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Abstract

Small non-coding RNAs (sRNAs) are post-transcriptional regulators of gene expression that

have been recognized as key contributors to bacterial virulence and pathogenic mecha-

nisms. In this study, we characterized the sRNA PesA of the opportunistic human pathogen

Pseudomonas aeruginosa. We show that PesA, which is transcribed within the pathogenic-

ity island PAPI-1 of P. aeruginosa strain PA14, contributes to P. aeruginosa PA14 virulence.

In fact, pesA gene deletion resulted in a less pathogenic strain, showing higher survival of

cystic fibrosis human bronchial epithelial cells after infection. Moreover, we show that PesA

influences positively the expression of pyocin S3 whose genetic locus comprises two struc-

tural genes, pyoS3A and pyoS3I, encoding the killing S3A and the immunity S3I proteins,

respectively. Interestingly, the deletion of pesA gene results in increased sensitivity to UV

irradiation and to the fluoroquinolone antibiotic ciprofloxacin. The degree of UV sensitivity

displayed by the PA14 strain lacking PesA is comparable to that of a strain deleted for

pyoS3A-I. These results suggest an involvement of pyocin S3 in DNA damage repair and a

regulatory role of PesA on this function.

Introduction

Bacterial small RNAs (sRNAs) have been recognized as key contributors to regulatory net-

works, and have been shown to play critical roles in many intra- and extracellular processes,

and in pathogenesis [1–3]. Most sRNAs exert their regulatory function post-transcriptionally,

acting by base pairing with the mRNA of their target genes ultimately modulating mRNA

translation and/or stability. sRNAs can share extended base complementarity when they are

cis-encoded on the opposite strand of the target mRNA, or they can interact with the target

mRNA via short and imperfect base pairing, as in the case of trans-encoded sRNAs. The
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expression of most sRNAs is responsive to environmental stress conditions spanning from

iron and oxygen limitation, to oxidative, metabolic/nutrient, pH and cell envelope stresses [4].

In the opportunistic human pathogen Pseudomonas aeruginosa the use of transcriptomics

approaches has recently led to the identification of numerous new sRNAs, mostly in the atten-

uated strain PAO1 and some also in the virulent one PA14 [5–7]. The bacterium P. aeruginosa
is known as a major cause of both acute and chronic lung infections in patients belonging to

all age groups who are immunocompromised, or who have defective mucociliary clearance,

previous epithelial injury or foreign body placement [8]. Lung infections caused by P. aerugi-
nosa can appear as a spectrum of clinical entities ranging from a rapidly fatal pneumonia in a

neutropenic patient to a multi-decade bronchitis in patients with cystic fibrosis (CF). The

expression of virulence traits in P. aeruginosa is fine-tuned by a dynamic and intricate regula-

tory network [9],that leads the expression of P. aeruginosa pathogenic functions with a sharp

timing. In this scenario, sRNAs can finely contribute to P. aeruginosa ability to quickly adapt

to a new environment and manage to persist.

Previously, bioinformatics and approaches such as the pull-down with the RNA chaperone

Hfq have been used for identifying novel P. aeruginosa sRNAs but only a small number of

them have been characterized functionally, and even less described as being implicated in the

regulation of P. aeruginosa virulence [10–17]. Moreover, most of the studies have been per-

formed using the reference strain PAO1, while very little is known about the biological effects

of the sRNA mediated regulation in virulent P. aeruginosa strains, such as PA14. Compared to

PAO1, the clinical isolate PA14 is significantly more virulent in a wide range of hosts, includ-

ing mice, the nematode Caenorhabditis elegans, the insect Galleria mellonella, and the plant

Arabidopsis thaliana, and has thus become an important reference strain because of its

enhanced virulence [18–20]. Generally, PAO1 and PA14 strains share highly conserved

genomes, although PA14 possesses a slightly larger one, likely due to horizontal gene transfer

resulting in the acquisition of pathogenicity islands (PAIs) [21].

