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Abstract

Background

Type 2 diabetes mellitus (T2DM), with increased risk of serious long-term complications,

currently represents 8.3% of the adult population. We hypothesized that a critical transition

state prior to the new onset T2DM can be revealed through the longitudinal electronic medi-

cal record (EMR) analysis.

Method

We applied the transition-based network entropy methodology which previously identified a

dynamic driver network (DDN) underlying the critical T2DM transition at the tissue molecular

biological level. To profile pre-disease phenotypical changes that indicated a critical transi-

tion state, a cohort of 7,334 patients was assembled from the Maine State Health Informa-

tion Exchange (HIE). These patients all had their first confirmative diagnosis of T2DM

between January 1, 2013 and June 30, 2013. The cohort’s EMRs from the 24 months pre-

ceding their date of first T2DM diagnosis were extracted.

Results

Analysis of these patients’ pre-disease clinical history identified a dynamic driver network

(DDN) and an associated critical transition state six months prior to their first confirmative

T2DM state.
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Conclusions

This 6-month window before the disease state provides an early warning of the impending

T2DM, warranting an opportunity to apply proactive interventions to prevent or delay the

new onset of T2DM.

Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia

caused by either or both insulin resistance or insufficient insulin production. People with

T2DM are at high risk for several serious health complications including cardiovascular dis-

eases, blindness, kidney failure, limb amputations, premature death, fractures, frailty, depres-

sion, and cognitive decline. Because of the shifting age structure of the global population and

the trend of urbanization and lifestyle changes in developing countries, the prevalence of dia-

betes among adults, 422 million worldwide in 2016, nearly doubles from 1980 to 2016 [1]. The

total estimated economic impact of those diagnosed with diabetes in the US in 2012 was $245

billion, a cost that included $176 billion in direct medical costs and $69 billion in reduced pro-

ductivity [2].

T2DM can often be prevented or delayed by maintaining a healthy life style, including a

normal body weight, engaging in physical exercise smoking cessation, and consuming a

healthful diet [3, 4]. A meta-analysis reported that 3-month lifestyle interventions decreased

the risk for diabetes from the end of intervention up to 10 years later [5]. Additionally, a modi-

fiable disease inflection point was hypothesized during the gradual progression to chronic dis-

eases [6–11] after which the return to the pre-disease state is not possible. Therefore, it would

be of high health priority to develop an early warning system for T2DM such that an opportu-

nity window of greater than three months prior to the disease state shall warrant an effective

intervention for the preventive care or the implementation of interventions to slow down the

T2DM progression.

We hypothesized that complex diseases progress through three states, i.e., a normal state, a

pre-disease state (or a critical transition state), and a disease state [12–15]. From population

health point of view, it is essential to identify the pre-disease state to apply effective interven-

tion, thus, qualitative deterioration can be managed. For many complex diseases, however, it is

a difficult task to predict a pre-disease state because the state of the system may change little

before the bifurcation point or the critical transition is reached, namely, there may be little dif-

ference between the normal and pre-disease states. A pre-disease state can be considered as a

limit of the normal state but a disease state is different from the normal state. This is also why

diagnoses based on traditional biomarkers or static measurements fail to distinguish a pre-

disease state from a normal state. Additionally complexity of diseases, including T2DM, can

involve thousands of genetic factors (e.g., SNPs and CNVs), epigenetic factors (e.g., methyla-

tion and acetylation), and different worldwide environment exposures. To resolve this prob-

lem, we piloted a novel model-free method to detect early warning signals of diseases [12–15].

Its theoretical foundation is based on dynamical driver network (DDN), which is also called as

the driver (or leading) network of the disease because components in DDN drive the whole

system from one state (e.g. normal state) to another (e.g. disease state). DDN can not only

uncover significant signals among noises the emergence of the critical transitions for the com-

mitment of disease progression, but can also help the formulation of discovery hypotheses
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down to genetic and biochemical pathways. However, DDN itself cannot simply be recognized

as a causal network of T2DM critical transition.

We applied through the application of the Transition Network Entropy (TNE) and DDN

methods to T2DM disease transition analysis with high throughput genomic datasets. Specifi-

cally, based on the temporal-spatial gene expression data of T2DM, we identified tissue-

specific DDNs corresponding to the critical transitions during T2DM development and pro-

gression. Our hypothesis of T2DM critical transition state at the tissue molecular level was vali-

dated during disease deterioration and characterized as responses to insulin resistance and

serious inflammation. Based on the functional and network analysis on pathogenic molecular

mechanism of T2DM, we showed that most of DDN genes, particularly the core ones, tended

to locate at the biological pathways upstream of T2DM pathophysiology, which implied that

DDN-identified genes act as the causal factors rather than the consequence to drive the down-

stream molecules to change their transcriptional activities. This finding validated our theoreti-

cal prediction of DDN as the driver network.

