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Abstract

The 14-3-3 protein family performs regulatory functions in eukaryotic organisms by binding

to a large number of phosphorylated protein partners. Whilst the binding mode of the phos-

phopeptides within the primary 14-3-3 binding site is well established based on the crystal

structures of their complexes, little is known about the binding process itself. We present a

computational study of the process by which phosphopeptides bind to the 14-3-3ζ protein.

Applying a novel scheme combining Hamiltonian replica exchange molecular dynamics and

distancefield restraints allowed us to map and compare the most likely phosphopeptide-

binding pathways to the 14-3-3ζ protein. The most important structural changes to the pro-

tein and peptides involved in the binding process were identified. In order to bind phospho-

peptides to the primary interaction site, the 14-3-3ζ adopted a newly found wide-opened

conformation. Based on our findings we additionally propose a secondary interaction site on

the inner surface of the 14-3-3ζ dimer, and a direct interference on the binding process by

the flexible C-terminal tail. A minimalistic model was designed to allow for the efficient calcu-

lation of absolute binding affinities. Binding affinities calculated from the potential of mean

force along the binding pathway are in line with the available experimental estimates for two

of the studied systems.

Introduction

14-3-3 proteins are important regulatory factors found in all kingdoms of life and are vital for

the survival of higher organisms. In mammals, the 14-3-3 family consists of seven isoforms

that can be found in large abundance within the brain. The human 14-3-3z isoform was

selected for this project because of its high biological relevance. 14-3-3 proteins function
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mainly as dimers, which are composed of two 28-kDa monomers that are both capable of

binding phosphorylated serine (pS) and threonine (pT) motifs in other proteins. Crystal struc-

tures of all seven mammalian homodimers are now available and show that each monomer is

composed of nine α-helices, arranged in an antiparallel fashion. The helices form an amphi-

pathic groove that mediates pS and pT target binding [1]. Most 14-3-3 targets have two phos-

phoserine/threonine-containing motifs with a consensus sequence RSXpSXP (mode I) or RX

[FY]XpSXP (mode II) [2], representing the optimal recognition sites for 14-3-3. Upon binding

to these sites 14-3-3 proteins induce conformational changes in their target protein, (and ‘fin-

ish the job’) when phosphorylation alone may lack the power to drive the necessary allosteric

changes for modulating the activity of an intracellular protein. Owing to their dimeric nature,

14-3-3 proteins are capable of distinguishing between non-, single- and double- phosphory-

lated binding protein partners; in this sense 14-3-3 proteins are considered to act as coupled

binary devices [3]. Recently, we have presented an approach based on experimental 31P NMR

spectroscopy which revealed that a double-phosphorylated protein can be complexed with the

14-3-3z dimer in a much more dynamic fashion than was originally thought. In addition to

the traditionally considered single partner with two phosphorylation sites occupying the indi-

vidual binding cavities within the 14-3–3z dimer, two more major binding modes were con-

firmed [4]. All that is currently known about the structural features of the phosphopeptide

binding to 14-3-3 proteins originates from the available crystal structures of 14-3-3 proteins in

apo and holo state. Comparison of the various 14-3-3 crystal structures also revealed the differ-

ent width of the main peptide binding groove, thus suggesting a dynamic opening process [5].

Here, we present the structural and energetic features of selected phosphopeptides along

their binding/unbinding pathways to/from the 14-3-3z binding site, determined by enhanced

sampling computational approaches. The main applied methodology is based on Hamiltonian

replica exchange molecular dynamics (HRE-MD) combined with distancefield (DF) distance

restraints [6], which has several advantages over the more conventional umbrella sampling

and distance restraints approaches. HRE-MD is a highly parallel perturbed molecular dynam-

ics (MD) technique, whereby each parallel simulation (replica) represents a discrete state along

a thermodynamic pathway. The simulation of replicas are independent of each other, however,

at given time periods the replicas can exchange their coordinates to allow the ensembles

of each replica to include conformations derived from multiple starting coordinates. The

application of HRE-MD instead of a set of individual MD simulations with different distance

restraints significantly enhances sampling efficiency. HRE-MD could be combined with regu-

lar distance restraints, however, such an approach could lead to protein damage when coordi-

nates at larger Cartesian distances switch to shorter distances [7]. Applying DF restraints

avoids the protein damage whilst the ligand is pulled into the binding site by using an altered

reaction coordinate, for which the distance to the binding site is defined by the shortest steri-

cally possible pathway. Combining DF restraints and HRE-MD allows the simulation coordi-

nates of the replicas to traverse reversibly between the various states of the binding pathway

and represent conformations in structural ensembles restrained at different DF distances that

would otherwise require much longer simulation times due to kinetic barriers. The set of ther-

modynamic ensembles that is generated is used to determine the structural features of the pep-

tide-binding pathways as well as the corresponding potential-of-mean-force (PMF) profiles

which can be used for the calculation of the absolute binding affinities.

Results and discussion

We studied the binding of phosphorylated peptides to the 14-3-3z protein by constructing

two different models of 14-3-3z, one containing a full length 14-3-3z dimer (dim) and one
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including only a truncated 14-3-3z monomer (tmon) without the flexible C-terminal stretch

(tail, aa. 230–245). The proper simulation of a full length 14-3-3z dimer requires a large simu-

lation box in order to avoid artificial periodic effects arising from the opening motion of 14-3-

3z and the flexible C-terminal regions. Furthermore, the presence of the flexible C-terminal

stretch also significantly slowed down the convergence of calculated free energies, as is demon-

strated by the PMF calculations (see below). Four different phosphopeptide fragments are

used as models for this study which were derived from the diphosphorylated PKC-ε and

C-RAF kinase binding sites for 14-3-3z, and are referred to as the head and tail fragments of

peptides 1 and 2, respectively (p1h, p1t, p2h, p2t), based on their location in the full protein

sequence. These phosphopeptide fragments were chosen because their crystal structure bound

to 14-3-3z was available and their binding affinities were previously measured [8–10].

Phosphopeptide sequences, abbreviations and naming conventions used in this work are

given in Fig 1. The monomers of 14-3-3 proteins are horse-shoe shaped, and the first four α-

helices form the dimerization interface. The two monomers of a 14-3-3z dimer are denoted as

M1 and M2 when a distinction is necessary. The helices three, five, seven and nine of each

Fig 1. 3D representation, nomenclature and sequence of the model molecules used during the simulations. Dimer and monomer

14-3-3ζ systems (on the right) were simulated with fragments of phosphopeptide 1 and 2 (sequence shown on the left). The phosphoserine

in the sequence is highlighted in red. 14-3-3ζmonomers are represented as cartoons in green and cyan, phosphopeptides are shown in

stick representations in orange and purple. The phosphopeptide under DF restraining is labelled by an upper-case letter in the abbreviations.

https://doi.org/10.1371/journal.pone.0180633.g001
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monomer form the phosphopeptide binding grooves on the inner side of the 14-3-3z dimer.

When referring to our simulations we denote our simulated complex by first defining the 14-

3-3z model (dim or tmon) followed by peptide fragment present in the simulation (either p1h,

p1t, p2h, p2t or nothing, in case of apo simulations). In the case of dimeric simulations, if two

peptide fragments are present we will denote it by p1ht or p2ht representing either peptide 1

(region 342–372 of protein kinase C-ε) or peptide 2 (region 229–264 of C-RAF kinase) frag-

ments. In addition, when DF distance restraints are applied to pull one of the phosphopeptide

fragments from its respective binding groove, we mark this fragment with an upper-case letter

(e.g. tmon_p2T or dim_p2hT).

Our results are divided into three sections. The first section describes phosphopeptide bind-

ing pathways elucidated from the DF/HRE-MD simulations. We characterized the binding/

unbinding pathways of studied 14-3-3z/phosphopeptide complexes by determining the most

important protein-peptide interactions between 14-3-3 and its binding partner, and identify-

ing the regions most frequently populated by the restrained phosphopeptide. In the second

section we focus on the structural changes along the binding pathways for both 14-3-3z and

the phosphopeptide. Here we aim to identify the large-scale protein motions, which may be

important for the phosphopeptide and protein binding. The third section presents the free

energy changes along the binding pathways. The determined free-energy profiles allowed us to

calculate estimates for the corresponding phosphopeptide binding affinities.

1. Major binding pathways of the 14-3-3ζ protein

In this section, we have elucidated the phosphopeptide binding pathways of 14-3-3z, using

DF/HRE-MD simulations. We achieved this by gradually pulling one of the phosphopeptides

bound to the 14-3-3z from its respective binding site in a reversible HRE-MD process. During

the DF/HRE-MD simulations replicas with increasing index numbers restrained the phospho-

peptide to regions with DF distances further away from the peptide binding groove (interac-

tion site 1, IS1). Note that for every dimeric 14-3-3z complexed with two phosphopeptide

fragments (e.g. p1h and p1t in dim_p1Ht) one phosphopeptide fragment (p1h in case of

dim_p1Ht) per process was pulled from its monomer, whilst the other (p1t in case of

dim_p1Ht) remained in its respective monomer binding site (Fig 1). Such a setup avoids com-

plications arising from the two available binding sites (for p1h) within one 14-3-3z dimer.

1.1. Characterization of the phosphopeptide binding pathways. In order to characterize

the phosphopeptide binding pathways of 14-3-3z, we monitored the position and interactions

of the phosphopeptide during its binding/unbinding process. Fig 2 summarizes the results of

such an analysis for simulation dim_p1hT (S1–S7 Figs corresponds to the other 7 DF/

HRE-MD simulations). The position of the DF-restrained phosphopeptide was tracked on a

three dimensional grid through its virtual atom (as described in Methods section) near the

pSer residue during the DF/HRE-MD simulations (Fig 2A). The most occupied/preferred

positions of the phosphopeptide at various DF distances were aligned along a dominant bind-

ing/unbinding pathway (as shown in Fig 2B). Similar dominant pathways were observed for

seven out eight simulations (as shown in S1B–S7B Figs).