This study focuses on a P. aeruginosa sRNA observed for the first time by a sRNA-sequenc-

ing approach [5], in which unique and conserved sRNAs in the P. aeruginosa strains PAO1

and PA14 were revealed. Here, we validated the sRNA with the operative name SPA0021,

renamed PesA, as being transcribed from the pathogenicity island PAPI-1, present in PA14

strain, but not in PAO1. In addition, our results display that PesA is expressed in several P. aer-
uginosa isolates, including environmental and clinical ones isolated from CF patients. More-

over, we show that PesA operates a post-transcriptional regulation of genes involved in S-type

pyocin production. Pyocins are narrow-spectrum bacteriocins synthesized by more than 90%

of P. aeruginosa strains and presumed to play a role in niche establishment and protection in

mixed populations. The pyocin genes are usually located on the P. aeruginosa chromosome

and induced by mutagenic agents that cause DNA damage such as mitomycin C and UV irra-

diations. P. aeruginosa pyocins can be subdivided into insoluble R and F pyocins and soluble S

pyocins. S-type pyocins AP41, S1, S2, and S3 are constituted of two components in which the

large component carries an endonuclease C-terminal domain responsible for the killing activ-

ity that causes cell death by DNA cleavage [22–27], while pyocins S4 and S5 have tRNAse and

pore-forming activities, respectively [28, 29]. More recently, also the new S-type pyocin S6,

with rRNase activity, has been described functionally [30]. In our study, we show that PesA

deletion leads to decreased expression of pyocin S3, associated to increased sensitivity to UV

irradiation and to the fluoroquinolone antibiotic ciprofloxacin. Furthermore, PesA is induced

by host-environment stimuli such as low oxygen availability and body temperature, suggesting

a key role in P. aeruginosa adaptability to different environmental stresses. Finally, we also

found that PesA is involved in the regulation of P. aeruginosa PA14 virulence in CF human

bronchial epithelial cells. Our results suggest that a PAPI-1-encoded sRNA can contribute to

PesA, a PAPI-1 encoded small RNA of P. aeruginosa
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the modulation of the expression of genes outside PAPI-1, and to different aspects of P. aerugi-
nosa pathogenesis during infection.

Materials and methods

Ethics Statement

Study on human P. aeruginosa isolates from Hannover has been approved by the Ethics Com-

mission of Hannover Medical School, Germany [31]. The patients and parents gave oral

informed consent before the sample collection. Approval for storing of biological materials

was obtained by the Ethics Commission of Hannover Medical School, Germany. The study on

human P. aeruginosa isolates from the Regional CF Center of Lombardia (S1 Table) was

approved by the Ethical Committees of San Raffaele Scientific Institute and Fondazione

IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy, and written informed consent

was obtained from patients enrolled or their parents according to the Ethical Committees

rules, in accordance with the laws of the Italian Ministero della Salute (approval #1874/12 and

1084/14).

Bacterial strains and culture conditions

Bacterial strains and plasmids used in this study are listed in S2 Table. E. coli strains were rou-

tinely grown in Luria-Bertani broth (LB) at 37˚C. P. aeruginosa strains were grown at 37˚C in

Brain Heart Infusion (BHI) rich medium or in LB at 120 rpm unless otherwise indicated. Car-

benicillin and gentamicin were added at 300 and 20 μg/ml, respectively, unless otherwise indi-

cated. For PBAD induction in vector plasmid pGM931, arabinose was added to a final

concentration of 10 mM. Anaerobic batch cultivations of P. aeruginosa and the shift from aer-

obic to anaerobic conditions were performed in a 800 ml-Biostat-Q system bioreactor

(B-Braun) as described previously [17].

Plasmid constructions and mutant generations

Oligonucleotides used in this study are listed in S3 Table. To construct plasmid pGM-pesA, the

pesA gene was PCR-amplified from PA14 genomic DNA with oligos 9/10, digested with NcoI-

PstI and cloned into the pHERD20T derivative vector pGM931 carrying a transcriptional ter-

minator downstream the multicloning site [32, 33].