An improved understanding of disease at the system medicine level is anticipated to result

from the big data analytics of the such statewide or nationwide electronic medical records

(EMRs), particularly when combined with natural language processing and extraction of the

unstructured clinical note information [16–22]. Statewide health information exchange (HIE)

is a secure, standardized electronic system where providers can share important patient health

information for treatment purposes. Before the HIE implementation, there have been lack of

accurate and complete electronic medical data, inability to access real-time information, and

missed or late information. Patient records were stored in several physician offices, different

hospital storage systems, and independent laboratories. Patient records were available only

when provider offices are open or certain staff are available. Primary care physician was

unaware or alerted late to rest results or hospital admission/discharge. With HIE, clinical med-

ical records are now stored in one electronic location giving providers access to a complete

patient view. Data can be accessible to providers in real-time. Once information is generated

in native EMR, it’s in the HIE within minutes. Event alerts and notifications can be sent from

HIE to care manager through email. In addition, with the advance of machine learning and

artificial intelligence, HIE leadership started to focus on not merely delivering information,

but also on putting the vast amount of data they collect to work on big data analytics helping

hospitals, accountable care organizations and physician practices put the power of near real-

time data to work on improving patient care.

A major advantage in the application of EMR data mining stems from parallel analysis of

thousands of demographical/clinical parameters and events, like the analytics of high dimen-

sional genomics experiments, allowing the efficient detection of discriminant clinical patterns

for sensitive measure of pathophysiological status and monitoring altered disease progression.

Changes in clinical status is then based on the detection of perturbations in the frequencies and

measures of specific clinical events and laboratory test results involved in several key disease-

related or other specific clinical pathways [16–22]. Thus, EMR analytics can reveal crucial infor-

mation that is closely related to the disease progression or outcomes of targeted therapeutics.

In line with our previous work of diabetes transition analysis with genomic datasets, we

hypothesize that a critical transition state of T2DM disease progression can be identified

through EMR mining. The detection of the T2DM transition state using HIE EMRs prior to

definitive T2DM onset would provide an opportunity window for effective interventions to

prevent or delay the T2DM development. To test this hypothesis, we set to apply our transi-

tion-based network entropy model [23] to identify the critical transition state and the leading

network of longitudinal clinical histories to device early warning system of impending T2DM

for population health management.
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Result

Hypothesis testing of the EMR based critical transition state prior to

T2DM

The T2DM initiation dynamics before sudden deterioration is usually too complicated to be

fully expressed mathematically in high dimensional spaces. The drastic or a qualitative transi-

tion in a local system or network, from a normal (i.e. disease-free) state to a disease state, cor-

responds to a so-called bifurcation point in dynamical systems theory [24, 25]. If the system is

approaching a bifurcation point, it will eventually be constrained to a one- or two-dimensional

space (i.e., the center manifold), in which a dynamical system can be expressed in a very simple

form. This is the theoretical basis for developing a general indicator that can detect the T2DM

critical transition.

As shown in Fig 1, we collected the comprehensive historical longitudinal EMR datasets

from all of Maine’s HIE aggregated patients. A cohort of 7,334 patients with confirmatively

diagnosis of T2DM between January 1, 2013 and June 30, 2013 was constructed (Fig 1A). We

hypothesized three states during the T2DM progression can be characterized by clinical pat-

terns in EMR: the normal state, the transition state, and the disease state (Fig 1B). To profile

the critical transition state prior to T2DM, a feature correlation network with 33,403 features

was analyzed using the network entropy algorithm (Fig 1C). The whole feature network was

localized, and classified into three layers, which was calculated as the network entropy of the

state change in a Markov process. Markov process and its ability to govern the dynamics of

each node in the network was described in the following section. It was expected that there is a

DDN with critical behaviors occurring when the system is in the transition state (Fig 1D).

The critical transition detection prior to the first T2DM confirmative

diagnosis

As shown in Fig 1B, by applying the TNE method to the cohort’s clinical records, a DDN

(n = 257 features) was identified to show the existence of the critical transition between a dis-

ease-free state and a T2DM disease state. Fig 2D presents the dynamical evolution in the whole

feature network. For patients later developing T2DM, the DDN entropy becomes significantly

high six months before the first confirmative diagnosis (Fig 2D), indicating a signal of the criti-

cal transition before the deterioration into T2DM. In contrast, there is no significant change in

controls’ feature network dynamical progression (S1 Fig). When the deterioration is impend-

ing, these selected features form a special DDN sub-network, and make the first move from

the normal state toward the disease state during the transition. DDN’s behavior validates

our hypothesis that there is a transition state or pre-disease period between the normal and

disease states. In the study population, the transition state occurred around 6 months before

the T2DM confirmative state.

Fig 2A–2C show that the BMI, glucose, and A1C test results failed to identify the critical

transition period for T2DM diagnosis on the same population. These results indicate that risk

factors that are widely used by clinicians for T2DM diagnosis may not be able to serve as early-

warning T2DM signals to alert patients prior to the confirmative diagnosis (i.e., prior to the

time point 0 in Fig 2A–2C). It suggests that compared to the traditional diagnosis methods,

the DDN-based approach is more effective in identifying the critical T2DM transition point.