The analysis of phosphopeptide-protein interaction energies (Fig 2C) shows a local mini-

mum around the DF distance of 3.5–6.0 nm, in addition to the global minimum of original

binding site at the DF distance of about 0.2 nm. The local interaction energy minimum co-

occurred with stable, specific interactions with certain 14-3-3z residues around amino acids

64–70 (Fig 2D). Similar characteristic interaction energy minima were also observed for all

seven simulations with a dominant pathway, including stable interactions between the phos-

phopeptide and the same 14-3-3z residues (64–70, in S1D–S6D Figs), suggesting a previously

The binding pathways of the 14-3-3ζ protein
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Fig 2. Pathway visualization of the DF/HRE-MD simulation dim_p1hT. A) The volume sampled by the p1t

phosphopeptide during the simulation is shown by dots around the 14-3-3ζ protein coloured based on their

position along the pathway. The most probable points in space to find the peptide in for each replica

(probability density peaks) are represented by larger spheres. B) Density peaks and a few representative

structures corresponding to the density peaks, coloured according to their position along the pathway. Replica

density peaks are connected by lines to visualize the binding pathway. The 14-3-3ζ protein in panels A-B is

shown as a surface representation, with the two monomers shown in light and dark grey. C) Average

interaction energy between 14-3-3ζ and p1t. D) Interaction map between any atom of the pulled p1t peptide

and the amino acids of the 14-3-3ζ protein, summarized for each replica (only amino acids with at least 0.1

hydrogen bond/salt bridge on average are shown). The scale indicates the average number of interactions.

https://doi.org/10.1371/journal.pone.0180633.g002
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unknown secondary interaction site. To better characterize our binding pathways, we divided

the pathways into five parts; starting from the primary interaction site (IS1) within the main

phosphopeptide binding groove, followed by the early pathway (Pw1) between the two interac-

tion sites, the vicinity of the secondary interaction site (IS2), the late pathway (Pw2) after IS2,

and the unbound state (Unb), where the pathway becomes diffuse and no significant interac-

tions with 14-3-3z are observed for the phosphopeptide.

Experimental support for the existence of the IS2 site can possibly be found in previously

published 31P NMR titration data of the doubly phosphorylated (at positions 19 and 40)

human tyrosine hydroxylase 1 peptide binding to 14-3-3z [4]. Fig 2A of the referred article

shows an “unexpected” peak labelled as pS40�, which was different from pS40 in the free state

or bound to IS1. One of the possible explanations is that while pS19 is bound to IS1, pS40 can

interact with IS2—still being partially solvent exposed—resulting in the additional peak.

1.2. Comparison between phosphopeptide pathways. Comparing the binding pathways

obtained for the four studied phosphopeptide fragments (with both 14-3-3z models), we

found a remarkable similarity between their most probable pathways in 7 out of 8 simulations

(with the exception of dim_p2Ht, Fig 3A). The dominant pathways generally followed helix

three, “sliding” from IS1 in the primary binding groove to IS2, and becoming increasingly dif-

fuse before the final detachment of phosphopeptide and reaching the Unb state. This general

behaviour indicates the existence of one dominant pathway for all four phosphopeptides,

observed both in the dimeric and truncated monomeric simulations. Examining the electro-

static surface potential (ESP) in multiple 14-3-3z conformations showed both IS1 and IS2

display highly positive surface potentials; and the connecting region along helix three also

exhibits a mildly positive surface potential (Fig 3B). Thus, these areas can form favourable

Fig 3. Comparison of binding pathways of different phosphopeptides. A) Binding pathways from DF/HRE-MD simulations depicted as

connected dots referring to the probability density peaks along the respective pathway (See Table 1 for more information). B) Electrostatic

surface potential (ESP) of 14-3-3ζ in blue, white and red for positive, neutral, and negative surface patches, respectively. The positively

charged main interaction site (IS1), and secondary interaction site (IS2) are connected by a positive surface along the binding pathways. A

negative surface patch (NSP) involved in the binding process is also indicated. Serine58 (S58), a phosphorylation site is located near the

binding pathway. For clarity, the 14-3-3ζC-terminal tail is not shown.

https://doi.org/10.1371/journal.pone.0180633.g003
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electrostatic interactions with a negatively charged phosphoserine side chain, which could

explain the presence of a dominant binding pathway.

In addition, based on the ESP we identified a negative surface patch (NSP) which was often

found to accommodate the positively charged side chain in position -3 or -2 relative to the

phosphorylation site of the peptide fragment. The NSP is primarily composed of residues

Y179, E180, N183, D223, N224, L227 and W228. The NSP provides an additional anchor

point on the binding pathway and also concurs with the strong selection of positive amino

acids in this position as reported by Jaffe et. al. [2].

It was previously reported [11], that phosphorylation and mutation of S58 into negative

amino acids lead to dimer dissociation and a (usually negative) change in the 14-3-3 binding

affinity, independently of the oligomeric state. S58 is located near the dimer interface of 14-3-

3z and directly next to the binding pathway between IS1 and IS2. A negatively charged residue

in position 58 could negate the mildly positive surface potential (Fig 3 and S13 Fig), and dis-

rupt the observed binding pathway, which is in line with the observed experimental changes.

We identified the amino acids of 14-3-3z which were important phosphopeptide interac-

tion partners at each of the five stages of the binding pathway. Most interactions between 14-

3-3z and the phosphopeptides were polar hydrogen bonds or salt bridges. During our simula-

tions, as the phosphopeptide sampled the available volumes along the dominant pathway, the

overall probability to find a particular 14-3-3 amino acid interacting with the restrained phos-

phopeptide was calculated (shown in S8 Fig) as function of the replica number (restraining DF

distance). In Fig 4 we display the table of all the 14-3-3z residues found significant (over 10%

probability at a given replica) in this analysis. The residues are coloured according to the stage

in which the residue was found most significant.

In dark purple we have depicted residues found most significant while the phosphopeptide

is bound in IS1 including many residues previously identified as crucial interaction partners

(such as Lys 49, and Arg 127) based on 14-3-3 crystal structures, and residues from the nega-

tive surface patch such as Asp 224, which mostly interacted with the positively charged resi-

dues of the phosphopeptide. The second group of amino acids (shown in orange) were found

most prominent on the early pathway (Pw1) between IS1 and IS2. Many of these residues were

probable interaction partners already when the peptide was in IS1 (such as Glu 180 and Arg

56), whilst other residues became significant only as the phosphopeptides left the primary

binding site (e.g. Glu 113 and Asp 124).

The third group of residues were most prominent whilst the phosphopeptide visited IS2.

Most of these residues (e.g. Ser 64, Lys 68 and Lys 75) are located in the positive surface patch

at the end of helix three (marked with light green in Fig 4), near the dimerization interface.

There were also three residues (Lys 11, Ser 207 and Glu 209, shown light blue) considered as

important interaction partners only during our dimeric DF/HRE-MD simulations. In dimeric

simulations these residues from the other, 14-3-3 monomer enhanced and expanded the posi-

tive surface patch at IS2, and prevented the phosphopeptide to diverge from a dominant path-

way for ~1.0 nm longer in the distance field during the late pathway stage (Pw2) compared to

monomeric simulations.

The final group of interacting residues, were located on the disordered C-terminal region

(aa. 231–245) of the monomer from which the peptide is being pulled, shown in brown in Fig

4. The bulk of the tail interactions were observed in the PW1, IS2 and Pw2 stage of the binding

pathway (including the salt bridges with Glu 241 and Glu 244), although some of the tail resi-

dues could interact with the phosphopeptide fragments while they were bound to IS1 (Thr

232, Gly 234 and Ala 237, most prominently with the p2h).

Fig 4 also highlights that the occurrence of phosphopeptide—tail interactions was very high

in two of the DF/HRE-MD simulations (dim_p1hT and dim_p2Ht) and very low in the other

The binding pathways of the 14-3-3ζ protein
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two cases (dim_p1hT and dim_p2hT). The strongest interactions with the 14-3-3 tail region

were observed for the simulation dim_p2Ht, which at the same time had the weakest interac-

tions with IS2 and did not follow the dominant phosphopeptide binding pathway observed

during the other seven DF/HRE-MD simulations (S7 Fig). These observations suggest that C-

terminal tail may disrupt the dominant peptide binding pathway.

1.3. Comparing the pathways within 14-3-3z dimeric and truncated monomeric

model. The summary of our DF/HRE-MD simulations indicates a dominant phosphopep-

tide binding pathway for 14-3-3z where the phosphopeptide in the process of unbinding

“slides” from the IS1 towards IS2 along the described pathway shown in Figs 3 and 4. Here, we

summarize the differences observed between our full dimeric systems (dim) and the minima-

listic, truncated, monomeric systems (tmon) during the detailed analysis of preferred positions

and phosphopeptide interactions (shown in Figs 2–4 and S1–S8 Figs).Our minimalistic sys-

tems lacked the neighbouring monomer and the C-terminal region of the 14-3-3z protein,

Fig 4. 14-3-3ζ residues involved in the phosphopeptide interactions. The table on the left side shows the 14-3-3ζ amino acids, which

were found important based on the interaction map analysis (Fig 2, S1–S7 Figs) of the DF/HRE-MD simulations. Entries in the various

simulations are marked as not applicable (n/a), not significant (-), significant (+), important (++), or major interaction partners (+++). The last

three amino acids in the table were interaction partners from the other monomer. The right side shows the three dimensional structure of the

14-3-3ζ protein, where the monomers are depicted in cartoon and surface representations, respectively. The amino acids are depicted in

stick representation, coloured differently for the two monomers. In the cartoon representation, peptide-interacting amino-acids are coloured

according their position in the secondary structure, where helices 3, 5, 7 and 9 are shown in red, blue, green and brown, respectively, while

the C-terminal stretch is depicted in light purple. For the surface representation, amino acids found significant only in the bound-state

replicas (IS1) are shown as dark purple, amino acids along the binding pathway are marked in orange, light green and light blue, if they

appeared prior, in, or after the secondary interaction site (IS2). See S8 Fig for details.

https://doi.org/10.1371/journal.pone.0180633.g004

The binding pathways of the 14-3-3ζ protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0180633 July 20, 2017 8 / 30

https://doi.org/10.1371/journal.pone.0180633.g004
https://doi.org/10.1371/journal.pone.0180633


which, in the case of full dimeric systems, restricted the accessible space for the peptides and

necessitated longer DF distances to reach the unbound state.