Plasmids pBBR1-pyoS3I::sfGFP, pBBR1-leader-pyoS3A::sfGFP, pBBR1-lacZ::pyoS3A-I::
sfGFP, and pBBR1-mCherry::pyoS3A-I::sfGFP expressing pyoS3I::sfGFP, pyoS3A::sfGFP, lacZ::

pyos3A-I::sfGFP, or mCherry::pyos3A-I::sfGFP translational fusions, respectively under the

PLtetO-1 constitutive promoter were constructed as follows. A DNA fragment including the last

39 codons of the open reading frame of Pyos3A and 36 first codons of PyoS3I was amplified by

PCR with oligos 11/12, digested with NsiI-NheI and cloned into the sfGFP reporter vectors

pXG10-SF and pXG30-SF [34] giving rise to plasmid pXG10-pyoS3I::sfGFP and pXG30-lacZ::

pyoS3A-I::sfGFP, respectively. A DNA fragment including the 278-nt UTR and the first 37

codons of the pyos3A open reading frame was amplified with oligos 13/14 digested with NsiI-
NheI and cloned into the sfGFP reporter vectors pXG10-SF giving rise to plasmid pXG10-

leader-pyoS3A::sfGFP.

The DNA fragments spanning from the PLtetO-1 promoter to the end of the GFP reporter

gene were amplified by PCR respectively from pXG10-pyo-S3I::sfGFP, pXG30-lacZ::pyoS3A-I::
sfGFP and pXG10-leader-pyoS3A::sfGFP with oligos 18/19, digested with ClaI-XbaI and cloned

into the low-copy number shuttle vector pBBR1-MCS5 giving rise to constructs pBBR1-

pyoS3I::sfGFP, pBBR1-lacZ::pyoS3A-I::sfGFP and pBBR1-leader-pyoS3A::sfGFP, respectively.

PesA, a PAPI-1 encoded small RNA of P. aeruginosa
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mCherry gene was amplified by PCR from the pMMR plasmid [35] using primers 15/16, (in

which forward primer contained the Shine-Dalgarno sequence, and reverse primer lacked

mCherry stop codon sequence), digested with NsiI and cloned into the pXG10-pyoS3I::sfGFP
previously digested with NsiI, giving rise to plasmid pXG10-mCherry::pyoS3A-I::sfGFP. The

DNA fragment spanning from the PLtetO-1 promoter to the end of the GFP reporter gene was

amplified by PCR using oligos 18/19 digested with ClaI-XbaI and cloned in the pBBR1-MCS5

vector, giving rise to plasmid pBBR1-mCherry::pyoS3A-I::sfGFP. Plasmid pBBR1-mCherry
expressing mCherry reporter gene under PLtetO-1 was constructed as follows. The DNA frag-

ment including the PLtetO-1 promoter and the mCherry reporter gene was amplified from

pBBR1-mCherry::pyoS3A-I::sfGFP using oligos 17/18 (in which reverse primer contained

mCherry stop codon). The PCR product was digested with ClaI-XbaI and cloned in the

pBBR1-MCS5 vector.

P. aeruginosa mutant in pesA gene was generated by an enhanced method of markeless

gene replacement described previously [36] with some modifications to adapt it to P. aerugi-
nosa as described previuosly [17]. PA14 mutant in pesA gene was obtained by allelic exchange

with a deletion from—34 to + 140 positions with respect to pesA transcription start site as fol-

lows. TS1 region spanning left 533 bp flanking sequence of pesA gene was amplified by PCR

with oligos 23/24. TS2 region spanning last 127 nt and right 368 bp flanking sequence of pesA
was amplified by PCR with oligos 25/26. PCR amplifications were performed from PA14 geno-

mic DNA. Overlap extension (SOE)-PCR with oligos 23/26 was used to join TS1 and TS2 that

carried end complementary regions introduced by 25/26, respectively during their separate

PCR amplification [37]. Joined TS1-TS2 DNA fragments were digested with EcoRI-PstI and

cloned in CC118 λpir into the poly-linker site of pSEVA612S giving rise to pSEVApa14-ΔpesA.