DDN’s functional characterization

DDN features were further characterized for their association and relatedness to T2DM clinical

development. The 257 selected features, which constructed the DDN, classify into abnormal

Critical transition of type 2 diabetes disease
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lab test results, abnormal radiology test results, and medications. Medication features can be

sub grouped by the associated primary diagnoses, procedures, or chronic conditions. Fig 3

summarizes the total 16 subgroups of features. Most features are correlated to the medication

utilized in chronic diseases closely related to diabetes, such as cardiovascular diseases and

metabolic disease. It indicates that the derived DDN is clinically reasonable for T2DM critical

transition point identification, and thus highlights an opportunity to develop an early warning

tool for clinical use based on the DDN method. Some features are related to abnormal lab test

(n = 10 features) or the use of radiology tests (n = 3 features). These tests reflect the incubating

risk factors, which may trigger the deterioration into T2DM.

Fig 1. The schematic of dynamic driver network (DDN) based model integrated to the Maine Health Information Exchange

workflow to characterize the critical transition state prior to the type 2 diabetes mellitus (T2DM) disease. (A) Based on clinical

records of 1.3 million people from Maine State, USA, we carried out a population study and extracted a sub-cohort with 7,334 patients with

the first T2DM confirmative diagnosis during the study period. (B) The progression of T2DM can be divided into three stages, i.e., the normal

state with relatively low entropy, the transition state right before the critical transition with relatively high entropy, the disease state with

relatively low entropy. The sharp increase of entropy is expected to characterize the transition state before getting into the disease state. (C)

With a transition-based network entropy, the features can be classified into three layers, and the DDN can be obtained. Based on the

dynamical characteristics (such as comprehensive clinic history, or time-course information) the cluster analysis suffices to separate the

network into a few functional modules. Further analysis via network entropy aggregates these modules and identifies the DDN. (D)

Employing the transition-based network entropy method, we succeed in presenting the existence of a transition state (orange) between a

normal state (green) and a disease state (red). The network structure of features can be divided into two parts, the DDN, and other

downstream features. The DDN provides the indicative warning signals to the sudden deterioration of diabetes. The map in the figure was

created by Adobe Photoshop CS6 (https://helpx.adobe.com/x-productkb/policy-pricing/cs6-product-downloads.html).

https://doi.org/10.1371/journal.pone.0180937.g001
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Clinical and resource utilization patterns during the transition to T2DM

The TNE-based DDN method profiles and differentiates T2DM’s 3-state progression.

We analyzed the changes of patients’ clinical outcomes and resource utilization from the

normal state to the disease state (Figs 4–7). It shows that among the patients diagnosed as

T2DM in the disease period, 60% had essential hypertension, and 50% had abnormalities of

lipid metabolism (Fig 4). The presence of these chronic conditions makes T2DM a costly

chronic disease. As shown in Figs 4–7, the associated costs and resource utilization includ-

ing clinical visits and laboratory utilization abruptly increase rapidly until reaching a peak

at one month after the diagnosis was confirmed, then quickly decline in the following

months.

Discussion

Consistent with our hypothesis, the results indicate that there is a critical transition that could

be detected 6 months before the T2DM confirmative diagnosis. Unlike the detection of the

Fig 2. The comparison of dynamical evolution for the dynamic driver network (DDN) and the traditional biomarkers. (A) The

trending of BMI illustrates no obvious increase tendency even when the patient is near the critical transition into type 2 diabetes mellitus

(T2DM). (B) The glucose index remains a consistent value (less than 126 mg/dl) before the confirmative diagnosis (time point 0) with no

indicative signal even when the patient is near the critical transition into T2DM. (C) The A1C index remains less than 6.5% before the

confirmative diagnosis (time point 0) and does not change significantly even when the patient is near the critical transition into T2DM. (D)

The evolution of DDN shows an early-warning signal can be detected 6 months before the diagnosis of T2DM.

https://doi.org/10.1371/journal.pone.0180937.g002
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disease state, the DDN enables the identification of an intermediate or transition state that

generally has no clear metabolic abnormalities but with future trending of deterioration.

The DDN features discovered in this study may provide a repository of T2DM associative

and/or disease driving clinical patterns underlying the progression of T2DM. This may help

identify modifiable clinical features for proactive intervention for preventive care or to slow

down the disease progression. Rather than using only a pre-defined set of clinical findings

(such as IGT, IFG, A1C and BMI), we developed a mathematical approach of system medicine,

focusing on the longitudinal evolution of each clinical feature and their relationships with each

other during the procession of disease. The T2DM DDN network features (n = 257) can be

divided into three subgroups: abnormal lab test results, abnormal radiology test results, and

medications. Most of these features are highly correlated with T2DM or its complications, e.g.

cardiovascular diseases and other metabolic diseases.