The truncated monomer pathways were more similar to each other near the main peptide

binding groove (IS1), and showed enhanced interactions with helices 7–9, which were partially

blocked by the C-terminal region in the dimers. The monomeric pathways fanned out after

leaving the IS2 around 5 nm in the DF and sampled the outer side of 14-3-3z monomer before

final detachment from the 14-3-3z surface, and showed no significant interactions above 7

nm.

Full dimeric simulations lead to a more complete picture of 14-3-3z binding pathways and

could yield additional, biologically relevant information. The pathway comparison revealed a

more localized phosphopeptide presence for all dimeric systems near the dimerization inter-

face, along with new interaction partners from the other monomer (K11, S207, and E209).

During dimeric HRE-MD simulations which followed the dominant pathway, phosphopep-

tides occupied the secondary interaction site (IS2) for a wider range of distances than their

monomeric counterparts and had non-negligible interactions between the restrained peptide

and the 14-3-3z dimer for DF distances smaller than 9.5 nm.

The interactions between the phosphopeptide and the C-terminal tail of the restrained 14-

3-3 monomer showed a large variation between the four full dimeric simulations. In case of

the p2h peptide fragment, strong interactions with the tail seemed to prevent the phosphopep-

tide to follow the dominant pathway (S7 Fig), which is a major difference compared to the

truncated simulation with the same peptide (S2 Fig). The signs of direct interference from the

C-terminal tail, and the tail-associated discrepancies in the full dimeric phosphopeptide bind-

ing simulations necessitated further investigation, shown below.

2. Structural changes along the binding pathway

The structural ensembles generated at different replicas within the DF/HRE-MD allowed us

to analyse structural changes as function of the DF distance from IS1. The results of this analy-

sis allowed us to monitor the slow conformational degrees of freedom which may affect the

binding/unbinding process of 14-3-3z. In the following section we identify these large scale

motions, and compare our DF/HRE-MD simulations in the bound (IS1) and unbound (Unb)

states with unrestrained MD simulations under the same conditions and—whenever possible

—experimental observations. This analysis allowed us to explore the observed discrepancies,

assess the effect of these large scale motions on the phosphopeptide binding process during the

limited sampling of our simulations, as well as effects of the applied DF/HRE-MD restraints

on the system.

2.1. The C-terminal region. The 14-3-3z proteins contain a 15 amino acid long C-termi-

nal region, which is a highly flexible disordered segment of the protein (Fig 5). In our simula-

tions two types of models were employed: full length dimeric (dim) models, and truncated

monomeric (tmon) models lacking the C-terminal tail. The C-terminal regions in our full-

length models visited both the inner (dimer interface formed by helices 3–4 of both mono-

mers) and outer (helices 7–9) side of the 14-3-3z protein surface, as well as free conformations

in which the tail was detached from the protein surface (Fig 5A). The position of the C-termi-

nal tail in the simulations was determined based on the distances measured between the termi-

nal carbonyl (of N245) and the Nz atom of K68 (in IS2), Nz of K120 (in IS1), and Cγ of D197

(on the outer side), with cut-off distances 2.5, 2.0, and 2.5 nm, respectively. The tail was con-

sidered to be on the inner side of 14-3-3z if the terminus was within the cut-off distance of

IS1 or IS2, considered to be on the outer side if it was within the cut-off distance of D197

but not the other two residues, and was considered free otherwise. The detailed population
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distributions and number of transitions between the four states are shown in S2 and S3 Tables

for HRE-MD and MD simulations, respectively.

The exchange between the three conformational sub-states of the protein tail was a process

observed, but not properly sampled on the time scales of our DF/HRE-MD simulations. Anal-

ysis of the tail residence during the DF/HRE-MD simulations (S2 Table) revealed a strong bias

towards the conformation of the tail at the start of the DF/HRE-MD run (shown in Fig 5B).

The tail of monomer 1 (M1) at the start of the simulations was facing outwards, while the tail

of monomer 2 (M2) was facing towards the inner side of the 14-3-3 dimer (in both cases the

starting conformation was detached from the surface). During the simulations each C-termi-

nal region of M1 dominantly sampled free conformations and the outer surface of 14-3-3z,

while tail of M2 sampled free conformations and the inner surface. A few transitions from the

inner to the outer side were observed for the M2 tail, suggesting a slow conformational transi-

tion and preference towards the outer surface.

Fig 5. Flexibility of the 14-3-3ζC-terminal tail. A) Representative structures of the conformational sub-states of the C-terminal stretch

(marked in red) interacting with the inner or outer surface of 14-3-3ζ or being detached and exposed to the solvent. Populations of these

conformational states as obtained from DF/HRE-MD (in red) and MD (in black) simulations are listed under the cartoon figures. B) 14-3-3

model starting conformation, coloured according to the backbone RSMF, where blue and red represent the least and most flexible amino-

acids, respectively. C) The atom-positional root-mean-square fluctuations (RMSF) of the 14-3-3ζ backbone atoms.

https://doi.org/10.1371/journal.pone.0180633.g005
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The bias of the preferred C-terminal tail conformation also explains the differences

observed in the phosphopeptide interaction analysis. During the simulations dim_p1Ht

and dim_p2hT the peptide fragment was pulled from M1, and since the C-terminal tail was

mostly located on the outer side of the 14-3-3 dimer, no or very little interaction between

the tail and the phosphopeptide was observed (Fig 4). On the other hand, for the simulations

dim_p1hT and dim_p2Ht the peptide was pulled from M2 and the tail was close to the

inner surface and the phosphopeptide binding pathway, allowing for strong tail-peptide

interactions.

The explanation for the difference between the p2h binding pathways in tmon_p2H (S2

Fig) and dim_p2Ht (S7 Fig) is that the C-terminal tail partially buried and neutralized the posi-

tive surface potential of IS2 in dim_p2Ht. This prevented the p2h fragment in dim_p2Ht from

following the dominant pathway, which consequently explored less likely, alternative binding/

unbinding pathways. In the case of dim_p1hT (Fig 2), IS2 was more exposed, and the C-

terminal tail formed salt bridges and remained attached to the phosphopeptide as it traversed

through the dominant pathway (until the p1t fragment was pulled out of reach).

We compared the tail behaviour of the DF/HRE-MD simulations to four unrestrained MD

simulations (two with and two without peptides) of 40 ns length (S3 Table). The unrestrained

simulations showed a similar behaviour (black and red percentages in Fig 5A) as the DF/

HRE-MD simulations. The tails showed a strong bias towards either the inner or outer side of

the 14-3-3z dimer, and even fewer transitions between the two were observed. However once

the C-terminal tail travelled from the inner surface to outer surface, we did not observe its

return. Consequently the classical MD simulations have shown an even stronger preference

towards the tail to be found near the outer surface. Despite this preference, the C-terminal

tails in both DF/HRE-MD and unrestrained MD simulations remained the most flexible part

of 14-3-3z (as shown in Fig 5C) with regular transitions between detached and surface bound

conformations.

The biological function of the 14-3-3 C-terminal region is not fully understood. It was sug-

gested previously [12] that the 14-3-3z C-terminal tail can have an auto-inhibitory effect by

binding to the phosphopeptide binding groove of its respective 14-3-3z monomer (IS1). The

C-terminal tail was not observed occupying the IS1 in any of our MD simulations, but this

occurred transiently (<5) % in the HRE-MD simulations of dim complexes. Our results sug-

gest that instead of occupying IS1, the tail rather interacts with amino acids on the outer sur-

face of its 14-3-3 monomer, or amino acids from IS2. In addition, the C-terminal region also

spent a considerable amount of time (~20%) being detached from the globular parts of 14-3-

3z, and in some of the DF/HRE-MD simulations directly interacted with the phosphopeptides

themselves during the binding process. Even though the sampling of the conformational sub-

states is incomplete, our simulations are more in line with NMR studies that showed high flexi-

bility and only transient interactions between the structured part of 14-3-3z and the C-termi-

nal region [13].

2.2. 14-3-3z monomer opening. Structural changes in the 14-3-3z protein monomers

leading to an opening or closing of the peptide-binding groove were previously reported using

both computational and experimental methods [5,14]. This breathing motion was observed in

our simulations as well, for both dim and tmon systems and their phosphopeptide complexes.

