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Abstract

Zoospore exudates play important roles in promoting zoospore communication, homing and

germination during plant infection by Phytophthora. However, it is not clear whether exu-

dates affect plant immunity. Zoospore-free fluid (ZFF) and zoospores of P. nicotianae were

investigated comparatively for effects on resistance of Arabidopsis thaliana Col-0 and

mutants that affect signaling mediated by salicylic acid (SA) and jasmonic acid (JA): eds16

(enhanced disease susceptibility16), pad4 (phytoalexin deficient4), and npr1 (nonexpressor

of pathogenesis-related genes1). Col-0 attracted more zoospores and had severe tissue

damage when flooded with a zoospore suspension in ZFF. Mutants treated with ZFF alone

developed disease symptoms similar to those inoculated with zoospores and requirements

of EDS16 and PAD4 for plant responses to zoospores and the exudates was apparent. Zoo-

spore and ZFFs also induced expression of the PR1 and PDF1.2 marker genes for defense

regulated by SA and JA, respectively. However, ZFF affected more JA defense signaling,

down regulating PR1 when SA signaling or synthesis is deficient, which may be responsible

for Arabidopsis mutant plants more susceptible to infection by high concentration of P. nico-

tianae zoospores. These results suggest that zoospore exudates can function as virulence

factors and inducers of plant immune responses during plant infection by Phytophthora.

Introduction

Phytophthora species use a variety of strategies to infect plants, causing severe losses for food

crops and ornamental plant production, as well as damage in forest ecosystems [1]. For exam-

ple, P. nicotianae (syn. P. parasitica) can colonize foliar structures and roots of over 200 plant

species including Arabidopsis [1–4]. This pathogen can use exudates from zoospores and bac-

teria to promote successful infection [3, 5, 6]. The exudates from zoospores of Phytophthora
and Pythium, termed zoospore-free fluids (ZFF), function as quorum-sensing signals promot-

ing zoospore homing and triggering infection by single zoospores [3, 5, 7]. However, it is not

clear whether ZFF also affects plant immunity.
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Plant immune responses are activated by two major classes of surveillance proteins: trans-

membrane pattern recognition receptors (PRRs) and plant nucleotide-binding, leucine-rich

repeat (NLR) proteins [8, 9]. PRRs recognize conserved, pathogen-associated molecular pat-

terns (PAMPS) to activate PAMP-triggered immunity (PTI). NLR proteins recognize patho-

gen effectors to activate effector-triggered immunity (ETI). Activation of PTI and ETI in

plants involves a complex signaling network regulated by small plant hormone molecules such

as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), as well as proteins responsible for

production and signal transduction of these hormones [10, 11].

Arabidopsis thaliana is a popular model plant for studying plant immunity and there

are many loss-of-function Arabidopsis mutants available for dissection of immune responses

to different pathogens. For example, eds 16–1 contains a loss of function mutation in a

gene encoding isochorismate synthase, a major enzyme in the biosynthesis [12] of salicylic

acid (SA), which plays a central role in immune responses to biotrophic pathogens. Simi-

larly, pad4-1 is a mutant of the Phytoalexin Deficiency 4 gene that encodes a lipase-like

protein operating upstream of SA accumulation to regulate various aspects of immune

responses, including production of the anti-microbial phytoalexin camalexin, and SA-

dependent immune signaling, and other sectors of the immune response network [13–16].

Npr-1 is a mutant of Nonexpresser of Pathogenesis-Related Protein 1 (NPR1), encoding a

receptor of SA and a central regulatory protein of SA-mediated responses in plant defense

[11, 17, 18]. Another useful tool in Arabidopsis is marker genes that are assayed to report

activation of specific defense signaling pathways. For example, PR1 [19] and PDF1.2 [20]

are widely used to determine activation of pathways mediated by SA and JA/ET signaling,

respectively.

Current models of defense signaling indicate that SA and JA/ET pathways are activated by

pathogens with different lifestyles [21]. For example, activation of JA/ET signaling is often

associated with the defense against necrotrophic such as Pythium species [22–25]. In contrast,

activation of SA signaling is a key component of defense against biotrophs such as Hyalopero-
nospora arabidopsidis [26–28]. The SA and JA/ET pathways are mutually antagonistic in Ara-
bidopsis, such that activation of one pathway triggers repression of the other. It is believed that

this mutual antagonism provides for adaptive tailoring so that the most effective defense is

deployed against the type of pathogen that is invading the plant [29]. However, it is unclear

how these pathways are regulated during infection by hemi-biotrophic pathogens that colonize

the plants as biotrophs and later activate a necrotrophic phase.

