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Abstract

Inspired by recent works on evolutionary graph theory, an area of growing interest in mathe-

matical and computational biology, we present examples of undirected structures acting as

suppressors of selection for any fitness value r > 1. This means that the average fixation

probability of an advantageous mutant or invader individual placed at some node is strictly

less than that of this individual placed in a well-mixed population. This leads the way to

study more robust structures less prone to invasion, contrary to what happens with the

amplifiers of selection where the fixation probability is increased on average for advanta-

geous invader individuals. A few families of amplifiers are known, although some effort was

required to prove it. Here, we use computer aided techniques to find an exact analytical

expression of the fixation probability for some graphs of small order (equal to 6, 8 and 10)

proving that selection is effectively reduced for r > 1. Some numerical experiments using

Monte Carlo methods are also performed for larger graphs and some variants.

Introduction

Evolutionary dynamics has been classically studied for well-mixed populations, but there is a

wide interest in the evolution of complex networks after site invasion. The process transform-

ing nodes occupied by residents into nodes occupied by mutants or invaders is described by

theMoran model. Introduced by Moran [1] as the Markov chain counting the number of

invading mutants in a well-mixed population, it was adapted to weighted graphs by Lieberman

et al. [2] and Nowak [3] (see also [4–8]). For undirected networks where links have no orienta-

tion, invaders will either become extinct or take over the whole population, reaching one of

the two absorbing states, extinction or fixation. The fixation probability is the fundamental

quantity in the stochastic evolutionary analysis of a finite population.

If the population is well-mixed, at the beginning, one single node is chosen to be occupied

by an invader individual among a population of N resident individuals. Afterwards, an individ-

ual is randomly chosen for reproduction, with probability proportional to its reproductive

advantage (1 for residents and r� 1 for invaders), and its clonal offspring replaces another
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individual chosen at random. In this case, the fixation probability is given by

F0ðrÞ ¼
1 � r� 1

1 � r� N
¼

rN� 1

rN� 1 þ rN� 2 þ � � � þ r þ 1
: ð1Þ

In evolutionary network theory, the nodes are occupied by resident or invader individuals

(usually assuming that the invader arises uniformly at random) and the replacements are lim-

ited to the nodes which are connected by oriented links. As in the well-mixed case, we also

restrict ourselves to birth-death updating when the process evolves. According to the Circula-

tion Theorem [2], any weight-balanced network has the same fixation probability as the well-

mixed population of the same size N. In the undirected case, this means that the temperature
Ti = ∑j*i 1/dj of every vertex i (where j is a neighbor of i and dj is the number of neighbors of j)
is constant, and the network is said to be isothermal. But there are graph structures altering

substantially the behavior of the fixation probability depending on the fitness. For example,

the (average) fixation probability in the oriented line is equal to 1/N and the reproductive

advantage of the invader individuals is completely suppressed. But in the directed case, absorb-

ing barriers may not be accessible from any state, and the fixation probability may be even null

(see [9] for an example).

Thus, we focus our attention on connected undirected networks where absorbing barriers

can be reached from any state. As showed in [2, 3] (see also [10]), there are directed and undi-

rected graph structures that asymptotically amplify this advantage. The fixation probability of

a complete bipartite network KN−m,m (described in Fig 1) converges to the same limit as the fix-

ation probability

F2ðrÞ ¼ F0ðr2Þ ¼
1 � r� 2

1 � r� 2N
ð2Þ

of the Moran process with fitness r2 asm!1 and N −m is constant [9]. Assuming that fit-

ness differences are amplified or reduced for network sequences of increasing size, a notion of

amplifier and suppressor of selection has been introduced in [10] for several initialization types

(describing the initial distribution of the invasion process). To distinguish both dynamics, that

is, amplification and suppression of selection, a numerical analysis for a few fitness values

r = 0.75, 1, 1.25, 1.5, 1.75 has been done in [11] for birth-death and death-birth processes on

directed and undirected graphs (see [12] for a comparative analysis of both update

mechanisms).