We measured the groove width of a 14-3-3z monomer associated with the opening process, as

the distance between the Cα atom of G53 (middle of helix 3) and L191 (middle of helix 8) (Fig

6A). Based on the measurement of the groove width distributions, we defined three sub-states

(closed, open, wide-open) of the 14-3-3z monomer, depicted in Fig 6. We considered the 14-3-

3z monomer closed, if the groove width was below 2.5 nm, wide-open above 2.9 nm and open

in between.
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Fig 6. Changes in the 14-3-3ζmonomer groove width. A) Models of 14-3-3ζ at different levels of opening (the green, blue and orange colours

mark closed, open and wide-open states, respectively), the last 3 helices are marked with a darker colour. B) Representative replicas of five

different stages along the binding pathway (with the replica ID number shown in brackets) from DF/HRE-MD simulation dim_p1hT. The panel

shows groove width distributions whilst the phosphopeptide moves from the binding site (IS1) to the unbound state (Unb). C) Average groove

width distributions of 14-3-3ζmonomers as obtained from DF/HRE-MD bound (IS1) and unbound (Unb) states, and unrestrained MD simulations

in holo (bound) and apo (unbound) states.

https://doi.org/10.1371/journal.pone.0180633.g006
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We monitored the groove width distribution as the function of phosphopeptide location

along the binding/unbinding pathway and found that the breathing motion in the restrained

monomer was changed for all DF/HRE-MD simulations. Fig 6B presents the distribution of

the groove widths for replicas representing the five stages along the binding pathway of the

simulation dim_p1hT (replicas 2, 6, 20, 32 and 48 for IS1, Pw1, IS2, Pw2 and Unb, respec-

tively). When the phosphopeptide was further away from the primary binding site (in the IS2,

Pw2 or Unb stage) the groove width distributions were similar, centered on the open state

(~2.6 nm), with a smaller probability to visit both the closed and wide-open states. When the

phosphopeptide was bound to IS1, however, the interactions with residues from helices three,

five and seven resulted in narrower groove width distributions which were also shifted towards

the closed state. A similar observation was reported by Hu et. al. [14] (See S13 Fig). Interest-

ingly, shortly after the phosphopeptide left IS1 (typically between replicas 6–11, Pw1) very

wide grove width distributions were observed, with a high probability of the monomer from

which the peptide was pulled adopting a wide-open conformation. The wide-open conforma-

tion in Pw1 is present for all our 14-3-3z/phosphopeptide models and is not dominant for any

other part of the binding/unbinding pathway. These results (to our knowledge not reported

before) indicate that the wide-open conformation of 14-3-3z may be necessary for the phos-

phopeptide ligand to detach from or enter into the primary binding site at IS1.

The distributions of the groove width for apo (unbound) and holo (bound) 14-3-3z in unre-

strained MD simulations were also compared in Fig 6C with average groove width distribu-

tions for IS1 (bound) and Unb (unbound) DF/HRE-MD replicas. As the figure shows, the

range of groove width distributions for the DF/HRE-MD and unrestrained MD simulations

were very similar, and a shift towards the closed state was also observed between the bound

and unbound monomers. The similarity between groove width distributions suggest, that the

presence of a phosphopeptide strongly affected the breathing motion of 14-3-3z monomers in

our simulations, but the applied DF restraints did not perturb this conformational degree of

freedom directly.

2.3. Inter-monomer twist within 14-3-3z homo-dimer. Apart from the internal motion

of the monomers, motion of monomers relative to each other was also observed in our (dim)

simulations. This motion was monitored by measuring the dihedral angle of the Cα atoms of

the residues L43(M1)-A54(M1)-A54(M2)-L43(M2) where M1 and M2 indicate different

monomers within the 14-3-3z dimer (Fig 7A).

During DF/HRE-MD simulations an inter-monomer twist of 175 ± 15˚ was observed, with

little variation with respect to the pulled phosphopeptide fragment or its DF restraint position

(shown in Fig 7B). The similar distributions of the inter-monomer twist angles suggest that

this conformational degree of freedom is not involved in the phosphopeptide binding process.

We speculate the inter-monomers twist may still be important for protein-protein binding

processes, as it can help 14-3-3 to better adapt the binding interface.

In some preliminary regular MD simulations at lower salt content, the inter-monomers

twist angle was significantly reduced (see Methods section and S9 Fig). However, the inter-

monomer twist angles in the DF/HRE-MD simulations were consistent with the twist angles

observed in the available crystal structures of 14-3-3z dimers (~180 ± 3˚ calculated from the

pdb entries 2WHO and 1A4O) and yielded a better agreement with SAXS measurements

(S14 Fig).

2.4. Secondary structure changes of phosphopeptides along the binding pathway.

The secondary structure of the 14-3-3z dimer remained mostly unchanged during our DF/

HRE-MD and classical MD simulations, except for the occasional shortening of helix nine,

and smaller conformational changes within the loops and disordered tails (e.g shown in

S10 Fig). Secondary structure analyses of phosphopeptides for individual replicas of the
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DF/HRE-MD along the binding pathway were also performed using the DISICL algorithm.

The secondary structure (SS) of phosphopeptides along their binding pathway was summa-

rized for all eight DF/HRE-MD simulations in S11 and S12 Figs. In Fig 8A we present the

DISICL profile of the p1h phosphopeptide along the binding pathway during the simulation

dim_p1Ht. The phosphopeptide in IS1 (replicas 1–4) adopts an extended conformation, domi-

nated by the β-cap (BC, brown) and polyproline-like (PP, maroon) classes (~60% of all amino

acids in the ensemble). After the phosphopeptide leaves IS1 it adopts less extended conforma-

tions, the PP and BC classes become less characteristic, and the population of the helix-cap

(HC, blue) class rises slightly.

The analysis of the other phosphopeptides revealed a similar highly extended backbone

structure for all four phosphopeptide fragments in the bound state, with a dominance of the

polyproline-like (PP) and β-cap (BC) classes. This is also in agreement with the conformations

observed in the crystal structures and unrestrained MD simulations (a representative confor-

mation is shown in Fig 8B). Similar trends were also observed for later stages of the eight DF/

HRE-MD simulations. The presence of helical classes, mainly the helix-cap, π-helical (PIH,

cyan), and α-helical (ALH, green) population was gradually increased to 5–20% as the peptide

reached the unbound state, whilst the population of the extended classes (PC and BC)

decreased to ~30%). The population of the secondary structure classes in the 100 ns MD simu-

lations of the free phosphopeptide fragments (e.g shown in Fig 8C), also showed an increased

helical preference (~20%) compared to the extended 14-3-3z-bound peptide fragments. In

these simulations, the average population of π-helix is ~10%, significantly higher than what

was expected for a random coil peptide (~0.4%). We found that this conformation was stabi-

lized by intra-molecular interactions with the pSer sidechain.

Despite the common trends, phosphopeptide-specific conformational changes were also

observed during the DF/HREMD simulations, with the largest conformational changes in sec-

ondary structure occurring between replicas 5–12 (Pw1, DF: 0.9–2.2 nm) and 20–25 (IS2, DF:

4.4–5.5 nm) along the binding pathway. The simulation dim_p2Ht showed an unusually high

π-helical content, similar to the free peptide simulations. Note that dim_p2Ht did not follow

the dominant binding pathway. The distorted π-helical conformation of the backbone in this

Fig 7. 14-3-3ζ inter-monomer twist. A) The top view of the protein dimer, with the twist angle between the monomers displayed in dark

blue. B) Probability distribution of inter-monomers twist angles averaged over all DF/HRE-MD simulations in the IS1 (bound) and Unb

(unbound) stages, and for the whole pathway.

https://doi.org/10.1371/journal.pone.0180633.g007
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simulation increased (to ~10%) gradually while the phosphopeptide gets unbound, stabilised

by an intra-molecular hydrogen-bond bridge between the pSer 5 side-chain and residues His 2

and Arg 3. These interactions appear early in the pathway, when the phosphopeptide is pre-

vented to follow the positive surface patch of the 14-3-3 dimer, due to the intervention of the

C-terminal tail.

3. Free-energy changes along the binding pathway

3.1. PMF profiles and binding affinity determination. The HRE-MD simulations were

used to determine the Helmholtz free energy profiles (Awham(l)) along the binding pathway of

the four phosphopeptide fragments bound to both dim and tmon models of 14-3-3z. It is impor-

tant to emphasise that the DF/HRE-MD methodology greatly enhances the sampling of phos-

phopeptide binding/unbinding but it does not enhance the sampling of slow conformational

Fig 8. Phosphopeptide p1h secondary structure. Changes in the backbone structure are shown during DF/HRE-MD simulation

dim_p1Ht (panel A) and unrestrained MD (panels B and C) simulations, analysed by the DISICL algorithm. The change in the average

secondary structure content during the DF/HRE-MD simulation is shown in the middle of panel A, whilst the most dominant conformations in

bound and unbound states are tabulated on the left and right side, respectively. Representative conformations for the bound and unbound

states are depicted on the left and right sides, respectively, where the residues are coloured according to secondary structure classification.

Intra-molecular hydrogen bonds are depicted as dashed lines. The tables besides the depictions show the 5 most populated secondary

structure classes for the corresponding MD simulation and the appropriate (bound(IS1)/unbound) stage of the DF/HRE-MD simulation,

respectively. The most populated DISICL classes are depicted in the following colours:π-helix (PIH)–cyan, Extended β-strand (EBS)–red,

normal β-strand (NBS)–orange, polyproline-like (PP)–brown, turn type VIII (TVIII)–indigo, Gamma turn (GXT)–maroon, β-cap (BC)–gold,

helix-cap (HC)–blue, turn-cap (TC)–black. DISICL secondary structure elements are listed in S1 Table.

https://doi.org/10.1371/journal.pone.0180633.g008
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transitions of the protein (e.g. C-terminal tail) to the same extent. Due to the slow transitions

between different conformations, the simulations of dimeric complexes are not fully converged

and should be considered only in a qualitative way (e.g. shape of curves Awham(l) in Fig 9). On

the other hand, our minimalistic systems (tmon complexes) lack the C-terminal tail, sample a

Fig 9. Free energy profiles of the DF/HRE-MD simulations. A) The raw free-energy profiles, derived from

WHAM analysis, as function of simulation time per replica (every ns) for the simulation tmon_p2H. B)

Convergence of the free energy difference between the unbound and bound state of all eight DF/HRE-MD

simulations. C) Final free energy profiles (ΔAwham) for the eight 14-3-3ζ peptide-binding simulations.

https://doi.org/10.1371/journal.pone.0180633.g009
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less complex conformational space and, therefore, the convergence of free energy profiles is

much better. Fig 9A depicts the change of the free-energy profile (Awham(l)) over simulation

time, as obtained from the weighted histogram analysis method (WHAM) for simulation

tmon_p2h. The physical meaning of the free energy profile (Awham(l)) is that the probability

(ρ(l)) of finding the phosphopeptide at the DF distance l is proportional to exp(-Awham(l)). The

Awham(l) profiles for all systems were shifted by a constant such, that their minimal value is zero.