The TS1-TS2–inserted pSEVApa14-ΔpesA was transferred from E. coli CC118 λpir to

PA14, with the assistance of the helper E. coli strain HB101(pRK600) in a conjugative triparen-

tal mating. Exconjugant P. aeruginosa clones were selected on M9-citrate with 60 μg ml−1 of

gentamicin. Since pSEVA612S derivatives cannot replicate in P. aeruginosa, GmR exconjugant

clones could appear only by co-integration of the construct in the genome of the recipient

strain by homologous recombination between joined TS1-TS2 fragments borne by pSE-

VA612S and the recipient chromosome. Plasmid pSW-1 was transferred from E. coli DH5α to

P. aeruginosa clones bearing genomic co-integrates of pSEVApa14-ΔpesA by triparental mat-

ing as above, and pSW-1-recipient P. aeruginosa clones were selected on M9-citrate with

300 μg ml−1 of carbenicillin. Cultures of resulting P. aeruginosa clones carrying pSW-I were

grown overnight in LB with 300 μg ml−1 of carbenicillin and then plated on the same medium.

Single colonies were screened for loss of gentamicin resistance. Gentamicin-sensitive clones

carrying the deleted alleles were then screened by PCR with oligo pairs 27/28 for pesA.

All plasmid constructs and deletion mutant were checked by sequencing with oligos indi-

cated in S3 Table.

RNA isolation and analysis

Total RNA was prepared as described previously [5] from 2–10 ml of bacterial cell cultures.

Quality and concentration of the RNA extracted were assessed by a Biospectrometer (Eppen-

dorf). Northern blot analyses were performed as described previously [5]. DNA oligonucleo-

tide probes were 5’-end labeled with [γ-32P]ATP (PerkinElmer, NEG502A) and T4

polynucleotide kinase (Promega, M4103) according to manufacturer’s instruction. Oligo 1

and 2 were used to probe PesA and 5S RNA, respectively. Treatment with terminator-5’-phos-

phate-dependent exonuclease was performed in terminator reaction buffer A (Epicentre,

TER51020) as described in detail previously [17].

PesA, a PAPI-1 encoded small RNA of P. aeruginosa
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Radioactive bands were acquired after exposure to phosphor screens using a Typhoon™
8600 variable mode Imager scanner (GE Healthcare BioSciences) and visualized with image-

Quant software (Molecular Dynamics).

Quantitative RT-PCR analysis was performed on total RNA extracted from P. aeruginosa
PA14 wild-type and ΔpesA at mid-, late-exponential and stationary phase (OD600 of 0.8, 1.6

and 2.7, respectively). cDNA synthesis was performed from 1 μg of total purified RNA using

QuantiTect Reverse Transcription Kit (Qiagen). RT-PCRs were performed using QuantiTect

SYBR1 Green PCR Kit (Qiagen) and oligo pairs 30/31, 32/33, 34/35 for 16S, pyoS3A and

pyoS3I amplification, respectively. The reaction procedure involved incubation at 95˚C for 15s

and 40 cycles of amplification at 94˚C for 15 s, 60˚C for 30 s and 72˚C for 30s. 16S ribosomal

RNA was used as reference.

In vitro and vivo assays of sRNA/mRNA interactions

Electrophoretic Mobility Shift Assay (EMSA) to analyze sRNA/mRNA interactions were per-

formed as described previously [17].

Experiments with fluorescent reporters were carried out as described previously [17].

Fluorescence polarization FP485/535, fluorescence intensity FI590/635 and Abs595 were measured

in a Tecan Infinity PRO 200 reader, using Magellan as data analysis software (Tecan). GFP

and mCherry activities were expressed in Arbitrary Units (AU) as ratio FP485/535/Abs595 and

FI590/635/Abs595, respectively.

RNA synthesis

RNAs for RNA/RNA interaction assays were prepared by T7 RNA polymerase transcription of

gel-purified DNA fragments obtained by PCR as described previously [17]. DNA fragments

for PesA RNA and pyoS3A-I mRNA preparations were amplified from P. aeruginosa PA14

genomic DNA with oligo pairs 3/4 and 5/6, respectively. The DNA fragment for RseX RNA

was amplified from E. coli C1a genomic DNA with oligos 7/8.