Many Arabidopsis-based pathosystems have been studied for plant defense mechanisms

against oomycetes of importance, including Hyaloperonospora arabidopsidis, Phytophthora
capsici, P. cinammomi, P. infestans, P. nicotianae, P. porri, P. sojae, and Pythium irregulare
[22, 28, 30–34]. However, only H. arabidopsidis is a natural pathogen of Arabidopsis, while

P. porri is a natural pathogen of Brassica plants related to Arabidopsis. Most of other oomy-

cetes either cause a hypersensitive response in Arabidopsis under controlled conditions or

have a restricted host range [2, 24, 31, 35–38]. In contrast, P. nicotianae has a wide host

range causing diseases of over 200 plant species and can infect Arabidopsis at a high inocu-

lum concentration in the laboratory [2, 3]. Moreover, P. nicotianae is relatively amenable to

biological, molecular and genetic approaches. Thus, the Arabidopsis—P. nicotianae phyto-

pathosystem is considered as a useful model for studying interaction between plants and

oomycete pathogens.

In this study, we compared how P. nicotianae zoospores and ZFF interacted with A. thali-
ana Col-0 and mutants in SA signaling and biosynthesis. While previous studies focused on

roles of ZFF in Phytophthora quorum sensing and behaviors, this study focused on the impact

of zoospore exudates on plant immune responses during infection by P. nicotianae.
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Materials and methods

Pathogen growth conditions and ZFF preparation

Phytophthora nicotianae isolate 1B11 from annual vinca (Catharanthus roseus cv. ‘Little Bright

Eye’) was used in this study. Growth, maintenance and preparation of zoospore-free fluid

(ZFF) of the organism followed previous protocols unless otherwise stated [3, 5, 39]. Specifi-

cally, high concentrations of zoospore suspensions were made by growing mycelium plugs in

10% clear V8 juice broth at 23˚C for one week in the dark followed by inducting sporangia

under the lights for two days, rinsing and flooding of the grown mycelium/sporangium mats

with cold sterilized distilled water (SDW) to remove the nutrient residues from media and to

release zoospores, respectively. Zoospore suspensions were measured for concentrations with

a hemocytometer under a microscope. To make ZFF, suspensions were filtered through a

0.2 μm filter after vortexed for 5 min to allow zoospore to encyst and release chemicals into the

solution. The filtrate was referred as ZFF, and its concentration was determined by the concen-

tration of zoospores suspension used. In this study, all ZFF were from zoospore suspensions at

105 /ml or higher.

Plant growth conditions

Arabidopsis thaliana (Col-0) and mutants, eds16-1, npr1-1 and pad4-, were seeded in Metro

Mix 360 top-layered with Metro Mix 200 (Scotts, Marysville, OH) and grown for 5 weeks in a

growth chamber at 25˚C with a 14/10 h light/dark cycle. All plants were fertilized in the third

and fourth week with 20-20-20 liquid fertilizer (Scotts, Marysville, OH). Four- to 6-week-old

plants were used in assays including microscopy, disease assessment and gene expression.

Examination of effects of ZFF on plant response to zoospores

Detached cauline leaves from 5-week old Col-0 plants were placed individually in the wells of a

24-well plate and flooded with 250 μl of ZFF or sterile distilled water (SDW), each containing

zoospores at a concentration of 1,600/ml. The plate was kept in the dark overnight at 23˚C,

and then transferred to growth chamber. Leaves in the wells were examined for zoospore

aggregation and plant tissue damage under a Nikon Labophot-2 or Olympus 1X71 inverted

microscope after 5, 24, 48 and 120 h incubation. Each treatment (ZFF or SDW) included three

replicated wells.

Assessment of effects of ZFF on disease development

Plants of four to five weeks were removed from MetroMix, cleaned in tap water and rinsed

with SDW before treatment. Six plants per genotype were flooded with 20 ml ZFF or controls

SDW and zoospore suspension at 200,000/ml, respectively in a 40-ml beaker and placed in

moisture containers. Plants were kept at 23˚C in the dark for 16 h and then placed in a growth

chamber under the plant growth conditions. Disease was rated by the percentage of symptom-

atic leaves in total leaves at 88 h after treatment. Yellowing and rotting symptoms were rated

separately. Each experiment included four biological replicates and was repeated once.