Fig 9B presents the convergence of Awham(l) profiles as a function of DF/HRE-MD simulation

time for the 8 studied complexes.

In order to calculate binding free energies that can be compared with the experimental

binding affinities, a standard state correction has to be added to the raw WHAM profile as

described in the Methods section (Eq 5). This correction relates the volume associated with the

unbound state to the standard state volume. Table 1 shows the sampled and accessible volume

(based on the restraining distance), as well as the approximate free energy from the WHAM

calculations for every replica of simulation tmon_p2h, together with the zero-energy DF dis-

tance (l0). Once the unbound replicas are identified, the unbound volume is calculated from

the sampled volume of the unbound replicas. The free energy of binding is calculated by sub-

tracting the free energy of the unbound state (Eq 4) from the free energy of the bound state

(Eq 3) and adding the standard state correction in accordance with Eq 5.

Table 2 summarises the resulting binding free energies and draws a comparison with the

available experimental binding affinities. The binding affinities of 14-3-3z to very similar pep-

tide fragments with identical binding recognition sequences were recently documented using

fluorescence spectroscopy and isothermal calorimetry (ITC) methods [8,15], resulting in bind-

ing affinities in the 100–10 μM range corresponding to binding free energies of -20 to -30 kJ/

mol. Surface plasmon resonance (SPR) experiments [2,10] on identical or very similar peptides

reported binding affinities of about 100 nM, corresponding to binding free energies of -45 kJ/

mol (p2t peptide). Our computational absolute binding affinities in the range of -30 to -55 kJ/

mol correspond roughly to the available experimental data taking into consideration the fact

that no fitting parameters were used. Please note that the presented experimental binding free-

energies were measured for longer peptides with an identical recognition sequence, thus the

free energies of binding do not need to agree completely with the ones calculated from our

simulations. The monomeric PMF profiles as well as two of the dimeric profiles (dim_p1Ht

and dim_p2hT) have a second, local free-energy minimum at 3.5–5.0 nm in the distancefield,

associated with IS2 and a free energy barrier at ~3.0 nm separating IS1 and IS2 (Fig 9C). For

the other two complexes (dim_p1hT and dim_p2Ht) neither the barrier nor the local mini-

mum was observed, this is likely due to interference from the C-terminal tail of 14-3-3z, which

was—in both cases—mostly located on the inner side of the 14-3-3 dimer.

3.2. Impact of C-terminal tail on binding to the IS2. Comparison of free energy profiles

between full length dimeric and truncated monomeric models of the 14-3-3z complexes

allowed us to estimate the impact of the C-terminal tail on the phosphopeptide binding. The

conformational transition of the C-terminal tail between the inner and outer side of 14-3-3z

(Fig 2, S2 and S3 Tables) was a slow collective motion, poorly sampled in the dimeric simula-

tions. However, two of DF/HRE-MD simulations (dim_p1Ht and dim_p2hT) thoroughly

sampled the most probable binding pathways whilst the C-terminal tail remained attached to

the outer protein surface. The other two simulations (dim_p1hT and dim_p2Ht) sampled

pathways, during which the tail was attached to IS2 (more structural details in section 2.1).

The PMF profile of simulations where the C-terminal tail was for a considerable time pres-

ent on the inner side of the 14-3-3z dimer (dim_p1hT and dim_p2Ht) does not exhibit a local

free-energy minimum associated with IS2 (Fig 9C), or a free-energy barrier which would pre-

vent the phosphopeptide to directly bind to IS1. In case of dim_p2Ht, the C-terminal tail was
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Table 1. Details of the DF/HRE-MD simulation of tmon_p2H. The table contains quantities for every replica that are required for the free energy calcula-

tions. The columns show the state assignment, the replica number, the sampled volume (Vsampled), replica exchange probability (Pex), reaction coordinate

value (λ), ideal distancefield distance (l0), accessible volume (V(l)) and raw free-energy according to the free-energy profile (Awham). V(l) and Awham were calcu-

lated based on the restraining distance assigned to the replica. The last row contains the unbound volume (Vunb), calculated from the volume sampled by the

phosphopeptide in all Unb state replicas, and the volume of simulation box (Vbox).

State Replica Vsampled Pex λ l0 V(l) Awham

tmon_p2H Number nm3 Nm nm3 kJ/mol

IS1 (bound) 1 0.15 0.105 0.00 0.2 0.03 7

IS1 (bound) 2 0.27 0.223 0.02 0.4 0.09 5.6

IS1 (bound) 3 0.37 0.219 0.04 0.6 0.21 0.6

IS1 (bound) 4 0.44 0.222 0.06 0.9 0.60 1.7

IS1 (bound) 5 0.55 0.175 0.08 1.1 0.86 10.9

IS1/Pw1 6 0.75 0.099 0.11 1.3 0.77 16.7

IS1/Pw1 7 1.02 0.100 0.13 1.5 0.99 20.2

IS1/Pw1 8 1.38 0.130 0.15 1.7 1.21 22.9

Pw1 9 1.59 0.143 0.17 1.9 1.89 24.5

Pw1 10 1.60 0.123 0.19 2.2 2.19 28.1

Pw1 11 1.50 0.123 0.21 2.4 1.70 28.3

Pw1 12 1.78 0.118 0.23 2.6 2.02 32.2

IS2 13 2.05 0.089 0.25 2.8 2.47 35.4

IS2 14 2.65 0.102 0.27 3.0 2.99 35.2

IS2 15 2.71 0.121 0.29 3.3 5.61 33.9

IS2 16 2.66 0.130 0.32 3.5 7.00 31.8

IS2 17 2.78 0.113 0.34 3.7 5.84 30.3

IS2 18 2.72 0.098 0.36 3.9 6.93 30.3

IS2 19 3.19 0.137 0.38 4.1 10.94 29.8

IS2 20 2.78 0.170 0.40 4.4 13.14 29.5

IS2 21 3.35 0.156 0.42 4.6 10.47 30.5

IS2 22 4.12 0.120 0.44 4.8 12.05 31.1

IS2 23 4.91 0.119 0.46 5.0 13.82 31.7

IS2 24 5.61 0.150 0.48 5.2 15.69 32.6

IS2 25 6.76 0.128 0.51 5.5 27.42 34.7

IS2 26 7.37 0.114 0.53 5.7 31.08 35.7

IS2 27 7.69 0.142 0.55 5.9 22.56 35.4

Pw2 28 8.16 0.140 0.57 6.1 23.65 35.7

Pw2 29 7.67 0.132 0.59 6.3 24.40 35.7

Pw2/Unb 30 7.95 0.124 0.61 6.5 24.72 35.2

Pw2/Unb 31 9.47 0.125 0.63 6.8 24.76 36.2

Pw2/Unb 32 9.57 0.125 0.65 7.0 24.51 37

Pw2/Unb 33 9.75 0.111 0.67 7.2 23.97 37.5

Pw2/Unb 34 10.37 0.129 0.69 7.4 23.25 38.1

Unb (unbound) 35 10.69 0.138 0.72 7.6 22.52 39.1

Unb (unbound) 36 10.30 0.117 0.74 7.9 32.17 39.6

Unb (unbound) 37 9.83 0.114 0.76 8.1 30.47 39.9

Unb (unbound) 38 9.59 0.109 0.78 8.3 18.96 40.4

Unb (unbound) 39 10.17 0.112 0.80 8.5 17.80 40.7

Unb (unbound) 40 9.34 0.111 0.82 8.7 16.40 41

Unb (unbound) 41 8.84 0.107 0.84 9.0 15.00 40.9

Unb (unbound) 42 9.89 0.123 0.86 9.2 13.74 41.7

Unb (unbound) 43 9.90 0.124 0.88 9.4 12.47 41.8

(Continued)
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directly interacting with IS2 and prevented interactions between the p2h peptide and IS2. In

case of dim_p1hT, IS2 was partially available for the p1t peptide, however, interactions

between p1t and the C-terminal tail disrupted interactions with IS2. On the other hand, in sim-

ulations where the C-terminal tail was not present (all tmon simulations) or mostly present on

the outer surfaces of 14-3-3z (dim_p1Ht and dim_p2hT) the drop in free-energy profile in the

IS2 area and a free energy barrier (at ~3.0 nm separating IS1 and IS2) are present. These two

features suggest an intermediate state (when the peptide is bound IS2) along the phosphopep-

tide binding pathway, which is diminished by the presence of the C-terminal tail near the

inner side of the 14-3-3z dimer. This led us to the conclusion that one of the roles of the C-ter-

minal tail may be to weaken the interaction between phosphopeptides and IS2 of the 14-3-3z

protein.

Conclusions

We explored the phosphopeptide binding pathways of the 14-3-3z protein through molecular

dynamics simulations of four phosphopeptide fragments derived from PKC-ε and C-RAF

kinase. The pathways were explored by a novel Hamiltonian replica exchange molecular

dynamics method with incorporated distancefield restraints (DF/HRE-MD). The eight DF/

HRE-MD simulations (4 dimeric and 4 truncated monomeric complexes) combined corre-

sponded to more than 6.7 μs of enhanced-sampling simulation time, allowing for the unbiased

determination of the most probable binding/unbinding pathways, the corresponding struc-

tural changes of the phosphopeptides and 14-3-3z, as well as the PMF profiles along the bind-

ing pathway.