218/257 DDN features are medication prescriptions. Medication history can be used to

gauge patient disease burden. Demographic characteristics (S2 Table) show that patients in

transition to T2DM had significant chronic disease burden, including hypertension, heart

problems and asthma, prior to the onset of T2DM, compared with controls. Such differences

were reflected by medication prescriptions that comprised DDN. For example, Diltiazem,

Metolazone, and Losartan can help to reduce risk of high blood pressure. Statin and Digoxin

Fig 3. Modular structure of the dynamic driver network (DDN) features. The selected features of the DDN network

can be classified into 16 subgroups of demographics, primary diagnosis, procedure, etc. Most features were found to be

directly involving to the utilization of medicine to manage chronic diseases such as cardiovascular diseases and metabolic

disease, which indicates the derived DDN is clinically reasonable for the critical transition identification of type 2 diabetes

mellitus.

https://doi.org/10.1371/journal.pone.0180937.g003
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can help with cholesterol lowering and heart diseases. These chronic diseases and T2DM are

interrelated diseases, and medications to treat these diseases may have either positive or nega-

tive impact on critical transition from latent to T2DM onset. Cholesterol drugs, including Lov-

astatin, Atorvastatin, and Crestor that were selected as DDN features, help to maintain balance

Fig 4. Trending of T2DM related chronic disease counts from 24 months prior to the diagnosis of T2DM to 6

months after the diagnosis of T2DM. The counts of diabetes mellitus without complication, the essential hypertension,

and the disorders of lipid metabolism abruptly increase after the diagnosis was confirmed.

https://doi.org/10.1371/journal.pone.0180937.g004

Fig 5. Trending of the total cost of utilization from 24 months prior to the diagnosis of type 2 diabetes

mellitus (T2DM) to 6 months after the diagnosis of T2DM. The total cost reaches the peak rapidly after the

confirmative diagnosis.

https://doi.org/10.1371/journal.pone.0180937.g005
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Fig 7. Trending of unique abnormal lab test volume and total abnormal lab test volume from 24

months prior to the diagnosis of type 2 diabetes mellitus (T2DM) to 6 months after the diagnosis of

T2DM. Both volumes increase sharply after the confirmative diagnosis.

https://doi.org/10.1371/journal.pone.0180937.g007

Fig 6. Trending of the total emergency department (ED) visit utilization and total inpatient admission

utilization from 24 months prior to the diagnosis of type 2 diabetes mellitus (T2DM) to 6 months after

the diagnosis of T2DM. The two curves both rise abruptly after confirmative diagnosis.

https://doi.org/10.1371/journal.pone.0180937.g006
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between HDL and LDL cholesterol, which contributes to T2DM preventive care as low levels

of HDL cholesterol are associated with elevated risk of T2DM [26]. Persistent medication his-

tory associated with elevated risk of T2DM illustrates the activation of the potential underlying

clinical pathways responsible for the transition from latent to T2DM state. DDN medication

features such as antibiotics (Levofloxacin, Fluoroquinolone, Azithromycin, and Nystatin), β
blockers (Sotalol and Metoprolol), diuretics (Metolazone and Hydrochlorothiazide), and anti-

depressants (Amitriptyline, Citalopram, and Fluoxetine), can actually increase the risk of

T2DM [27–30]. Both the positive and negative correlated medications in regard to T2DM dis-

ease transition collectively suggest that our findings suggest the clinical care utilities of the

DDN features.

Like medication prescription, abnormal laboratory test results that were selected by DDN

learning process also reflect clinical status of our cohort. Abnormal results of metabolic panel,

cardiac panel, and urine culture are consistent with the cohort subjects’ comorbidities (S2

Table), including increased risk of having metabolic syndrome and obesity, heart problem,

kidney diseases, and infection.

The cost and resource utilization among T2DM new onset cases primarily occurred and

peaked shortly after the disease was confirmed. Such findings indicate that identification of

transition state prior to T2DM may allow the timely initiation of interventions to reduce clini-

cal resource utilization.

The DDN method is a generalized methodology for mining the dynamical information

from the longitudinal clinical EMR patterns and identifying the transition state. This method

was previously applied to genomics based diabetic disease progression analysis to identify the

states of normal, critical transition, and new disease onset [13–15]. In this study, we applied

this method to profile the EMR clinical patterns and identify the critical transition state of

T2DM. The work constructs the first step towards the development of an early warning system

of T2DM for population health.

Compared with other early warning methods to identify the critical transitions, the DDN

method has several advantages. First, it is a more efficient method. Only the local information

from a local network was involved in the calculation, which largely reduced the complexity.

Second, by ignoring the nodes where the TNE changes slightly the noise in the calculation was

essentially reduced, and the bias in identifying the critical transitions was avoided. Third, the

conventional correlation-based methods analyzed the linear relationships between the nodes

only, while the DDN method can depict the nonlinear relationships among the nodes. Fourth,

the DDN features obtained by this method provide an approach to the underlying mechanisms

during the progression of the disease, which would be very helpful in the development of the

clinical treatment of the diseases.

T2DM is a progressive disease that is associated with a tremendous economic burden to

both the U.S. health care system and the whole society. Reducing T2DM incidence and its

complications through intensive lifestyle and pharmacologic interventions will result in better

patient outcomes [31–33]. According to two clinical trials, a 3-month intensive lifestyle inter-

vention in high-risk patients significantly reduced those diagnosed with diabetes during a 3- to

10-year period [34, 35]. The effectiveness of interventions, however, is largely dependent on

the timing of their application relative to disease transitions. Our study shows that clinical pro-

file of patients have detectable change prior to confirmative diagnosis of T2DM, compared

with normal patients. Such change could happen during or even before the insulin resistance

state when glucose level is still in a normal range. The clinical profile change, defined as critical

transition state in this study, can be identified by our DDN algorithm. Identification of critical

transition state of T2DM improves awareness of both providers and patients, and thus helps

decision making on diet and life style interventions before the commitment of the T2DM
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progression. It warrants the timely interventions targeted to the high-risk patients prior to

deterioration, which can device effective preventive care, improve the quality of disease man-

agement, and reduce the overall clinical resource utilization.