Pyocin S3 spotting assay

Pyocin killing assay was performed using the spotting method as indicated previously [38]

with some modifications. 10 μl of filter-sterilized supernatants from cell cultures with OD600 of

1 were spotted onto LB 1.5% agar plates. A lawn of the pyocin S3 sensitive P. aeruginosa strain

ATCC 27853 containing 5 × 106 cells ml−1 was plated by inclusion into 0.3% soft agar over the

dried spots. Plates were incubated overnight at 37˚C and checked for the formation of the

clearing zone on the spotting site, which is indicative of the pyocin S3 activity.

Antibiotic disk diffusion

Susceptibilities of P. aeruginosa strains to antimicrobial agents were analyzed by disk diffusion

measurement. Filter disks (Oxoid, CT0425B, CT0013B, CT0207B, CT0052B, CT0058,

CT0010B) were placed on a lawn of 106 CFU/ml bacterial cells plated by inclusion into 0.3%

LB agar. Plates were incubated overnight at 37˚C and the diameters of the clear zones around

the disks were measured.

UV sensitivity assay

UV treatment was performed using a Stratalinker 1800 UV Crosslinker (Stratagene). Cell cul-

tures with an OD600 of 1 (corresponding to 8 x 108 CFU/ml) were serially diluted until 10−7;

3 μl of each dilution were spotted in triplicate onto LB-agar plates, dried, and exposed to

PesA, a PAPI-1 encoded small RNA of P. aeruginosa

PLOS ONE | https://doi.org/10.1371/journal.pone.0180386 June 30, 2017 5 / 20

https://doi.org/10.1371/journal.pone.0180386


increasing amounts of UV radiation, from 0 to 100 J/m2. Plates were incubated overnight at

37˚C.

Cytotoxicity assays in human CF respiratory cells

IB3-1 cells, an adeno-associated virus-transformed human bronchial epithelial cell line derived

from a CF patient (ΔF508/W1282X) and obtained from LGC Promochem, were grown as

described previously [39]. Cells were infected with P. aeruginosa strains at a multiplicity of

infection (MOI) of 100. Cell viability was evaluated using the CellTiter 961 Non-Radioactive

Cell Proliferation Assay (MTT) kit (Promega, G4000), according to manufacturer’s

instructions.

Bacterial isolates analysis

Bacterial isolates were plated on 1.5% BHI-agar plates and grown overnight at 37˚C. Culture

samples were taken and processed for genomic DNA and total RNA extraction. PAO1 and

PA14 strains treated in the same conditions were used as controls. Oligos 9/10 and 37/38 were

used for PCR-amplification of the genomic region containing the pesA and 16S (as positive

PCR-control) loci, respectively.

Results

The sRNA PesA is encoded in the PAPI-1 and is a processed transcript

The SPA0021 sRNA was identified using a comparative sRNA-seq approach in which 52 P.

aeruginosa novel sRNAs have been identified either in the attenuated strain PAO1 or in the

virulent one PA14. SPA0021 was validated to be� 260 nt in lengths, and one of the 12 sRNAs

whose genetic locus is unique to the PA14 strain [5]. Moreover, SPA0021 was found to be

encoded within the pathogenicity island PAPI-1, and because of this property, we renamed it

as pathogenicity island-encoded sRNA A (PesA). The pesA gene locates downstream and on

the same strand of pilM2 gene (belonging to the type IV B pilus operon pil2), and overlaps the

3’ of PA14_59370 (gene with unknown function) (Fig 1A and 1B). Since a rho-independent

transcription terminator was predicted within the PA14_59370 sequence [40]. The cluster of

the sRNA-seq reads that mapped upstream the predicted terminator was considered as the 3’

of the pesA gene [5]. The 5’-end was also mapped by the sRNA-seq read-clustering and was in

perfect agreement with the size validated by Northern blot [5].

We evaluated PesA expression along the growth-curve in the rich medium BHI (Fig 1C).