The determined binding pathways were very similar for 7 out of the 8 studied complexes,

suggesting a dominant phosphopeptide pathway, which roughly followed helix 3 between the

Table 1. (Continued)

State Replica Vsampled Pex λ l0 V(l) Awham

tmon_p2H Number nm3 Nm nm3 kJ/mol

Unb (unbound) 44 9.04 0.109 0.91 9.6 11.20 42.1

Unb (unbound) 45 7.60 0.064 0.93 9.8 9.98 42.9

Unb (unbound) 46 6.96 0.090 0.96 10.2 8.82 43.7

Unb (unbound) 47 7.73 0.134 0.98 10.4 7.74 43.9

Unb (unbound) 48 6.87 0.059 1.00 10.6 6.73 45

Vunb 74.8 nm3 Vbox 626.4 nm3

https://doi.org/10.1371/journal.pone.0180633.t001

Table 2. Comparison of the experimental and calculated binding free energies. The ΔGexp shows the

experimental free energies calculated from dissociation constants [8–10]. ΔAbind(mon) shows the binding free

energy calculated from the tmon DF/HRE-MD simulations (20ns/replica).

Simulated ΔGexp ΔAbind(mon)

System kJ/mol kJ/mol

tmon_p1H -28.8 -30.9

tmon_p1T -23 * -49.1

tmon_p2H -21.6 -47.8

tmon_p2T -27.4 / -44.2 -52.9

*: weak binding, estimate based on detection limit

https://doi.org/10.1371/journal.pone.0180633.t002
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primary binding site (IS1) and a newly identified secondary interaction site (IS2), localized in

the second half of helix 3 (residues 60–70). We found that the flexible C-terminal tail of 14-3-

3z may interact with both IS2 and the phosphopeptide in our simulations. When the C-termi-

nal region interfered with the phosphopeptide binding pathway the interactions between the

phosphopeptide and 14-3-3z IS2 were changed significantly, and this change was also reflected

in the corresponding PMF profiles.

We confirmed previous findings suggesting that 14-3-3 monomers in complex with a phos-

phopeptide are shifted towards a more closed conformation as compared to the apo state. Our

DF/HRE-MD simulations revealed that the 14-3-3z monomer adopts a wide-opened confor-

mation when a phosphopeptide is to enter or leave IS1. The phosphopeptide secondary struc-

ture during the DF/HRE-MD simulations also changed from an extended conformation at IS1

into a less ordered structure with ~20% helical content, with a high probability of π-helical

conformations in the unbound state. Sequence specific rearrangements in the peptide struc-

ture were detected during the Pw1 and IS2 stages, followed by the gradual increase of helical

content as the phosphopeptides detached from 14-3-3z.

The DF/HRE-MD simulations allowed effective pathway sampling of the phosphopeptide

fragments within the 14-3-3z protein. Application of distancefield restraints prevented the 14-

3-3z protein damage that was observed in cases when regular distance-restraints were applied.

While the full length 14-3-3z WT dimer models complexed with the four phosphopeptides

proved to be useful for exploring the structural properties, their size and slow convergence

prevented effective free-energy calculation for these systems. Therefore minimalistic models

based on a truncated 14-3-3z monomer were designed, which proved to be more efficient in

calculating the potential-of-mean-force (PMF) profiles for the binding of phosphopeptide/14-

3-3z complexes. The binding free energies derived from the calculated PMF profiles of mini-

malistic 14-3-3z models show a reasonable agreement with known experimental binding affin-

ities between similar PKC-ε and C-RAF kinase fragments and the 14-3-3z protein.

Taken together, these findings deepen our understanding about the binding phenomena of

phosphopeptides to 14-3-3z and the obtained results likely have a wider applicability for other

human isoforms considering their high sequence identity.

Methods

All molecular dynamics (MD) and Hamiltonian replica exchange MD (HRE-MD) simulations

were performed using the GROMOS11 software package [16]. The structure preparation and

analysis of the simulation trajectories was based on the GROMOS++ analysis package [17].

The PyMol molecular graphics system version 1.5.0.3 [18] was used for visualization and cal-

culation of the electrostatic surface potentials based on an adaptive Poisson-Boltzmann solver

[19] as implemented in the PyMol software. Changes in the protein and peptide secondary

structure were followed by the DISICL algorithm [20].

Generated starting coordinates

The starting coordinates of the presented 14-3-3z models were generated based on the same

crystal structure (pdb code: 2WH0) in order to prevent structural changes due to different pro-

tein starting structures. The crystal structure 2WH0 represents the dimeric 14-3-3z in complex

with protein kinase C ε peptide fragments [8] (p1h, p1t). The structure of the C-RAF proto

oncogene peptide fragments [9] (p2h, p2t) bound to 14-3-3z was taken from the structure of

their co-crystal (pdb code: 4FJ3), after aligning the 14-3-3z dimer structures with 2WH0. The

missing parts of the 14-3-3z protein, including the C-terminal tail, were added using Modeller

version 9v8 [21]. The phosphopeptide structure was energy minimized in vacuum to avoid
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clashes with the 2WH0 protein atoms. The 14-3-3z dimer model without ligands was con-

structed based on the 2WH0 crystal structure where all peptide atoms were removed. The

sequence of the complete peptides, as well as the head and tail fragments are indicated in Fig 1.

The head and tail peptide fragments were chosen on the basis that they contain the consensus

binding motif and the phosphorylation site in the middle of the sequence, consist of 8 amino

acids for all peptide fragments, and have a total charge of -1.

Minimalistic (truncated monomeric) models were constructed from the dimer complexes

by extracting the corresponding 14-3-3z monomer (along with its phosphopeptide) and trun-

cating the last 15 amino acids (C-terminal stretch).

The prepared PDB coordinate files were transformed into GROMOS configuration files

compatible with the GROMOS 54a7 force field [22], with phosphorylation parameters taken

from the Vienna PTM 54a7 extension [23]. The structures were then energy minimised, sol-

vated in pre-equilibrated SPC water [24] to fill a rectangular box with a minimal solute-to-wall

distance of 2.0, 2.0, and 2.5 nm in the X, Y and Z dimensions, respectively, to provide sufficient

space to pull the phosphopeptide fragments out of the binding site. The solute models were

rotated in such a way that the largest dimension of the solute complex was oriented along the

Z axis. Sodium and chloride ions were added to all simulation boxes to neutralise the total

charge and provide a NaCl concentration of 0.15 or 0.25 M for electrostatic screening. The

systems of the monomers typically contained 57 000 atoms, whilst the dimer complexes

amounted to roughly 121 000 atoms. After solvation, the simulation boxes were energy mini-

mised, then heated up from 60 to 298 K while gradually reducing the position restraints on

protein and peptide atoms (initial force constant of 2.5 x 104 kJ/mol/nm2) in 5 discrete steps of

20 ps each, and subsequently equilibrated for 60 ps without position restraints.

Molecular dynamics simulations

Equilibration and all simulations were performed under periodic boundary conditions, using

a 2-fs time step and the SHAKE algorithm [25] to constrain bond lengths and H–O–H bond

angles. The weak-coupling algorithm [26] was used to maintain a stable temperature (300 K)

and pressure (101 kPa) when required, with relaxation times of 0.1 and 0.5 ps respectively. For

long-range interactions the reaction field method [27] was used with a 1.4 nm cut-off and 61

as dielectric permittivity [28]. During all of the production simulations roto-translational con-

straints [29] were kept on all protein atoms to prevent tumbling of the complexes in the rectan-

gular simulation box.

During our simulations SHAKE errors occurred frequently at planar amide groups found

in peptide bonds of the polypeptide chain and in the side chain amide groups with a deloca-

lised character, such as arginines, glutamines and asparagines. The backbone N-H bond of

arginine 18 appeared particularly regularly due to local structural strain. To treat this fre-

quently occurring numerical problem, we increased the mass of this particular hydrogen by a

factor of 5, in both our MD and HRE-MD production runs. MD simulations of all 14-3-3z

dimer, monomer and complex systems were performed for 40 ns, and all phosphopeptide

related MD simulations for 100 ns.

Preliminary simulations proved to be quite sensitive to the NaCl concentration. Our initial

intention was to run all simulations at 0.15 M NaCl (physiological) concentration. This corre-

sponds to the salt concentration at which most of experimental binding affinities were mea-

sured. However, preliminary simulations of the dimeric systems at 0.15 M showed significant

instabilities in terms of inter-monomer twist angles, defined as the dihedral angle of the Cα
atoms of the residues L43(M1)-A54(M1)-A54(M2)-L43(M2) where M1 and M2 indicate dif-

ferent monomers within the 14-3-3z dimer (Fig 7A). These problems were not observed at
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higher, 0.25 M NaCl concentration (S9A Fig). The comparison of experimental and calculated

SAXS profiles of dim systems (S14 Fig) indicated that low values of inter-monomer twist

(often observed at 0.15 M NaCl) do not agree with solution SAXS data. Therefore, we decided

to perform all dimeric (dim) simulations (presented in this study) at 0.25 M NaCl and all tmon

simulations at 0.15 M NaCl where inter-monomer twist instability cannot occur.

Distancefield replica-exchange simulations

DF distance restraints and HRE-MD were applied as they are implemented in the GROMOS11

version 1.3.0 [16]. To compute the binding free energies for the phosphopeptide fragments

(p1h, p1t, p2h, p2t), a reaction coordinate was defined as the DF distance between a virtual

atom at the binding site of the corresponding 14-3-3z monomer and a virtual atom at the

phosphorylation site of the peptide. The virtual atoms for all peptides were defined by the cen-

tre of mass of the Cβ carbon atoms of the phosphorylated serine and its two neighbouring

amino acids. The virtual atom for the binding site was defined as the centre of mass of the Cα

atoms in residues N50, A192 and the amide hydrogen of N224 of the appropriate monomer.