Here we always assume that the distribution is uniform: the probability that a node will be

occupied by the initial invader is equal for all the nodes, see Eq 7. We say that a network is an

amplifier of selection if the fixation probability F(r) > F0(r) and a suppressor of selection if F(r)

Fig 1. Star and complete bipartite graphs. (A) In the star graph K1,m, the center is connected with m

peripheral nodes. (B) The vertex set of a complete bipartite graph Kn,m is divided into two disjoint sets

interconnected by edges.

https://doi.org/10.1371/journal.pone.0180549.g001
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< F0(r) for all r> 1. Notice that F(1) = 1/N and the inequalities must be reversed for r< 1.

Due to the exact analytical expression given by Monk et al. [13] using martingales (see also

[10]), one can see that star graphs and complete bipartite graphs are amplifiers of natural selec-

tion whose fixation probabilities are bounded from above by F2(r). The existence of suppres-

sors of selection was firstly showed in [14], but similarly to [11] only for some fitness values

(namely, for values r� 10). The aim of the paper is to present the first examples of graphs (of

order 6, 8 and 10) which are suppressors of selection for any fitness value r> 1. From the

point of view of robustness against invasion [15], these graphs are more robust than complete

graphs (being now necessary to add a sign to kF − F0k1 = supr�1|F(r) − F0(r)|). Better yet,

we propose a complete family of graphs of even order 2n + 2 with n� 2, called ℓ-graphs, which

we believe are suppressors of selection. The proof of this assertion for the graphs of order 6, 8

and 10 is completed with a numerical simulation for larger orders. Some other variants are

also explored numerically in order to understand why they are suppressors of selection.

Results

All the examples of so-called suppressors of selection given in [2, 3] are directed graphs. The

abundance of amplifiers and suppressors of selection have been explored numerically by Hin-

dersin et al. in [11] for directed and undirected graphs under birth-death and death-birth

updating. Different types of initialization or placement of new invaders have been distin-

guished in [10] in order to classify different evolutionary dynamics on directed graphs. As

explained, we focus our attention on connected undirected graphs under uniform

initialization.

Firstly, we computed the fixation probability of all undirected graphs of order 10 or less for

fitness values r varying from 0.25 to 10 with step size of 0.25 using with the FinisTerrae2 super-

computer (1024 cores of Haskell 2680v3 CPUs for almost 3 days) installed at CESGA, [16]. We

found an unique suppressor of selection of order 6, namely the graph ℓ6, although there are

other possible suppressors in orders varying from 7 to 10. We constructed the graphs ℓ8 and

ℓ10 (as well the whole ℓ-family) from this initial example. More precisely, we call ℓ-graph an

undirected graph of even order N = 2n + 2� 6 obtained from the complete graph K2n by divid-

ing its vertex set into two halves with n� 2 vertices and adding 2 extra vertices. Each of them

is connected to one of the halves of K2n and with the other extra vertex. Graphs ℓ6, ℓ8 and ℓ10 of

order 6, 8 and 10 are shown in Fig 2.

Graphs ℓ6, ℓ8 and ℓ10 are suppressors of selection

Computer aided techniques has been used to find exact analytical expressions of the fixation

probability F for the first elements of this family with orders 6, 8 and 10 (see Fig 2). This

Fig 2. Graphs of order 6, 8 and 10 in the ℓ-family.

https://doi.org/10.1371/journal.pone.0180549.g002
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computation proves that the graphs ℓ6, ℓ8 and ℓ10 are suppressors of selection with fixation

probabilities F(r) < F0(r) for all r> 1 and F(r)> F0(r) for all r< 1.

At first, to bound the fixation probability from above, one could try to stop the process on

ℓ2n+2 at the time that some extra vertex is occupied by a mutant. But as we will see later, the

evolution from that time on seems to play an essential role in determining the suppressor

character of the graph. Like for star and looping star graphs, which are amplifiers of selection

for uniform initialization [10], we needed then to find the exact analytical expression of the fix-

ation probability. Unfortunately, the elegant martingale method proposed in [13, Theorem

2.1] and later used in [10] (which is based on Doob’s optional stopping theorem [17]) is not

useful for ℓ6, ℓ8 and ℓ10. We have had to implement a specific method to compute exactly their

fixation probability.

