 0.904 0.968 0.931 0.895 0.927 0.992 0.885 0.974 0.951 0.937

WLSTM 0.935 0.810 0.858 0.833 0.900 0.917 0.876 0.748 0.838 0.973 0.786 0.951 0.906 0.867

LSTM 0.895 0.817 0.727 0.812 0.932 0.901 0.847 0.759 0.759 0.972 0.596 0.918 0.881 0.814

RNN 0.805 0.679 0.684 0.500 0.870 0.840 0.730 0.694 0.625 0.963 0.575 0.893 0.846 0.766

Panel C. Theil U

WSAEs-LSTM 0.011 0.010 0.008 0.007 0.018 0.008 0.011 0.013 0.010 0.010 0.009 0.010 0.011 0.011

WLSTM 0.012 0.017 0.011 0.011 0.021 0.013 0.014 0.021 0.017 0.021 0.015 0.013 0.017 0.018

LSTM 0.015 0.017 0.016 0.013 0.014 0.015 0.015 0.022 0.022 0.020 0.018 0.018 0.018 0.020

RNN 0.022 0.026 0.018 0.021 0.020 0.020 0.021 0.026 0.025 0.023 0.021 0.021 0.021 0.023

https://doi.org/10.1371/journal.pone.0180944.t004
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value of MAPE and Theil U of WSAEs-LSTM reach 0.019 and 0.013, respectively, which is

much less than those of the other three models. Besides, the indicator R has an average value of

0.944, which is the highest one among the four models. In fact, WSAEs-LSTM outperforms

the other three not only on average but also in each year. To confirm the robustness of our

findings, we examine the statistical significance of the differences between WSAEs-LSTM and

the other three models. Specifically, we compare the 24 quarterly results of WSAEs-LSTM

with those of the three models for each accuracy indicators. The statistic approach, T-test, is

used for these comparisons. Finally, the statistical evidence proves that the differences between

WSAEs-LSTM and the rest three models are all statistically significant at 5% level in both stock

indices.

Tables 4 and 5 present the models’ performance in the rest four stock indices: Table 4 dem-

onstrates model performance in Hong Kong and Tokyo markets while Table 5 reports the

results in S&P 500 and DJIA index. Similar to what we have found in Table 3, WSAEs-LSTM

still has the lowest MAPE and Theil U and the highest R than the other three models not only

from the perspective of average value but also from the perspective of yearly results. Still, these

differences between our proposed model and the other three models pass the statistical test at

5% significant level. This concludes that WSAEs-LSTM can stably obtain lower prediction

errors and higher predictive accuracy than the other three models regardless of market

conditions.

Besides the findings described above, we also discover an interesting pattern based on our

data: the difference between the predictability of one specific model in forecasting two stock

indices is quite small if these two stock indices are traded in markets with similar development

state, while the difference would be increased if the two stock indices are traded in markets

with different development states. For example, MAPE of WSAEs-LSTM in predicting S&P

500 and DJIA is 0.011, while it increases to 0.019 when predicting CSI 300 and Nifty 50. Simi-

lar patterns are also existed for the rest three models. Even though all models exhibit this pat-

tern, the extent of impacts from market condition is different among models. For example, the

market condition seems quite influential on RNN. Its average MAPE value ranges from 0.018

to 0.066 among the six stock indices. That means the worst predictability of RNN is only

Table 5. Predictive accuracy in developed markets.