Northern blot analyses showed a main band of the expected product size of� 260 nt (black

arrow) at each analyzed time point, and multiple bands with higher molecular weight (white

arrows) especially at early exponential phase (OD600 = 0.2). The main band of PesA showed to

accumulate in late stationary phase. The presence of high molecular weight multiple bands,

and the absence of rho-independent transcription terminators downstream pilM2, suggested

that the main band of� 260 nt could derive from the processing of a longer transcript. Sensi-

tivity to treatment with terminator 50-phosphate-dependent exonuclease (Fig 1D), which pref-

erentially degrades monophosphate processed transcripts confirmed that the� 260 nt RNA is

indeed a processed product.

PesA is widespread expressed in clinical and environmental isolates

To assess the clinical impact of PesA, we validated its presence and expression levels through-

out a collection of 29 clinical P. aeruginosa isolates derived from respiratory samples of patients

with chronic respiratory diseases, including CF and chronic obstructive pulmonary disease

PesA, a PAPI-1 encoded small RNA of P. aeruginosa
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(COPD), and 5 isolates from environmental habitats. In particular, the clinical isolates were

recovered both during intermittent infections and at different stages of chronic lung infection.

Part of them was previously characterized both in vitro and in vivo [31, 41]. We also included

in this study the Liverpool epidemic strain LESB58 [42] and PAO1 and PA14 as controls.

In Fig 2, results on pesA-gene amplification and Northern blot analysis show that the pesA
gene is present in 17 out of the 27 CF clinical isolates, in the 2 COPD isolates and in 2 out of 5

environmental isolates. Notably, there was no association between the presence/expression of

pesA gene and the P. aeruginosa status (chronic vs intermittent). In addition, no differences

were observed between clonal isolates recovered from the same patients at different stages of

Fig 1. Genomic context and transcriptional features of P. aeruginosa pesA gene. A) Schematic overview of the PAPI-1 region of

PA14. The pesA gene is indicated as white arrowhead. B) Sequence of the pilM2–PA14_59370 intergenic region of PA14. The pesA

sequence is in bold. The 50-end of PesA is indicated with +1. A predicted Rho-independent transcription terminator is highlighted in black.

The predicted stop codons of pilM2 and PA14_59370 are highlighted in gray. C) PesA expression is induced in stationary phase. Wild-type

PA14 was inoculated in BHI at an OD600 of 0.2 and grown for 20 h at 37˚C with agitation. At the indicated OD600, culture samples were taken

and processed for total RNA extraction and analysis by Northern blot. Black arrow indicates the main band of pesA of� 260 nt; white arrows

indicate bands of higher molecular weight of pesA present especially at early exponential phase (OD600 = 0.2). D) Northern blot analysis of

PesA on 10 μg of total RNA extracted at the end of the exponential growth phase, treated (+) or untreated (−) with terminator 50-phosphate-

dependent exonuclease (T-ex).

https://doi.org/10.1371/journal.pone.0180386.g001
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chronic infection (e.g. AA2-early, AA43-late, AA44-late or TR1-early, TR66-late, TR67-late).

In the BHI-plate aerobic growth conditions of these experiments, the majority of the pesA-har-

boring isolates showed levels of expression similar to those of the PA14 strain or even higher

(panel A, lanes 5–7, 11 and 12; panel B, lanes 1, 2, 4, 5, 9, 10; panel C, lanes 2–5, 8 and 10),

while 5 isolates showed lower or no expression levels with respect to the PA14 (panel B, lanes 6

and 12; panel C, lanes 1, 6 and 11). In the case of PAO1 and LESB58 strains, no gene amplifica-

tion was observed (panel A, lanes 4 and 13).

PesA is induced in anaerobic growth and at 37˚C

We analyzed the transcriptional responsiveness of PesA RNA to environmental or body tem-

perature, and reduced oxygen availability. Temperature sensitivity was tested by probing PesA

in early- (OD600 = 0.8) and mid-exponential phase (OD600 = 1.8) at both 20 and 37˚C and after

20 min of acclimation following a shift from 20 to 37˚C, as described in detail previously [17].