As we shall see in the description of the mathematical model in the Methods section, the fix-

ation probability F(r) is a rational function given as the quotient of two rational polynomials

F0(r) and F00(r) of degree bounded above by 2N − 2. Using the symmetries of each ℓ-graph, we

can lower this bound to a quantity

d ¼
NðN þ 1Þ

2
� 2� 2N � 2; ð3Þ

(as proved in the Methods section and in S1 Text) and hence there are at most 2(d + 1) coeffi-

cients involved in F(r). Since F(r) converges to 1 as r! +1, the leading coefficients of F0(r)
and F0 0(r) can be assumed to be 1 and that number is reduced to 2d. Then we can replace the

system of 2N linear equations defining the fixation probability F(r) (see Eq 6) with a system of

2d linear equations (see Eq 8) corresponding to the 2d rational coefficients of F0(r) and F0 0(r),
which arise from evaluating F(r) for integer and rational values of the fitness r varying from 1

to d + 1 and from 1/2 to 1/d. Finally, we wrote a SageMath program [18] (see S1 File) to sym-

bolically compute the exact fixation probability F(r) of the graphs ℓ6, ℓ8 and ℓ10 for these

fitness values and then to solve the reduced linear system. Once the fixation probability F has

been calculated, the sign of the difference Δ = F − F0 is analyzed to confirm that Δ(r)< 0 for

all r> 1. In the Methods section, we give a more detailed explanation of both theoretical

and computational arguments used to have exact analytical expressions of the fixation proba-

bility F for ℓ6, ℓ8 and ℓ10. The exact values of F and Δ are given in S1 Text. As a result of the

uniform initialization, since 2/N converges to 0 as N = 2n + 2 goes to infinity, the fixation

probabilities F(r) of ℓN and F0(r) of KN given by Eq 1 become more and more closer and the

suppression effect tends to disappear for large populations. Notice however that this phenome-

non can be avoided by modifying the initialization type or increasing the number of extra

vertices.

Numerical experiments in larger orders. Further examples

However, the method used for ℓ6, ℓ8 and ℓ10 does not seem applicable to larger orders since it

would require a substantial amount of memory and computation time. Therefore, we explored

the suppression of selection for other graphs in the ℓ-family using Monte Carlo simulation

(applying the Loop-Erasing technique of [9] to speedup the computations). Even if it does not

require much memory and can be parallelized on a computer cluster, a very large number of

trials—namely 1010 trails for each fitness value—has been necessary to compare the fixation

probability of ℓ12 and ℓ24 with that of the complete graphs of the same order. In fact, since the

fixation probabilities F(r) and F0(r) become more and more closer, we should need to increase

this number more and more as N goes to1. Anyway, for fitness values r varying from 0 to 4

with step size of 0.25, we showed that the ℓ-graphs of orders 12 and 24 are also suppressors of

Suppressors of selection
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selection as can be seen in Fig 3. In S1 Fig, a similar method is applied to all the graphs ℓ2n+2

with 2� n� 11, including ℓ6, ℓ8 and ℓ10 in order to compare the fixation probabilities obtained

by symbolic computation with the numerical solutions given by Monte Carlo simulation.

To investigate the structural reasons of the suppression of selection in these graphs, this

experiment has been completed by altering the balance in the connections of the two extra

Fig 3. The exact differencesΦ0(r) − Φ(r) for ℓ6, ℓ8 and ℓ10 and some estimates for ℓ12 and ℓ24. The functionsΦ0(r) − Φ(r) associated to the ℓ-
graphs of order 6, 8, and 10 are represented for fitness values r varying from 1 to 4. For the ℓ-graphs of order 12 and 24, we applied the Monte Carlo

method to compute the difference between the fixation probabilities of each graph and the complete graph of the same order using 1010 trials for

each fitness value r varying from 0 to 4 with step size of 0.25. A 99% confidence interval is showed for each simulated value.

https://doi.org/10.1371/journal.pone.0180549.g003

Fig 4. Unbalanced ℓ-graphs of order 6 and 7. The exponents are the sizes of the partition of the central Kn.

https://doi.org/10.1371/journal.pone.0180549.g004
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nodes with the central complete graph in order 6 and considering two variants (a fortiori
unbalanced) of order 7 (see Fig 4). As showed in Fig 5, the graphs ‘

1;3
6 and ‘

1;4
7 become amplifi-

ers of selection from relatively small values of the fitness, while the graph ‘
2;3
7 is a suppressor of

selection for high fitness values. We discover a similar behavior for larger orders (see Fig 6).