Analysis of effects of ZFF on plant gene expression

ZFF was also assessed for activation of SA and JA signaling mediated defense marker genes

PR1 and PDF1.2 in a time course experiment. The experiment was set up as that for disease

assessment and included three replicates for each treatment: ZFF, SDW or zoospores at

200,000/ml. At 4, 8, 16, 24, 48 and 72 hours after treatment, one plant was sampled from

each replicate. Replicate plants were combined and extracted for RNA with the RNeasy Mini
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Kit and RNase-Free DNase Set (Qiagen, Valencia, CA). Equal amounts of RNA were used to

perform qRT-PCR in the ABI 7500 Real Time PCR System with the High Capacity cDNA

Archive Kit (Applied Biosystems, Foster City, CA), Power SYBR1 Green PCR Master Mix

(Life Technologies, Carlsbad, CA) and primers for target genes PDF1.2 [40] and PR1 [41] as

well as for the endogenous control, reference gene Actin-1 (ACT1) [40]. All reactions were

run at the 9600 mode Emulation with 50˚C for 2 min at first stage, 95˚C for 10 min at second

stage followed by 40 cycles of 15 sec at 95˚C, 1 min at 60˚C at the third stage. Each sample

had three PCR runs for each of the genes. The mean value of Ct (threshold cycle) of each

gene in a sample of the PCRs were generated with Relative Quantification Study in the soft-

ware SDS v.1.3.1 (Applied Biosystems, Foster City, CA). Target gene expression was mea-

sured with Relative transcription levels (RQ) which was calculated using the formula 2-dCt

after Ct of target gene was normalized with that of the reference gene ACT1 in the same sam-

ple (dCttarget = Cttarget−CtACT1).

Statistical analysis

Standard errors were calculated from standard deviation and number of replicates with Micro-

soft Excel. T-test at equal variances in Excel was used for evaluating statistical significance

between the treatments. P values<0.05 were considered significant.

Results

Effect of zoospore exudates on Arabidopsis infection by Phytophthora

nicotianae

Detached cauline leaves of Col-0 were flooded in ZFF containing zoospores at 1, 600/ml for 5

h (Fig 1A). At this time point, zoospores aggregated at the base of trichome. The affected tri-

chomes became macerated 24 h after the exposure. Meanwhile, there was zoospore germina-

tion and mycelium growth on and in plant tissues (Fig 1C). Leaf tissue damage and substance

discharge from trichomes was evident at 48 hours after the treatment (Fig 1E). Leaf yellowing

was also evident at this time point. On the 5th day of the treatment, rotting became apparent

and further tissue damage and production of numerous sporangia was observed under the

microscope (Fig 1G). Same effect was found for ZFF from zoospore suspensions at� 105/ml

as used in this study. In contrast, there was sparse zoospore attachment to leaves treated with

SDW (Fig 1B). SDW-treated leaves/sustained little damage in trichomes or leaf tissue and sup-

ported limited hyphal growth with no sporangia production (Fig 1B, 1D, 1F and 1H). These

results indicate that ZFF promoted susceptibility of Arabidopsis plants to P. nicotianae.

Effect of zoospore exudates on Arabidopsis defense components

To better understand why plants become more susceptible to zoospores with addition of ZFF,

Arabidopsis Col-0 and mutant plants eds16-1; npr1-1 and pad4-1(all in the Col-0 background)

were treated with a zoospore suspension at 200,000/ml; ZFF alone, or a SDW control (Fig 2,

Table 1). Visual symptoms were compared in response to all three treatments. Zoospore treat-

ment induced visible symptoms in >40% of leaves from Col-0. Contrastingly, ZFF treatment

induced only a minor increase in symptoms compared to water-treated control. Interestingly,

eds16-1 plants developed severe leaf yellowing and rotting, compared to Col-0, after treatment

with ZFF (Fig 2B). Similar symptoms were displayed after inoculation with zoospores. The pad
4–1 mutant also displayed slightly enhanced symptoms, compared to wild-type Col-0, after

treatment with ZFF or zoospore inoculum. Interestingly, responses to ZFF and zoospores were

slightly attenuated in npr1-1 compared to Col-0. These results indicate that a deficiency in SA
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Fig 1. Microscopy of effects of zoospore free fluid (ZFF) on Arabidopsis (Col-0) responses to

Phytophthora nicotianae zoospores. Individual cauline leaves were flooded in ZFF (A, C, E, and G) or

sterile distilled water (SDW) (B, D, F and H) containing zoospores at 1,600 /ml and observed at different

exposure time. Bars = 50 μm. Letters: h = hypha or hyphae, sd = substance discharge from plant tissues,

sp = sporangia, zsp = zoospores.

https://doi.org/10.1371/journal.pone.0180523.g001
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Fig 2. Comparison of effects on disease symptom development of Arabidopsis Col-0 and its mutant eds16-1, npr1-1

and pad4-1 between zoospore free fluid (ZFF) and zoospores (ZSP) of Phytophthora nicotianae. Plants were treated

with ZFF alone or zoospore suspension at 200,000/ml and recorded symptoms after 88 h at 23˚C. A. Percentage of leaves

displaying yellowing or rotting after treatment. Each column is a mean of 6 plants; bars depict standard error. Similar results

were observed in three independent replicates. B. Images of the plants after treatment. Typical yellowing or rotting is

indicated with blue and red arrows, respectively.

https://doi.org/10.1371/journal.pone.0180523.g002
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biosynthesis/signaling rendered Arabidopsis more susceptible to P. nicotianae, and that ZFF

treatment triggered disease-like symptoms in an SA-deficient mutant.