In our previous work, we demonstrated it is efficient method to detect both T1DM and

T2DM using high dimensional genomics datasets [13–15]. This study integrated statewide

HIE EMR longitudinal patterns and applied the TNE-based DDN method to uncover the dis-

ease transition state prior to the new onset T2DM. The DDN analytics with HIE real time

EMR datasets can be generalized to apply to other complex chronic diseases. Our approach, to

identify complex disease critical transition state as an early warning system and case-find

high-risk patients statewide or nationwide in real time, can promise to translate the medicine

of all complex chronic diseases.

We notice there are some limitations of this study. First, the average number of patient rec-

ords prior to diagnosis of T2DM was 8.4, while 14% of patients had no patient record before

diagnosis. These patients might have been diagnosed with T2DM somewhere out of HIE net-

work, or have developed T2DM but without awareness. For those patients without EMR rec-

ords of medication, laboratory test results, or chronic disease history, they may be bucketed

into the baseline subgroup without commitment to T2DM progression. Second, data sources

of this study are EMR datasets routinely collected by Maine HIE. Study population therefore

are limited to those who had visited any of the care facilities participating HIE network.

Adjustments would be needed when our statistical learning and the associated healthcare man-

agement protocols need to be transferred to populations in other geographical and/or cultural

areas outside HIE network. Geographical, environmental, and racial disparity analyses may

uncover additional T2DM critical transition features for T2DM population health.

Methods

Data availability

The work was performed under a business arrangement between HealthInfoNet (http://www.

hinfonet.org), the operators of the Maine Health Information Exchange and HBI Solutions,

Inc. (HBI) located in California. By business arrangement we mean HBI is a contracted vendor

to HealthInfoNet (HIN), and HBI is under contract to deploy its proprietary applications and

risk models on the HIN data for use by HIN members. HIN is a steward of the data on behalf

of its members which includes health systems, hospitals, medical groups and federally qualified

health centers. The data is owned by the HIN members, not HIN. HIN is responsible for

security and access to its members’ data and has established data service agreements (DSAs)

restricting unnecessary exposure of information. HIN and its board (comprised from a cross

section of its members) authorized the use of the de-identified data for this research, as the

published research helps promote the value of the HIE and value to Maine residents.

HBI receives revenue for providing this service, which is performed remotely. HBI does not

own or have access to the data outside of providing services to HIN. HIN manages and con-

trols the data within its technology infrastructure. The research was conducted on HIN tech-

nology infrastructure, and the researchers accessed the de-identified data via secure remote

methods. All data analysis and modeling for this manuscript was performed on HIN servers

and data was accessed via secure connections controlled by HIN.

Access to the data used in the study requires secure connection to HIN servers and should be

requested directly to HIN. Researchers may contact Phil Prefenno at pprofenno@hinfonet.org,

(207) 541–4115 to request data. Data will be available upon request to all interested researchers.

HIN agrees to provide access to the de-identified data on a per request basis to interested
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researchers. Future researchers will access the data through exact the same process as the authors

of the manuscript.

Ethics statement

The studies were performed in accordance with the Declaration of Helsinki and relevant

local guidelines and regulations. This work was done under a business arrangement between

HealthInfoNet (HIN), operator of the Maine HIE (a nonprofit organization to benefit the pop-

ulation health of the Maine State residents), and HBI Solutions, Inc (HBI). The data use is gov-

erned by a business agreement (BAA) between HIN and HBI. No PHI was released during the

analysis. Instead, HBI implemented a product that was the foundation for the agreement and

then reported their results from applying this model to the products/services that HIN now

provides. Because this study analyzed de-identified data, the Stanford University Institutional

Review Board considered it exempt (October 16, 2014).

Data warehouse

The data warehouse used in this study consists of all the aggregated patient histories found

in Maine’s HIE. Incorporated data elements from the HIE EMRs included patient encounter

(visit/admission) history, patient demographics, abnormal laboratory tests and results,

radiographic procedures, medication prescriptions, diagnosis and procedures, which

were coded according to the International Classification of Diseases, 9th Revision, Clinical
Modification (ICD-9-CM), and AHRQ Chronic Condition Indicator (CCI) [25]. Census

data from the U.S. Department of Commerce Census Bureau were integrated into our data

warehouse. We categorized patients by socioeconomic status utilizing residence zip codes as

an approximation to the average household mean and median family income and average

level of education. The details of data extraction, management and storage are described in

S1 Text.

Maine HIE patient clinical histories were organized as hospital episode level relational

database tables. We processed the database at the patient level based on the Enterprise Mas-

ter Patient Index (EMPI) for population analysis within the HIE’s 36 inpatient and 400+

ambulatory facilities. Since the time point of first confirmatory diagnosis of T2DM varies for

each patient, all cohort patients’ first confirmatory diagnoses of T2DM were aligned as time

zero. A longitudinal analysis was performed monthly up to 24 months prior to time zero.