Discussion

Motivated by interest in the robustness of networks against invasion, we tried to shed some

light on the influence of the structural properties of graphs upon increasing or decreasing the

fixation probability of new invaders occupying the nodes of a network. We computed the fixa-

tion probability of all undirected graphs of order 10 or less for fitness values r varying from

0.25 to 10 with step size of 0.25 using the FinisTerrae2 supercomputer (1024 cores of Haskell

2680v3 CPUs for almost 3 days) installed at CESGA [16]. Thanks to this experimental

approach, we found that there are graph structures acting as suppressors of selection according

to the terminology introduced in [2, 3]. This means that, for every fitness value r> 1, the aver-

age fixation probability F(r) of an advantageous invader individual placed at a random node is

strictly less than that of this individual placed in a well-mixed population. For neutral drift

r = 1, both probabilities F(1) and F0(1) are obviously equal, whereas the average fixation prob-

ability F(r) becomes strictly greater than F0(r) for a disadvantageous invader with fitness

Fig 5. The differencesΔ(r) =Φ(r) −Φ0(r) for the unbalanced graphs ‘
1;3

6 , ‘
1;4

7 , and ‘
2;3

7 . The differences Δ(r) = Φ(r) − Φ0(r) have been estimated

using 1010 trials for each fitness value r varying from 0 to 10 with step size of 0.25.

https://doi.org/10.1371/journal.pone.0180549.g005
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Fig 6. The differencesΔ(r) =Φ(r) −Φ0(r) for the unbalanced graphs of order 8, 9, and 10. Unbalanced ℓ-
graphs of (A) order 8, (B) order 9 and (C) order 10.

https://doi.org/10.1371/journal.pone.0180549.g006
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r< 1. We proposed a novel method to compute the fixation probability of graphs having low

order and a big group of symmetries, and we used computer aided techniques to find an exact

analytical expression of the fixation probability for three examples of size 6, 8 and 10. The

SageMath program [18] used to compute the fixation probability of these graphs is available at

[19]. Monte Carlo simulation was also used to see with high precision that other graphs in this

family are suppressors of selection for some fitness values (varying from 1 to 4 with step size of

0.25). Memory requirements make it unfeasible to apply the same method for large orders, but

it could be useful to study transitions between both regimes, suppression and amplification, in

low order. On the other hand, although we are only concerned here with the evolutionary

dynamics of graphs under birth-death updating, similarly to the work by Kaveh et al. [12] and

Hindersin et al. [11], it could be also interesting to study the properties of the ℓ-family under

death-birth updating. We also showed that the mechanism that activates the suppression of

selection is quite subtle, since a certain imbalance in the number of nodes of the central com-

plete graph which are connected with each additional node transforms our models into ampli-

fiers from certain fitness values. Finally, if the spreading of favorable innovations can be

enhanced by those network structures amplifying the advantage of mutant or invader individ-

uals [20], as counterpart, the discovery of these examples is a first step towards finding struc-

tural properties that increase the robustness of a complex network against invasion [15]. This

is a particularly interesting property for biological networks like brain and protein-protein

interaction networks, as well as for technological networks like electrical power grids or back-

bone networks, where high fitness values are possible. In fact, these kind of models have had

impact not only in evolutionary and invasion dynamics, but also in tumor growth [3, 21, 22]

and economics and management [23].