Effect of zoospore exudates on regulation of SA and JA signaling in the

plants

To determine how ZFF may affect defense signaling pathways, expression of SA and JA marker

gene PR1 and PDF1.2 was examined in wild type and mutant plants treated with zoospores,

ZFF, or SDW. In Col-0, both genes were induced by ZFF and zoospores although the effect of

ZFF was weaker than zoospores. ZFF treatment appeared to have a stronger effect on PDF1.2
expression than on PR1 expression, compared to the water treatment (Fig 3A). eds16-1 plants

displayed substantially different patterns of transcript accumulation, compared to Col-0: In

zoospore- and ZFF-treated plants, expression of PDF1.2 was much lower at 4 and 8 hours after

treatment, compared to Col-0, but then increased to a level higher than Col-0 by 72 hours.

Zoospore-responsive expression of PR-1 was lower than Col-0 in eds16-1 at early time points,

but increased at later time points. As in Col-0, ZFF effect on both marker genes in eds16-1 was

roughly equivalent to that of water. The npr1-1 and pad4-1mutants were similar to each other

and to eds16-1: Expression of PDF1.2 was equivalent or somewhat higher to Col-0, with zoo-

spore treatment inducing stronger expression than ZFF or water. PR-1 expression in mutants

was much lower than in Col-0 in response to all treatments although zoospore treatment

induced a much stronger response in the late time.

Discussion

Zoospore exudates of Phytophthora have been shown as chemical signals for Phytophthora
quorum sensing leading to zoospore aggregation, homing and infection initiation as well as

communications between zoosporic oomycetes and with bacteria [3, 5, 7, 39, 42]. This study

reveals new roles of zoospore exudates as virulence factors of the pathogen and inducers of

plant immunity, contributing to the success of plant infection by Phytophthora zoospores.

Most importantly, zoospore pre-treatment with ZFF rendered Arabidopsis plants more sus-

ceptible to infection by P. nicotianae zoospores (Fig 1). Additionally, ZFF treatment induced

disease-like symptoms of yellowing and rotting that were similar to those induced by treat-

ment with zoospores. Finally, ZFF treatment influenced expression of marker genes for both

SA- and JA-dependent immune responses. These data indicate that zoospore exudates can

affect the function of the host immune system, in addition to mediating intra- and interspecies

chemical communication, promoting zoospore homing and plant infection described in previ-

ous studies. The ability of ZFF to promote disease-like symptoms, independent of pathogen

Table 1. Difference of effects between zoospore free fluid (ZFF) and zoospores (ZSP) of P. nicotianae on symptom production of Arabidopsis thali-

ana plants.

Plant P value between treatments X

Yellowing Rotting

ZFF:ZSP ZFF:SDW ZSP:SDW ZFF:ZSP ZFF:SDW ZSP:SDW

Col-0 0.041 0.004 1.597 0.003 NAY 0.003

eds16-1 0.376 <0.001 <0.001 0.134 <0.001 <0.001

npr1-1 0.046 0.029 0.319 NA NA NA

pad4-1 <0.001 0.027 <0.001 <0.001 0.170 <0.001

X P value is determined with t-Test with equal variance in Excel at α = 0.05. A difference at P� 0.05 is not significant.
Y NA = not applicable.

https://doi.org/10.1371/journal.pone.0180523.t001
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colonization, is particularly intriguing. We propose that the chlorosis and rotting are due to

one or more toxins present in ZFF. It would be of great interest to identify the precise com-

pounds in ZFF that induces these symptoms. It will also be interesting to determine if the tox-

ins promote immune activation as part of the necrotrophic phase of plant colonization.

Another interesting aspect is that plant responses to zoospores and ZFF treatment appear

linked to SA signaling, based on differential responses observed during treatment of mutants

that disable SA biosynthesis (eds16-1) or signaling (pad4-1, npr1-1). When SA biosynthesis is

disabled (eds16-1), the disease symptoms triggered by zoospores or ZFF are substantially

enhanced. A similar but weaker enhancement was observed in the pad4-1mutant. These data

indicate that SA signaling plays a role in resistance to pathogen colonization (zoospores) and/

or toxicity mediated by ZFF. Because pad4-1was less responsive to ZFF, PAD4 may partially

involve the resistance to the toxins in zoospore exudates despite the fact that it can provide

amplified defense through phytoalexin camalexin production or interaction with EDS [14, 15].