Multiple patient-level database tables were transformed, integrated, and pivoted to construct

a high dimensional table (33,403 clinical variables available for each patient) to support

the machine learning process. To reduce the table dimension, i.e. the number of variables

for each patient, we exploited the data variance for each data category (primary diagnosis/

procedure, secondary diagnosis/procedure, laboratory result, radiology result and outpatient

prescription) as the simplest criterion [24], which essentially projects the data points along

the dimensions of maximum variances. This dimension reduction exercise ended with a

set of 257 clinical longitudinal features from the preceding 24 months before time zero (S1

Table).

Study design

The overall study design was illustrated in Fig 1. With high throughput genomics datasets, we

previous discovered the critical transition point or the early detection of diabetes through the

application of the TNE and DDN. In this study, we tested our hypothesis that high dimen-

sional clinical patterns in EMR can be used to define a pre-disease critical transition state

prior to definitive T2DM diagnosis. The hypothesis was tested with newly diagnosed patients’
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clinical information that was extracted from EMR administrated by the HIE in Maine. An

early-warning DDN and the associated clinical parameters were recognized to define the

T2DM pre-disease transition state prior to the emerging confirmative diagnosis.

Cohort construction

Based on the EMR data from 1.3 million people residing in Maine, the ‘case cohort’ considered

of those who were alive and diagnosed with T2DM between January 1, 2013 and June 30,

2013. Patients with discharge ICD-9-CM diagnosis codes of 25000, 25002, 25010, 25020,

25022, 25030, 25032, 25040, 25042, 25050, 25052, 25060, 25062, 25070, 25072, 25080, 25082,

25090, and 25092 were considered as having the first confirmatory T2DM diagnosis. Patients

who had repeated abnormal glucose laboratory test results of A1C, fasting plasma glucose

(FPG), or oral glucose tolerance test (OGTT) before the first confirmatory of T2DM diagnosis

were excluded from the case cohort, as they might had developed T2DM before T2DM diag-

nosis was made by their physicians. For example, the patients who had more than twice the

positive results (>6.5%) in A1C test were excluded. The final case cohort included 7,334

patients (Fig 8). Patients without any T2DM-related ICD-9-CM diagnosis codes from June,

2011 to December, 2013 were considered as control. 10,145 age and gender matched controls

were selected to construct the control cohort. The demographic data of the case and control

cohorts is shown in S2 Table. Compared with control cohort subjects, patients in case cohort

exhibited complex comorbidities, making them ‘heavy users’ of healthcare resource with

higher costs (p<0.001, Mann—Whitney U test).

Fig 8. The flow chart of the cohort construction. Based on EMR episode data, a cohort of 8,098 patients was screened

out with confirmatory diagnosis as T2DM. 764 patients who had the obviously abnormal results before the confirmative

diagnosis in laboratory tests (positive twice) such as fasting glucose test, glucose tolerance test, A1C test, etc., were

excluded for analysis, since these subjects might already suffer from T2DM before the confirmative diagnosis. A final

cohort of 7,334 patients was constructed. EMR: electronic medical record; HIE: Health information exchange.

https://doi.org/10.1371/journal.pone.0180937.g008
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Markov process

Generally, it is difficult to analyze a large network directly because of the complexity and time

cost. We used a local network structure instead of the whole network to represent its dynam-

ical properties. Specifically, each node has a local network, i.e., the local network centered on

node i consists with itself and its m linked first-order neighbor nodes i1, i2, . . ., im whose local

transition state is Xi(t) = (xi(t), xi1(t), . . ., xim(t)) at time t.
The transition state coefficient xi of the Markov process was defined as:

xiðtÞ ¼
1 if jDziðtÞj > di
0 if jDziðtÞj � di

ð1Þ

(

Where Δzi(t) = zi(t)-zi(t-1) is the changing of zi at time t, di is the threshold for discretization.

When |Δzi(t)| is sufficiently large (> di), the transition state coefficient xi = 1, otherwise xi =

0.

Based on this definition, X(t) = (x1(t), . . ., xn(t)) is the transition state coefficient for the net-

work at time t.
In a local network centered on node i with m linked first-order neighbors i1, i2, . . ., im, we

first need to determine the threshold parameters d ¼ fdi; di1 ; � � � ; dimg, which measure

whether the state zi(t) has a large change or a state transition from its former state zi(t-1). Note

that a system is in a stable state during its normal state, whereas a system is sensitive to pertur-

bation in its transition state. Thus, di should be set to distinguish the “small changes” in normal

state from the “large changes” in transition state.

For this local network, therefore, we select d ¼ fdi; di1 ; � � � ; dimg when the system is in a

normal state such that for each node k, p(|zk (t0)|> dk) = α, if time point t0 is in a normal state.

Obviously, for such threshold d, it holds that

pðjzkðt0Þj > di; jzi1ðt0Þj > di1 ; � � � ; jzimðt0Þj > dimÞ � a ð2Þ

With such a distribution, features with large deviations clearly correspond to high

probabilities.