S&P 500 index DJIA index

Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

Panel A. MAPE

WSAEs-LSTM 0.012 0.014 0.010 0.008 0.011 0.010 0.011 0.016 0.013 0.009 0.008 0.008 0.010 0.011

WLSTM 0.015 0.020 0.012 0.010 0.015 0.015 0.015 0.015 0.018 0.013 0.011 0.017 0.012 0.014

LSTM 0.021 0.018 0.013 0.012 0.017 0.022 0.017 0.019 0.026 0.016 0.020 0.020 0.022 0.020

RNN 0.017 0.019 0.013 0.019 0.020 0.019 0.018 0.038 0.040 0.029 0.024 0.038 0.026 0.033

Panel B. R

WSAEs-LSTM 0.944 0.944 0.984 0.973 0.880 0.953 0.946 0.922 0.928 0.984 0.952 0.953 0.952 0.949

WLSTM 0.917 0.886 0.971 0.957 0.772 0.860 0.894 0.915 0.871 0.963 0.911 0.817 0.927 0.901

LSTM 0.873 0.905 0.968 0.953 0.795 0.755 0.875 0.860 0.791 0.948 0.751 0.719 0.786 0.809

RNN 0.899 0.909 0.966 0.867 0.618 0.822 0.847 0.684 0.579 0.871 0.669 0.256 0.699 0.627

Panel C. Theil U

WSAEs-LSTM 0.009 0.010 0.006 0.005 0.008 0.006 0.007 0.010 0.009 0.006 0.005 0.005 0.006 0.007

WLSTM 0.011 0.014 0.008 0.007 0.011 0.011 0.010 0.010 0.012 0.008 0.007 0.011 0.008 0.009

LSTM 0.014 0.012 0.009 0.007 0.011 0.016 0.011 0.013 0.016 0.010 0.014 0.013 0.014 0.013

RNN 0.012 0.012 0.009 0.012 0.013 0.012 0.012 0.025 0.025 0.019 0.016 0.025 0.017 0.021

https://doi.org/10.1371/journal.pone.0180944.t005
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around one-fourth of its best predictability. Both WLSTM and LSTM exhibit similar patterns

as RNN. By contrast, the performance of WSAEs-LSTM is quite stable across markets compar-

ing with these three models. This could be due to the fact that SAEs is more powerful in pro-

cessing noise data than the other three. The implication of these findings is that our model

could be more valuable than others in predicting systems that are less mature and have higher

volatility.

Profitability test

The results of profitability test are shown in Table 6. Similarly, we report both yearly returns

and the average returns over the six years. Each panel describes the trading returns gained by

the models in a specific market condition. In particular, the last row in each panel reports the

returns of the buy-and-hold strategy in trading a specific stock index.

Panel A demonstrates the profitability performance of each model in developing markets.

The left part is the trading performance based on predicted data from CSI 300, while the right

part is trading performance based on predicted data from Nifty 50. The results suggest that

WSAEs-LSTM earns substantially more profits than the other three models. For example, the

average annual earnings of the proposed model can reach up to 63.026% in mainland China

and 45.418% in India market, while the annual earnings of the other three models are nearly

all below 40%. Regarding each yearly returns, WSAEs-LSTM also outperforms the other mod-

els. It can almost stably gain more than 40% earnings in every year, which is really difficult for

the other three models.

Panel B and C reports the trading returns in relatively developed and developed markets,

respectively. Similar as the findings in Panel A, WSAEs-LSTM can acquire stable earnings in

every year, while other models face larger variance in trading earnings. In addition, from the

Table 6. Profitability performance of each model.

Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Average

Panel A. Developing market

CSI 300 Index Nifty 50 Index

WSAEs-LSTM 46.428 59.580 65.685 71.897 63.951 70.613 63.026 56.911 51.710 66.765 37.107 31.882 28.134 45.418

WLSTM 26.766 21.942 36.502 20.304 89.984 42.283 39.630 13.835 19.254 13.679 22.464 44.032 28.436 23.617

LSTM -15.802 -16.802 24.082 1.345 57.903 53.479 17.368 26.247 16.509 0.921 -8.459 37.180 18.279 15.113

RNN -3.310 1.750 8.827 -0.747 47.308 -8.630 7.533 -7.757 -10.558 19.691 22.685 29.492 -7.435 7.686

Buy-and-hold -19.630 -12.595 3.065 0.292 35.619 3.430 1.697 -23.564 13.926 -1.510 30.885 -2.787 5.477 3.738

Panel B. Relatively developed market

Hang Seng Index Nikkei 225 Index

WSAEs-LSTM 75.844 81.890 54.685 49.715 64.727 59.949 64.468 53.463 37.846 81.032 48.832 59.419 76.030 59.437

WLSTM 25.697 19.221 37.410 23.149 59.030 51.220 35.955 27.774 10.196 43.143 32.411 31.252 62.569 34.558

LSTM 16.381 25.733 21.892 1.545 23.680 62.717 25.325 14.032 31.507 52.324 -15.605 8.774 26.272 19.551

RNN 5.287 40.810 -7.114 -17.024 27.845 48.463 16.378 -7.329 -6.967 8.318 -15.389 42.258 50.950 11.974

Buy-and-hold -27.321 16.341 7.472 -2.821 -9.264 9.455 -1.023 -19.371 1.568 49.339 9.790 6.365 -6.728 6.827