Simulations were started along the reaction coordinates to pull one of the peptides out of its

respective binding pocket. This was done using a harmonic distancefield [6] distance restraint

in 20 discrete steps with a minimal-energy distance ranging from 0.2 to 10.6 nm, a force con-

stant of 2500 kJ/mol/nm2 and a simulation length of 250 ps at each step. The final configura-

tions at each step were used to start 100 ps of HRE-MD [30] equilibration. During the

HRE-MD equilibration with 48 replicas (Table 1) exchange events were prohibited and posi-

tion restraints (25 kJ/mol/nm2) were applied to the protein atoms. After this equilibration, the

final coordinates were then used to start the DF/HRE-MD production simulations, where rep-

lica exchanges were permitted every 10 ps and position restraints on the proteins were replaced

with roto-translational constraints to maintain the protein orientation. Each of the four

HRE-MD simulations of dim complexes was run for 15 ns; and of tmon complexes for 20 ns,

using 48 replicas to cover a DF distance of ~10 nm from the IS1. The average interaction

energy, and hydrogen bonds were monitored between peptide and protein atoms at each rep-

lica to determine the minimal distance for the unbound state (Fig 2C).

HRE-MD production simulations for each peptide fragment uniformly used a harmonic

DF restraining potential with a force constant of 350 kJ/mol/nm2. The harmonic potential was

linearised after deviations larger than 2 nm in order to avoid large forces over longer distances.

The DF for the distance calculations was updated each 100 steps with a grid spacing and pro-

tein cut-off of 0.2 nm, and a single smoothing step to decrease repulsion at the protein surface

[6]. HRE-MD simulations were kept at a constant temperature of 300 K by the weak coupling

algorithm and were performed at a constant volume. The combined simulation time length of

the DF/HRE-MD comes to a total of ~6.7 μs of enhanced sampling to study the 14-3-3z pep-

tide binding.

Phosphopeptide pathway assignment

The phosphopeptide binding-pathways obtained from DF/HRE-MD simulations were divided

into 5 parts (IS1, Pw1, IS2, Pw2, Unb) during the analysis. The replicas of the DF/HRE-MD

simulations were assigned to IS1 or IS2 based on three factors:

1. the average protein-phosphopeptide interaction energy of the replica had to be near a local

minimum.

2. interactions observed with 14-3-3z residues in the corresponding interaction sites (more

details below).
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3. the most probable locations to find the phosphopeptide for the replica had to be in the

proximity of the interaction site.

An interaction partner was considered stable in the interaction analysis if on average at

least 0.1 interaction was present in the particular replica. Interaction partners for IS1 were

K49, R127, Y128 towards the pS of the peptide. Interaction partners for IS2 were K68 towards

the pS and any interaction involving S64-G70. Proximity from an interaction site was deter-

mined by measuring the distance between density peak maxima of the phospopeptide virtual

atom for that particular replica (as shown in Fig 8) and Cα of K49 and K68 for IS1 and IS2,

respectively. The density peak was considered proximal within 1.5 nm. The replicas were

assigned to unbound state (Unb) if the interaction energy was close to zero and no stable

hydrogen-bonds were detected between the phosphopeptide and 14-3-3z. Replicas that were

fulfilling only part of the criteria were assigned to Pw1 and Pw2 instead. An example of assign-

ment is show in Table 1, and replica density peaks are coloured according to their assignment

in Fig 2, S1–S7 Figs.

Free energy calculations

The free energy profile was calculated from the replica exchange simulations, using a weighted

histogram analysis method (WHAM) [31]. The WHAM is an iterative method that uses the

probability distribution of biased ensembles ðr
ðbÞ
i Þ and reconstructs the unbiased probability

distribution (ρ) by fitting the free-energy of a given number of windows (Nw) along the reac-

tion coordinate. Using the DF distance distributions of the replicas—biased by the harmonic

DF restraining potentials (Bj)–the probability distribution along the peptide binding pathway

is calculated iteratively according to Eqs 1 and 2:

rðlÞ ¼
PNw

i¼1
ni r

ðbÞ
i ðlÞ

PNw
j¼1

nje
� ðBjðlÞ� Awham

j Þ=RT
ð1Þ

e� Alwham
j =RT

¼
R

rðlÞ e� BjðlÞ=RT dl ð2Þ

Where ρ(l) is the probability of finding the peptide at the DF distance l, Awham
j is the Helmholtz

free energy at the DF window j, ni is the number of data points in replica i, R is the ideal gas

constant, and T is the temperature. The resulting free-energy profile(Awham(l)) was used to cal-

culate the free energy of the bound (Abound) and unbound (Aunb) states, by integrating the pro-

file over the DF distances associated with the two states, as shown in Eqs 3 and 4, respectively:

Abound ¼ � RT ln
R

bound e� AwhamðlÞ=RT dl ð3Þ

Aunb ¼ � RT ln
R

unb e� AwhamðlÞ=RT dl ð4Þ

Because of the shape of Awham(l) in the bound area the Abound value is quite insensitive on the

particular choice of boundaries of the integral in Eq 3. On the other hand, Aunb depends signif-

icantly on the particular choice of the unb region boundaries in Eq 4. This dependence is

mainly due to entropic contributions from the increased available volume of the unbound

state, and is compensated by the standard state correction (ΔAstd) in the final calculation of the

binding free energy (ΔAbind) by Eq (5):

DAbind ¼ Abound � Aunb þ DAstd; DAstd ¼ � RT ln
Vunb

V0

ð5Þ
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where V0 is the standard state volume (1.66 nm3) corresponding to a 1 M concentration. The

physical meaning of Eq 5 is that the binding free energy (ΔAbind) corresponds to the free-

energy difference of bringing a ligand from a bound to an unbound state and subsequently

from the unbound to the standard state volume [32]. ΔAbind can be directly compared with

experimental values calculated from dissociation constants. The unbound volume (Vunb) was

calculated based on the number of grid-points visited by the phosphopeptide virtual atom in

any replica of unbound state (Table 1).

To calculate the free-energy profiles of the peptide binding processes, we used the DF distri-

butions of the DF distances collected over the 48 replicas of the HRE-MD simulations and 100

DF widows for the iterative WHAM process, which was continued for 10 000 steps or until the

energy change was less than 10−5 kJ/mol. Calculations of the available volume were approxi-

mated from the DF grid based on the number of gridpoints assigned to a given distance. The

Fig 10. Graphical representation of pathway mapping in simulations. A) Distancefield grid, where grid points are coloured according to

distancefield (DF) distance. B) Direct distance (as a black dashed line), and DF distance (along the coloured grid points) between the ligand

and the protein binding side. Grid points located within the protein (which should be avoided) are shown in purple. C-E) Grid points sampled

during a replica exchange simulation, coloured according to their position along the pathway. Panels C and D are showing grid points at

different levels of relative probability ðPri Þ per replica; with all visited grid points in Panel C, and only the often-visited grid points per replica in

Panel D. Panel E shows the derived peptide-binding pathway, with one peak maximum per replica. The surface of the protein is shown in

grey.

https://doi.org/10.1371/journal.pone.0180633.g010
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volumes sampled for the replica exchange simulations were calculated based on a similar grid

with a mesh size identical to DF grids (0.2 nm) where the movements of the peptide virtual

atom were tracked. By recording which gridpoint was the closest to the peptide virtual atom

position at each frame (after every 5 ps of simulation), we could determine the probability den-

sity of the given gridpoint (Pi). To find the conformations most often visited by the peptide,

the relative probability density ðPr
i Þ of the gridpoint i was calculated according to Eq 6:

Pr
i ¼

Pi � Pmin

Pmax � Pmin
Pi ¼

Oi

N
ð6Þ

Where Pmax and Pmin are the probabilities of visiting the least and most often visited grid-

points, Oi is the number of times the gridpoint was visited and N is the number of simulation

frames used in the calculation (an example is shown in Fig 10).

Supporting information

S1 Table. DISICL secondary structure elements. Structure elements and abbreviations are

listed below. For a detailed description of the DISICL classes see [20].

(DOCX)

S2 Table. C-terminal tail distributions in DF/HRE-MD simulations. The table displays the

name of the simulation, the identity of the monomer (mon), the probability to find the C-ter-

minal tail near the primary binding site (IS1), secondary binding site (IS2), on the outer pro-

tein surface (out), and free in solution (sol) over the entire length of the simulation, along the

total number of transitions between the listed sub-states (observed transitions) Note that the

phosphopeptide fragments p1h and p2t were binding to M1, whilst the p1t and p2h were bind-

ing to M2.

(DOCX)

S3 Table. C-terminal tail distribution in unrestrained MD simulations. The table displays

the name of the simulation, the identity of the monomer (mon), the probability to find the C-

terminal tail near the primary binding site (IS1), secondary binding site (IS2), on the outer

protein surface (out), and free in solution (sol) over the entire length of the simulation, along

with the total number of transitions between the listed sub-states (Observed transitions) Note

that simulations were started with the M1 tail close to the outer surface and the M2 tail close to

the inner surface (near IS2). Dim-2 denotes dimeric 14-3-3z- simulation started from an alter-

native set of starting coordinates.

(DOCX)

S1 Fig. Pathway visualization of the simulation tmon_p1H. A) The volume sampled by the

p1h phosphopeptide during the simulation is shown by dots around the 14-3-3z protein coloured

based on their position along the pathway. The most probable points in space to find the peptide

in for each replica (probability density peaks) are represented by larger spheres. B) Density peaks

and a few representative structures corresponding to the density peaks, coloured according to

their position along the pathway. Replica density peaks are connected by lines to visualize the

binding pathway. The 14-3-3z protein in panels A-B is shown as a surface representation, with

the two monomers shown in light and dark grey. C) Average interaction energy between 14-3-3z

and the p1h. D) Interaction map between any atom of the pulled p1h peptide and the amino

acids of the protein, summarized for each replica (only amino acids with at least 0.1 hydrogen

bond/salt bridge on average are shown). The scale indicates the number of interactions.