The following description and derivation are all based on a local node, i.e. i. To simplify the

notation, we omit i and denote Xi(t) as X(t), while we also denote the transition state simply as

a state.

Given the current state at time t is X(t), at the next time point t+1 there are a total of 2m+1

possible transition states, each of which is a stochastic event that is denoted, respectively, as

fAugu¼1;2;���;2mþ1 , where

Au ¼ fxi ¼ g0; xi1 ¼ g1; � � � ; xim ¼ gmg ð3Þ

where γl 2 {0,1}, for l2 {0,1,2,. . ., m}. The next state depends on the current state and its transi-

tion functions. Obviously, for this local subnetwork, the discrete stochastic process

fXðt þ iÞgi¼0;1;��� ¼ fXðtÞ;Xðt þ 1Þ; � � � ;Xðt þ iÞ; � � �g ð4Þ

With X(t + i) = Au, u 2 {1,2,. . .,2m+1}, is a stochastic Markov process during a period or phase

of the system. This stochastic process is defined or given by a Markov matrix P = (pu,v), which

describes the transition rates from state u to state v as follows

pu;vðtÞ ¼ PrðXðt þ 1ÞÞ ¼ AvjXðtÞ ¼ Au ð5Þ

where u, v 2 {1,2, . . .,2m+1}, and ∑v pu,v (t) = 1.
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Transition-based network entropy (TNE)

The TNE is a type of Shannon entropy [36] that is conditional on the previous state of the local

dynamical network in a Markov process. In the feature space network, each node represents a

feature, and each edge represents a regulatory relation between two features. For a local struc-

ture centered on node i and its m linked first-order neighbor nodes i1, i2, . . ., im, we already

know that its state transition process is a stochastic Markov process. Within a period or phase,

we assume that there is no change in the transition matrix, i.e., the transition probabilities

pu,v (t), between any two possible states Au and Av. Thus, the process fXðtÞgt2½t1 ;t2 � is a station-

ary stochastic Markov process during a specific period [t1, t2], i.e., the normal stage or the tran-

sition stage.

Thus, there is a stationary distribution p ¼ ðp1; � � � ; p2mþ1Þ that satisfies ∑v πvpu,v = πu.

Therefore, we can define the transition-based network entropy, i.e., the TNE, as

HiðtÞ ¼ HðwÞ ¼ �
X

u;v

pvpu;vlogpu;v ð6Þ

where the subscript index i indicates the center node i of this local network, while χ represents

the transition process X(t), X(t + 1), . . ., X(t + T), . . . of the local network. The entropy is

equivalent to the so-called entropy rate

HðwÞ ¼: lim
T!1

1

T
HðXðtÞ;Xðt þ 1Þ; � � � ;Xðt þ TÞÞ ¼ lim

T!1
HðXðt þ TÞj

Xðt þ T � 1Þ;Hðt þ T � 2Þ; � � � ;XðtÞÞ
ð7Þ

when the limit exists. The TNE is the conditional entropy and describes the average transition

entropy, depending on the state transition, i.e.Hi(t) = H(X(t) _ X(t– 1)) = H(X(t), X(t– 1)–

H(X(t − 1))). We also note that X(t) or (Z(t)–Z(t– 1)) are variation variables. Clearly, in a nor-

mal state (or a disease state), a system recovers from a small perturbation quickly because of

high resilience, i.e., X(t) and X(t-1) are almost independent. Thus, we have Hi (t)�H(X(t))
due to, H(X(t), X(t– 1))�H(X(t)) + H(X(t– 1)) > 0 which results in a high TNE. By contrast,

the system has difficulty recovering from a small perturbation in a transition state because of

low resilience, i.e., X(t) and X(t-1) are strongly correlated, which implies that Hi(t) rapidly

approaches the minimum, Hi(t)� 0 due to H(X(t), X(t– 1))�H(X(t– 1)).

Dynamic driver network (DDN)

The TNE method described above was employed to identify the DDN. Considering the follow-

ing equations with noise perturbations near the equilibrium �Z :

Zðt þ 1Þ ¼ f ðZðtÞ; PÞ ð8Þ

Where Z(t) = (z1(t), . . ., zn(t)) is an n-dimensional state vector or variables at time t that repre-

sent features in the system, while P = (p1,. . ., ps) is a parameter vector or driving factors that

represent slowly changing factors. Mappings f: Rn × Rs! Rn are generally nonlinear functions.

For such dynamical evolution function, there is a bifurcation if the following conditions hold:

1. �Z is a fixed point of system such that �Z ¼ f ð�Z ;PÞ.

2. There is a value Pc such that one or a pair of the eigenvalues of the Jacobian matrix
@f ðZ;PCÞ

@Z jZ¼�Z is equal to 1 in the modulus.

3. When P 6¼ Pc, the eigenvalues are not always equal to 1 in the modulus.
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The above three conditions with other transverse conditions imply that the system under-

goes a phase change at �Z or a codimension-one bifurcation when P reaches the threshold Pc.
For system near �Z and before P reaches Pc, we assume that the system is at a stable fixed point

�Z so all the eigenvalues are within (0, 1) in the modulus. The parameter value Pc at which the

state shift of the system occurs, is known as a bifurcation parameter value or a critical transi-

tion value.