As shown in Fig 3A, the growth at 37˚C caused an up-regulation of PesA if compared to the

growth at 20˚C; no increase of PesA RNA accumulation was observed during the 20 min of

acclimation. PesA showed also to be responsive to oxygen availability. PesA was probed at

mid- and late-exponential phase (OD600 of 0.8 and 2, respectively) under anaerobic conditions

in BHI with nitrate to sustain anaerobic respiration, as described previously [17]. In addition,

bacterial cells were grown in BHI with aeration until mid-exponential phase (OD600 = 0.8);

then, oxygen was excluded from cultures. PesA levels were assessed immediately before oxygen

exclusion and 20 (OD600 = 0.9) and 150 min (OD600 = 1.3) from the start of anaerobic condi-

tions, as described previously [17]. PesA levels were higher in anaerobic than aerobic condi-

tions both in mid- and late-exponential phase (Fig 3B). In addition, the shift from aerobic to

anaerobic conditions caused a progressive increase of PesA levels.

PesA is involved in ciprofloxacin and UV-resistance

To explore the involvement of PesA in the regulation of cellular mechanisms, also linked to P.

aeruginosa virulence, we constructed the knock-out mutant strain PA14 ΔpesA and the plas-

mid vector pGM-pesA carrying the pesA gene under the arabinose inducible PBAD promoter

with the aim to measure the effects of perturbing PesA levels on phenotypic traits of the PA14

strain. Deletion of the pesA gene and overexpression from the pGM-pesA vector in the wild-

type background were ensured by Northern blot (S1 Fig).

Fig 2. PesA gene dissemination and expression levels among environmental, CF and COPD clinical isolates. Assays on

environmental, CF and COPD isolates are shown in three panels, A, B and C, respectively. The strain-collection was plated on BHI-agar

plates. After overnight growth at 37˚C, culture samples were taken and processed for total RNA extraction and analysis by Northern blot, and

for genomic DNA extraction. Positive or negative PCR-amplification outcomes are indicated as “+” or “-” in the “pesA gene amplification”

row, below each Northern Blot. PAO1 and PA14 were used as controls of Northern Blot analysis and for negative or positive gene

amplification, respectively.

https://doi.org/10.1371/journal.pone.0180386.g002
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We performed different types of phenotype evaluations. The most evident effects of PesA

deletion were on UV and ciprofloxacin susceptibility. In particular, PesA deletion resulted in

an enhanced sensitivity to the antibiotic ciprofloxacin and to UV irradiation. In fact, the sus-

ceptibility of wild-type PA14 and ΔpesA mutant cells to antimicrobials was analyzed by

Fig 3. PesA expression is induced by temperature and low availability of oxygen. Levels of PesA RNA

in: A) Wild-type PA14 grown in BHI at 20˚C (lanes 1 and 4), 37˚C (lanes 3 and 6) or following 20 min of

acclimation (AC) from 20 to 37˚C (lanes 2 and 5). Culture samples were taken at middle (OD600 of 0.8) and

late (OD600 of 1.8) exponential growth phase. B) Wild-type PA14 grown in BHI anaerobically (NO3
−; lanes 1

and 2), aerobically (O2, lane 6) and aerobically until an OD600 of 0.8 and then shifted to anaerobic conditions

(O2! NO3
−; lanes 3, 4 and 5). Samples were taken 20 and 150 min after the shift to anaerobic conditions (t20

and t150). After sampling, cell cultures were processed for total RNA extraction and analysis by Northern blot.