Interestingly, npr1-1mutants displayed reduced symptoms to both treatments, suggesting that

the resistance to P. nicotianae and ZFF-induced disease symptoms occurs through a mecha-

nism that requires SA and PAD4, but operates independently of NPR1. Although npr1-1 has

been associated with SA signaling in many interactions [43, 44] including the oomycete

Fig 3. Effects of zoospore free fluid (ZFF) of Phytophthora nicotianae on expression of salicylic acid (SA)—and jasmonic acid (JA)

—associated defense genes in Arabidopsis Col-0 and its mutants. Plants were flooded with ZFF, SDW or zoospore suspension at

200,000/ml (ZSP) and extracted for RNA at 4, 8, 16, 24 and 48 h after treatment. PR1, PDF1.2 expression was analyzed with QRT-PCR in a

real time PCR system and the transcript levels or mean value of Ct (threshold cycle) were normalized with reference gene Actin-1 in the

same samples. The graph depicts the relative expression of the genes in treated plants. Each column is a mean of three PCR replicates

from one of two biological experiments with similar results. Bars depict standard error from the replicates.

https://doi.org/10.1371/journal.pone.0180523.g003
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Hyaloperonospora arabidopsidis [11], genetic studies have provided evidence for immune

responses that are SA-dependent but to not require NPR1 [45–48].

The responsiveness of PR-1 and PDF1.2 to P. nicotianae zoospores indicates that SA and JA

pathways are responsive, in Arabidopsis, to Phytophthora pathogens [2, 31]. Interestingly, ZFF

treatment had a more pronounced effect on PDF1.2 expression than on PR-1 expression, sug-

gesting that a component of ZFF was sufficient to trigger JA-dependent immune responses

(Fig 3). It is conceivable that ZFF may be more involved in necrotrophic activities, or that acti-

vation of JA defenses may function to suppress SA defenses during biotrophic growth. This is

apparent when SA function is attenuated; ZFF induced yellowing and rotting on the treated

plants while induced no or very low PR-1 response in the mutants, and high concentration of

zoospores invoked much more potent responses on defense signaling and symptoms (Figs 2

and 3B–3D). This regulatory feature of ZFF on plant defense may explain why addition of ZFF

in a low concentration of zoospore inoculum which is technically equivalent to high concen-

tration of zoospores in the term of the impact on quorum sensing mediated infection [3],

enhanced susceptibility of plants (Fig 1). Similar complex responses have been well docu-

mented for necrotrophs with a broad host range which can produce diverse PAMPs that acti-

vate plant immune responses as well as virulence factors that suppress immune responses [49,

50]. Understanding the exact molecular mechanisms that drive these responses will be a signif-

icant step towards understanding the basis of resistance and susceptibility to necrotrophic and

hemi-biotrophic pathogens that cause substantial crop loss.

Using an external control is uncommon in a time course study on plant–pathogen interaction

with qRT-PCR. In this study, we used SDW as the control to compare zoospore inocula and exu-

dates at the same condition. However, SDW treatment caused responses of SA and JA defense

signaling marker gene which sometimes was equivalent to those triggered by zoospores or ZFF,

indicating that flooding may induce similar SA or JA responses. Net effects of zoospores and

ZFF can be obtained by calibrating transcripts of these target genes from the same sampling time

in the individual treatments with transcripts of the control. Alternatively, calibration may be

done with samples at zero exposure time. However, reduction of such background may cover up

real effects of zoospore inoculum or exudates on plant defense which gave rise to visual symp-

toms distinct from that of SDW (Fig 2). Nevertheless, to include external control in qRT-PCR

for analyses of plant defense gene expression, it is warranted to use SA and JA marker genes that

are not responsive to flood or to develop alternative feasible inoculation or treatment methods.

Supporting information

S1 Table. Ct (threshold cycle) and RQ values of tested genes in qRT- PCR. Data were gener-

ated in ABI 7500 Real Time PCR System and computed with Relative Quantification Study in

the software SDS v.1.3.1.

(XLSX)

S2 Table. Rated Arabidopsis leaves that showed yellowing or rotting in treated plants after

88 h treatment at 23˚C with ZFF and controls of sterile distilled water (SDW) and high

concentration of zoospores at 200,000/ml.

(XLSX)
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