Panel C. Developed market

S&P 500 Index DJIA Index

WSAEs-LSTM 71.316 48.351 39.239 9.940 61.187 45.950 45.997 76.742 55.433 41.700 47.034 82.503 80.522 63.989

WLSTM 40.246 25.726 21.964 15.906 31.839 18.168 25.641 47.180 35.174 30.682 29.532 30.605 54.885 38.009

LSTM -7.633 23.138 20.710 -2.678 2.010 34.254 11.633 33.868 22.951 17.919 -5.952 4.493 37.578 18.476

RNN 18.319 11.930 11.261 -8.475 12.266 3.607 8.152 4.787 6.763 -2.094 8.730 37.368 17.814 12.228

Buy-and-hold -12.271 22.755 13.212 13.747 -5.358 9.819 6.984 -7.860 19.070 9.725 9.620 -7.144 9.356 5.461

https://doi.org/10.1371/journal.pone.0180944.t006
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perspective of average earnings within our sample period, our proposed model still earns the

highest profits according to the results in Panel B and C.

Furthermore, to achieve a robust conclusion, we also test whether the returns differences

between WSAEs-LSTM and the remaining three models are statistically significant. Again, we

compare the 24 quarterly returns among the models. The t-test results show that our return

differences between WSAEs-LSTM and the other three models all pass the significant test at

the 5% level. Therefore, our findings support that WSAEs-LSTM has the best predictability

among the four models.

Conclusion

This paper builds a novel forecasting framework to predict the one-step-ahead closing price of

six popular stock indices traded in different financial markets. The procedure for building this

forecasting framework is as follows: First, the denoised time series is generated via discrete

wavelet transform using the Haar wavelet; second, the deep daily features are extracted via

SAEs in an unsupervised manner; third, long-short term memory is used to generate the one-

step-ahead output in a supervised manner. Our input variables include the daily OHLC vari-

ables, technical indicators and macroeconomic variables. The main contribution of this work

to the community is that it is the first attempt to introduce SAEs method to extract deep invari-

ant daily features of financial time series. In addition, the deep learning framework is proposed

with a complete set of modules for denoising, deep feature extracting instead of feature selec-

tion and financial time series fitting. Within this framework, the forecasting model can be

developed by replacing each module with a state-of-the-art method in the areas of denoising,

deep feature extracting or time series fitting.

We test the predictive accuracy and profitability of our proposed model compared with the

other three models. The results provide evidence that it can outperform the other three in both

predictive accuracy and profitability regardless of which stock index is chosen for examination.

Although the proposed integrated system has a satisfactory predictive performance, it still has

some insufficiencies. For example, a more advanced hyper-parameters selection scheme might

be embedded in the system to further optimize the proposed deep learning framework. In

addition, deep learning methods are time-consuming, and more attention needs to be paid to

GPU-based and heterogeneous computing-based deep learning methods. All of these could be

enhanced by future studies.

Supporting information

S1 Fig. Displays the actual data and the predicted data from the four models for each stock

index in Year 2 from 2011.10.01 to 2012.09.30.

(TIF)

S2 Fig. Displays the actual data and the predicted data from the four models for each stock

index in Year 3 from 2012.10.01 to 2013.09.30.

(TIF)

S3 Fig. Displays the actual data and the predicted data from the four models for each stock

index in Year 4 from 2013.10.01 to 2014.09.30.

(TIF)

S4 Fig. Displays the actual data and the predicted data from the four models for each stock

index in Year 5 from 2014.10.01 to 2015.09.30.

(TIF)
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S5 Fig. Displays the actual data and the predicted data from the four models for each stock

index in Year 6 from 2015.10.01 to 2016.09.30.

(TIF)

S1 Table. Relationship between indices and corresponding index futures.

(PDF)
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