Methods

Mathematical model

Let G be a connected undirected graph with node set V = {1, . . ., N}. Denote by di the degree of

the node i. TheMoran process on G is a Markov chain Xn whose states are the sets of nodes S
inhabited by mutant or invader individuals at each time step n. The transition probabilities are

obtained from a stochastic matrixW = (wij) where wij = 1/di if i* j are neighbors and wij = 0

otherwise. More precisely, the transition probability between S and S0 is given by

PS;S0 ¼

r
P

i2Swij
wS

if S0 n S ¼ fjg;

P
i2VnSwij
wS

if S n S0 ¼ fjg;

r
P

i;j2Swij þ
P

i;j2VnS wij
wS

if S ¼ S0;

0 otherwise;

ð4Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

where r> 0 is the fitness and

wS ¼ r
X

i2S

X

j2V
wij þ

X

i2VnS

X

j2V

wij ¼ rjSj þ N � jSj ð5Þ

is the total reproductive weight of invaders and residents. The fixation probability of each sub-

set S� V inhabited by invaders FSðrÞ ¼ P½ 9n � 0 : Xn ¼ V j X0 ¼ S� gives a solution of the

Suppressors of selection
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system of 2N linear equations

FSðrÞ ¼
X

S0
PS;S0FS0 ðrÞ: ð6Þ

Since G is undirected, the only recurrent states are S = ; and S = V. Then Eq 6 has a unique

solution [24]. The (average) fixation probability is given by

FðrÞ ¼
1

N

XN

i¼1

FfigðrÞ: ð7Þ

It is a rational function depending on the fitness r 2 (0, +1). Notice that F(r) may be calcu-

lated using the embedded Markov chain instead of the standard Markov chain above

described, both associated to the process, making the total reproductive weight disappear from

the computations [9].

Computation method

As we proved in S1 Text, the average fixation probability is a rational function F(r) = F0(r)/F00

(r) where the numerator F0(r) = ∑i airi and the denominator F00(r) = ∑i biri are polynomials

with rational coefficients of degree less than or equal to 2N − 2. Using the symmetries of each

ℓ-graph, we can reduce the space of states PðVÞ to the set of 4-uplas

ðe; k; k0; e0Þ 2 f0; 1g � f0; 1; . . . ; ng � f0; 1; . . . ; ng � f0; 1g
ordered lexicographically (from halves to extra vertices) by k� k0 or e� e0, or equivalently the

system of linear equations Eq 6 to a new system with at most

ð2ðnþ 1ÞÞ
2
þ 2ðnþ 1Þ

2
¼
N2 þ N

2
¼
NðN þ 1Þ

2

linear equations. For ℓ6, ℓ8 and ℓ10, we have 21, 36 and 55 reduced states respectively. There-

fore, we can lower the former bound of the degree of F0(r) and F00(r) to a quantity

d ¼
NðN þ 1Þ

2
� 2

proving Eq 3. Details are explained in S1 Text. Hence, we should only compute the 2(d + 1)

coefficients involved in F(r). Actually, since F(r) converges to 1 as r! +1, we can assume

that ad = bd = 1. Thus, we can replace Eq 6 with the system of 2d linear equations

Xd

i¼0

air
i ¼ FðrÞð

Xd

i¼0

bir
iÞ; ð8Þ

which arise from evaluating the rational function F(r) for fitness values r 2 {1, . . ., d + 1,

1/2, . . ., 1/d}. This choice is due to those are the least complex rational numbers, which can be

described with only few bits, and the length in bits of the solution of Eq 8 grows exponentially

depending on the coefficients [25]. Finally, we wrote a SageMath program [18] that symbolically

• computes the exact fixation probability F(r) of the graphs ℓ6, ℓ8 and ℓ10 for these fitness val-

ues, and

• solves the reduced linear system Eq 8.