(TIF)
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S2 Fig. Pathway visualization of the simulation tmon_p2H. A) The volume sampled by the

p2h phosphopeptide during the simulation is shown by dots around the 14-3-3z protein col-

oured based on their position along the pathway. The most probable points in space to find the

peptide in for each replica (probability density peaks) are represented by larger spheres. B)

Density peaks and a few representative structures corresponding to the density peaks, coloured

according to their position along the pathway. Replica density peaks are connected by lines to

visualize the binding pathway. The 14-3-3z protein in panels A-B is shown as a surface repre-

sentation, with the two monomers shown in light and dark grey. C) Average interaction energy

between 14-3-3z and the p2h. D) Interaction map between any atom of the pulled p2h peptide

and the amino acids of the protein, summarized for each replica (only amino acids with at

least 0.1 hydrogen bond/salt bridge on average are shown). The scale indicates the number of

interactions.

(TIF)

S3 Fig. Pathway visualization of the simulation tmon_p1T. A) The volume sampled by the

p1t phosphopeptide during the simulation is shown by dots around the 14-3-3z protein col-

oured based on their position along the pathway. The most probable points in space to find the

peptide in for each replica (probability density peaks) are represented by larger spheres. B)

Density peaks and a few representative structures corresponding to the density peaks, coloured

according to their position along the pathway. Replica density peaks are connected by lines to

visualize the binding pathway. The 14-3-3z protein in panels A-B is shown as a surface repre-

sentation, with the two monomers shown in light and dark grey. C) Average interaction energy

between 14-3-3z and the p1t. D) Interaction map between any atom of the pulled p1t peptide

and the amino acids of the protein, summarized for each replica (only amino acids with at

least 0.1 hydrogen bond/salt bridge on average are shown). The scale indicates the number of

interactions.

(TIF)

S4 Fig. Pathway visualization of the simulation tmon_p2T. A) The volume sampled by the

p2t phosphopeptide during the simulation is shown by dots around the 14-3-3z protein col-

oured based on their position along the pathway. The most probable points in space to find the

peptide in for each replica (probability density peaks) are represented by larger spheres. B)

Density peaks and a few representative structures corresponding to the density peaks, coloured

according to their position along the pathway. Replica density peaks are connected by lines to

visualize the binding pathway. The 14-3-3z protein in panels A-B is shown as a surface repre-

sentation, with the two monomers shown in light and dark grey. C) Average interaction energy

between 14-3-3z and the p2t. D) Interaction map between any atom of the pulled p2t peptide

and the amino acids of the protein, summarized for each replica (only amino acids with at

least 0.1 hydrogen bond/salt bridge on average are shown). The scale indicates the number of

interactions.

(TIF)

S5 Fig. Pathway visualization of the simulation dim_p1Ht. A) The volume sampled by the

p1h phosphopeptide during the simulation is shown by dots around the 14-3-3z protein col-

oured based on their position along the pathway. The most probable points in space to find the

peptide in for each replica (probability density peaks) are represented by larger spheres. B)

Density peaks and a few representative structures corresponding to the density peaks, coloured

according to their position along the pathway. Replica density peaks are connected by lines to

visualize the binding pathway. The 14-3-3z protein in panels A-B is shown as a surface repre-

sentation, with the two monomers shown in light and dark grey. C) Average interaction energy
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between 14-3-3z and the p1h. D) Interaction map between any atom of the pulled p1h peptide

and the amino acids of the protein, summarized for each replica (only amino acids with at

least 0.1 hydrogen bond/salt bridge on average are shown). The scale indicates the number of

interactions.

(TIF)

S6 Fig. Pathway visualization of the simulation dim_p2hT. A) The volume sampled by the p2t

phosphopeptide during the simulation is shown by dots around the 14-3-3z protein coloured

based on their position along the pathway. The most probable points in space to find the peptide

in for each replica (probability density peaks) are represented by larger spheres. B) Density peaks

and a few representative structures corresponding to the density peaks, coloured according to

their position along the pathway. Replica density peaks are connected by lines to visualize the

binding pathway. The 14-3-3z protein in panels A-B is shown as a surface representation, with

the two monomers shown in light and dark grey. C) Average interaction energy between 14-3-

3z and the p2t. D) Interaction map between any atom of the pulled p2t peptide and the amino

acids of the protein, summarized for each replica (only amino acids with at least 0.1 hydrogen

bond/salt bridge on average are shown). The scale indicates the number of interactions.

(TIF)

S7 Fig. Pathway visualization of the simulation dim_p2Ht. A) The volume sampled by the

p2h phosphopeptide during the simulation is shown by dots around the 14-3-3z protein col-

oured based on their position along the pathway. The most probable points in space to find

the peptide in for each replica (probability density peaks) are represented by larger spheres. B)

Density peaks and a few representative structures corresponding to the density peaks, coloured

according to their position along the pathway. Replica density peaks are connected by lines to

visualize the binding pathway. The 14-3-3z protein in panels A-B is shown as a surface repre-

sentation, with the two monomers shown in light and dark grey. C) Average interaction energy

between 14-3-3z and the p2h. D) Interaction map between any atom of the pulled p2h peptide

and the amino acids of the protein, summarized for each replica (only amino acids with at

least 0.1 hydrogen bond/salt bridge on average are shown). The scale indicates the number of

interactions. Note that dim_p2Ht did not follow the general pathway observed for other DF/

HRE-MD simulations, and IS2 residues were not significant interaction partners.

(TIF)

S8 Fig. Interaction map between the perturbed phosphopeptides and amino acids of 14-3-

3z. The map shows an average over the 8 HRE-MD simulations, where the average number of

hydrogen bonds observed during the simulations are shown as the function of replica number.

Replica 1–3 refers to the bound state in interaction site1 (IS1), and larger replica numbers cor-

respond to higher DF distance from IS1.

(TIF)

S9 Fig. The salt concentration dependence of the 14-3-3z inter-monomer twist. A) The

drift of the monomer twist angle during MD simulations. B) Atom-positional root-mean-

square deviation (RMSD) from the original conformation (derived from the crystal structure)

during the various simulations. The structural deviation calculated for the individual mono-

mers of simulation X are marked as X_M1 and X_M2, respectively.

(TIF)

S10 Fig. 14-3-3z secondary structure analysis. DISICL backbone analysis shows a stable sec-

ondary structure during the MD simulation dim. The left side of the Figure shows a schematic

representation of the 14-3-3z helices. The most populated DISICL classes are depicted in the
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following colours: α-helix (ALH)–green, π-helix (PIH)–cyan, helix-cap (HC)–blue, turn-cap

(TC)–black, polyproline-like (PP)–brown, turn type I (TI)–magenta, Turn type II (TII)–pur-

ple. For a description of abbreviations of DISICL secondary structure elements see S1 Table.

(TIF)

S11 Fig. Pathway dependence of phosphopeptide secondary structure. The population of

secondary structure elements is dependent on the replica ID (and DF distance) within the dim

DF/HRE-MD simulations. The change of the backbone secondary structure content was ana-

lysed by the DISICL algorithm. For a description of abbreviations of DISICL secondary struc-

ture elements see S1 Table.

(TIF)

S12 Fig. Pathway dependence of phosphopeptide secondary structure. The population of

secondary structure elements is dependent on the replica ID (and DF distance) within the

tmon DF/HRE-MD simulations. The change of the backbone secondary structure content was

analysed by the DISICL algorithm. For a description of abbreviations of DISICL secondary

structure elements see S1 Table.

(TIF)

S13 Fig. The effect of phosphorylation of Ser58 on the electrostatic surface potential (ESP)

of 14-3-3z. The IS1 and IS2 in A) 14-3-3z WT are connected by a mildly positive surface

potential patch in contrary to B) 14-3-3z phosphorylated at S58, where the connection is dis-

rupted by the negatively charged phosphoserine. Blue, white and red colour represents the pos-

itive, neutral, and negative surface patches, respectively. For the clarity, the 14-3-3z C-terminal

tails are not shown.

(TIF)

S14 Fig. SAXS comparison. Small angle X-ray scattering calculated from the crystal structure

(cryst, pdb code 2WHO), the IS1 and UnB stages dim_p1hT, and the unrestrained MD simula-

tions with a low intermonomer twist angles (dim_0.15 dim_p1ht_0.15). The_SAXS curves

were calculated using the software Crysol (1), and compared to the experimental SAXS curve

(exp) after ensemble averaging. The full length 14-3-3z protein sample used for SAXS mea-

surements was expressed and purified as described in Hritz et al.[4]. SAXS data were collected

on the beamline BM29 BioSAXS ESFR in Grenoble, France. The concentrations of the 14-3-

3-WT during the measurement were 1.18; 2.35 and 4.70 mg/ml in the 50 mM Tris buffer,

pH = 8.0. The data were recorded at 20.12˚C using the pixel 1M PILATUS detector at a sam-

ple-detector distance of 2.867 m, and a wavelength (λ) of 0.099 nm, covering the range of

momentum transfer 0.025 nm−1 < s< 5 nm−1 (s = 4π sin(θ)/λ, where 2θ is the scattering

angle). No radiation damage was observed during the data collection.The data were processed

using standard procedures with the PRIMUS software (2). Solvent contributions (buffer back-

grounds collected before and after the protein sample) were averaged and subtracted from the

associated protein sample. A slight concentration dependency was noticeable. Therefore, the

scattering curves collected at different concentrations were used to obtain a final zero concen-

tration scattering curve through extrapolation according to the guidelines provided by (3).

(TIF)
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