The generic properties in dynamics of Eq (8) was derived based on a consideration of the

linearized equations for Eq (8) and the noise perturbations near �Z . Specifically, introducing

new variables Y(t) = (Y1(t), . . .,Yn(t)) and a transformation matrix S, i.e.,

YðtÞ ¼ S� 1ðZðtÞ � �ZÞ, we have

Yðt þ 1Þ ¼ LðPÞYðtÞ þ BðtÞ ð9Þ

where Λ(P) is the diagnosis matrix of
@f ðZ;PCÞ

@Z jZ¼�Z , B(t) = (B1(t), . . ., Bn(t)) are small Gaussian

noises with zero means.

We denote σi as the small standard deviation of zi for all k. Without any loss of generality,

the diagnosis matrix Λ = (λ1,. . ., λn) for each λi is between 0 and 1. (In fact, three typical cases

arise during the diagonalization process [15], but we only illustrate the diagonal case with dif-

ferent real eigenvalues for simplicity. The derivations of the other two cases are similar.

Among all eigenvalues of Λ, the largest one (in the modulus), say λ1, approaches 1 in the mod-

ulus when parameter P!Pc. The eigenvalue λ1 characterizes the system’s rate of change

around a fixed point and is known as the dominant eigenvalue. The normal state corresponds

to a period of |λ1| < 1, whereas the transition stage corresponds to the period with λ1! 1.

Without generality loss, we assume that the first variable y1 in Y corresponds to λ1, namely

(y1, 0, . . ., 0) is the eigenvector of λ1. Close to a fixed point, we have shown that there is a domi-

nant group or a dynamical driver network (DDN) that satisfies the following conditions when

the system approaches a critical transition point [15].

We now summarize the critical properties of the stochastically perturbed linear system as

described in Eq (9). Denote zi as the value of feature i. When P approaches the bifurcation

point, the following results hold:

1. For any feature i in the DDN, the fluctuation of zi increase sharply;

2. If both i and j are in the DDN, then the correlation between zi and zj sharply increases;

3. If i is in the DDN but j is not, then the correlation between zi and zj decrease sharply;

4. For two features i nor j which do not belong to the DDN, the correlation between zi and zj
show no significant changes.

This result describes the generic critical properties of features in DDN. The DDN is the

sub-network that makes the first move from one state toward another state at the critical tran-

sition point, so we refer to the DDN as the driving network in this critical transition.

In contrast to the original variables Z analysis [15], this work focuses on the variation equa-

tion for Eq (8) with variation variables ΔZ. We note that

zi ¼ sijy1 þ � � � þ sinyn þ �zl ð10Þ

Let the variation variables be ΔZ = Z(t)-Z(t-1), then Eq (10) is transformed into

Dzi ¼ sijDy1 þ � � � þ sinDyn ð11Þ
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Where

DY ¼ YðtÞ � Yðt � 1Þ ð12Þ

We refer to Δzi(t) and Δyi(t) as the variation variables for zi(t) and yi(t), respectively. From

Eqs (9) and (12), it clearly holds that

DYðt þ 1Þ ¼ DYðtÞ þ xðtÞ ð13Þ

where ξ(t) = B(t) − B(t − 1) are Gaussian noises with zero means and covariances kij = Cov(ξi, ξj).
It is clear that the standard deviation of ξi(t) is

ffiffiffi
2
p

si, where σi is the standard deviation of z for

all t. The variable Δy1 corresponds to the dominant eigenvalue λ1.
For a stochastically perturbed linear system of Eq (8):

Zðt þ 1Þ ¼ AðPÞZðtÞ þ εðtÞ ð14Þ

where ε(t) is the Gaussian noise and P is a parameter vector that controls the Jacobian matrix

A. We denote the variation variable as Δzi(t) = zi(t)—zi(t-1) and assume T to be sufficiently

large.

1. When P is not in the vicinity of a critical transition point or a bifurcation point, it holds

that for any i and j including i = j, Δzi(t+T) is statistically independent of Δzj(t), where

i, j = 1,2,. . .,n.

2. When P approaches to a critical transition point, the following holds.

a. If both i and j are in the dominant group, or DDN members, then there is a strong corre-

lation between Δzi(t+T) and Δzj(t);

b. If neither i nor j in the dominant group, then Δzi(t+T) is statistically independent of

Δzj(t). Note that this also holds for i = j.

We point out that for a nonlinear case at a fixed point, the dynamical behavior has the same

trend described.

We combine the TNEs for all nodes and define the average network entropy for the whole

network with n nodes as the average TNE as follows:

HðtÞ ¼
1

n

Xn

i¼1

HiðtÞ ð15Þ

Suppose that there are control samples and case samples, then we define the comparative

entropy as:

EðtÞ ¼
HcontrolðtÞ
HcaseðtÞ

ð16Þ

where Hcontrol(t) is the TNE based on control samples in the form of Eq (15), and Hcase(t) is the

TNE based on case samples in the form of Eq (15).
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