This program is available at [19]. Once the fixation probability F of the graphs ℓ6, ℓ8 and ℓ10

has been calculated solving this system, the sign of the numerator Δ0 and the denominator Δ00

of the rational function Δ(r) = F(r) − F0(r) is analyzed in order to prove that Δ(r)< 0 for all

r> 1. The exact values of F and Δ are given in S1 Text.
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Supporting information

S1 Text. The fixation probability as a rational function and the fixation formulas. As sup-

porting information, we include the essential tools in order to prove that ℓ6, ℓ8 and ℓ10 are sup-

pressors of selection for any fitness value r> 1. In S1 Text, we prove that the fixation

probability F(r) of any connected undirected graph of order N is a rational function obtained

as the quotient of two polynomials F0 and F00 with rational coefficients of degree at most

2N − 2, which is reduced to d for any ℓ-graph. Next, we give the exact values of F = F0/F00 and

Δ = Δ0/Δ00 for the graphs ℓ6, ℓ8 and ℓ10.

(PDF)

S1 Fig. The differences F0(r) − F(r) for the ℓ-graphs of orders between 6 and 24.

(PDF)

S1 File. SageMath program. To compute the fixation probabilities of ℓ6, ℓ8 and ℓ10 for any fit-

ness value r> 1, we ran a SageMath program available at [19].

(SAGE)
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4. Broom M, Rychtář J. An analysis of the fixation probability of a mutant on special classes of non-directed

graphs. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sci-

ences. 2008; 464(2098):2609–2627. https://doi.org/10.1098/rspa.2008.0058

Suppressors of selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0180549 July 10, 2017 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180549.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180549.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180549.s003
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1017/S0305004100033193
https://doi.org/10.1038/nature03204
http://www.ncbi.nlm.nih.gov/pubmed/15662424
https://doi.org/10.1098/rspa.2008.0058
https://doi.org/10.1371/journal.pone.0180549
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23. Salas-Fumás V, Sáenz-Royo C, Lozano Rojo Á. Organisational structure and performance of consen-

sus decisions through mutual influences: A computer simulation approach. Decision Support Systems.

2016; 86:61–72. https://doi.org/10.1016/j.dss.2016.03.008

24. Taylor HM, Karlin S. An introduction to stochastic modeling. 3rd ed. San Diego, CA: Academic Press

Inc.; 1998.

25. Fang XG, Havas G. On the Worst-case Complexity of Integer Gaussian Elimination. In: Proceedings of

the 1997 International Symposium on Symbolic and Algebraic Computation. ISSAC’97. New York, NY,

USA: ACM; 1997. p. 28–31.

Suppressors of selection

PLOS ONE | https://doi.org/10.1371/journal.pone.0180549 July 10, 2017 11 / 11

https://doi.org/10.1098/rspa.2010.0067
https://doi.org/10.1016/j.biosystems.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22020107
https://doi.org/10.1016/j.biosystems.2013.01.006
http://www.ncbi.nlm.nih.gov/pubmed/23353025
https://doi.org/10.1098/rspa.2012.0676
https://doi.org/10.1098/rspa.2012.0676
https://doi.org/10.1016/j.biosystems.2015.01.007
https://doi.org/10.1016/j.biosystems.2015.01.007
http://www.ncbi.nlm.nih.gov/pubmed/25625871
https://doi.org/10.1098/rspa.2015.0114
https://doi.org/10.1098/rspa.2015.0114
https://doi.org/10.1371/journal.pcbi.1004437
http://www.ncbi.nlm.nih.gov/pubmed/26544962
https://doi.org/10.1098/rsos.140465
https://doi.org/10.1098/rsos.140465
http://www.ncbi.nlm.nih.gov/pubmed/26064637
https://doi.org/10.1098/rspa.2013.0730
https://doi.org/10.1080/15598608.2011.10412035
https://doi.org/10.1080/15598608.2011.10412035
https://doi.org/10.1038/srep20666
http://www.ncbi.nlm.nih.gov/pubmed/26861189
https://bitbucket.org/snippets/alvarolozano/7jnka/
https://doi.org/10.1038/srep05034
http://www.ncbi.nlm.nih.gov/pubmed/24849192
https://doi.org/10.1186/s13062-016-0140-7
http://www.ncbi.nlm.nih.gov/pubmed/27549612
https://doi.org/10.1016/S0022-5193(03)00120-6
http://www.ncbi.nlm.nih.gov/pubmed/12875822
https://doi.org/10.1016/j.dss.2016.03.008
https://doi.org/10.1371/journal.pone.0180549