Intensities of the bands of PesA were quantified and normalized to those of 5S RNA in the same lane. Values

are expressed as arbitrary units (AU) in the histograms below each Northern blot and represent the

mean ± Standard Deviation (SD) of three independent experiments.

https://doi.org/10.1371/journal.pone.0180386.g003
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antibiotic disk diffusion on agar plates. The diameters of the inhibitory zones were measured

after overnight incubation at 37˚C. As shown in Fig 4, the diameter of the clear zone around

ciprofloxacin was higher for mutant ΔpesA (46.33 ±0.58 mm) in comparison to that of wild-

type strain (40.33 ± 0.58 mm) thus suggesting a contribution of PesA in the ciprofloxacin resis-

tance mechanism. In addition, we noticed an incremented sensitivity of the ΔpesA mutant

strain to UV light, showing a decrease in CFUs with respect to the wild-type starting from

treatment with 30 J/m2 (Fig 5). This suggested the involvement of PesA in improving survival

under conditions of genotoxic stress, such as UV irradiation treatment. Intriguingly, the dele-

tion of pyoS3A-I operon, that is positively regulated by PesA (see below), gave rise to same lev-

els of UV sensitivity as pesA deletion (Fig 5).

We did not observe significant differences for other phenotypes analyzed, including

growth-curves analysis on rich and minimal media, susceptibility to other antimicrobial agents

of different structural families, hemolytic activity, flagellum-mediated motility, pyocyanin and

pyoverdine secretion.

PesA is involved in P. aeruginosa pathogenicity in human CF respiratory

cells

We evaluated the virulence of P. aeruginosa PA14 strains on the CF bronchial epithelial cell

line IB3-1. In particular, we assessed the killing capacity of PA14 ΔpesA mutant compared to

the wild-type strain by the MTT assay, which provides a method of determining viable cell

number measuring the conversion of 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bro-

mide (MTT) to insoluble formazan by dehydrogenase enzymes of the intact mitochondria of

living cells. Our results (Fig 6) showed that cells infected with P. aeruginosa PA14 ΔpesA
mutant were more viable with respect to those infected by the wild-type strain, thus indicating

that pesA may contribute to P. aeruginosa PA14 acute virulence.

PesA targets pyoS3A-I operon

As mentioned previously, PesA is encoded in cis to the 3’ of the gene PA14_59370 with

unknown function, which makes the study of such putative target difficult to perform. There-

fore, we managed to identify direct targets of PesA RNA by the use of the bioinformatics tool

TargetRNA [43]. This tool predicted, as a high-scored output, an interaction in the region

from -30 to -8 nt upstream the gene pyoS3I of the pyoS3 operon (Fig 7A and S4 Table), pre-

dicted to encode pyocin S3 in the PA14 strain. The pyocin S3 genetic locus comprises two

structural genes, pyoS3A (PA14_49520) and pyoS3I (PA14_49510), annotated to encode the

killing S3A and the immunity S3I proteins, respectively. To confirm this annotation in PA14,

we deleted the pyoS3 operon and tested the pyocin S3 production by the killing assay of the

sensitive ATCC 27853 P. aeruginosa strain [27]. As shown in Fig 8, deletion of pyoS3A-I
completely abolished the production of pyocin S3 by PA14 strain. Remarkably, PesA deletion

resulted in strong reduction of pyocin S3 production, thus suggesting a positive role of PesA

on the pyocin S3 production.

The predicted region of the pyoS3A-I operon targeted by PesA comprises the Ribosome

Binding Site (RBS) of the pyoS3I gene, and locates within the ORF of the pyoS3A gene. To

assess this predicted PesA-pyoS3 mRNA interaction, PesA RNA and the pyoS3 mRNA region

spanning –116 to +108 from pyoS3I translational start site were produced in vitro, mixed and

analyzed on native polyacrylamide gels. As shown in Fig 7B, the two RNAs specifically formed

a complex.

We generated distinct types of translational fusions to test the effects of PesA on the pyoS3I
gene alone and on the pyoS3A-I mRNA. A first reporter plasmid, named pBBR1-lacZ::
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pyoS3A-I::sfGFP, mimics a bi-cistron under the control of the heterologous constitutive pro-

moter PLtetO-1. It was obtained by cloning a region of 224 nt, comprehensive of the last 117 nt

of the pyos3A gene and the first 108 nt of pyoS3I thus generating a first translational fusion of

the reporter F’lacZ with the last 39 codons of pyoS3A, and a second translational fusion of the

first 36 codons of pyoS3I gene with sfGFP. GFP activity was assayed in PA14 wild-type and

PA14 ΔpesA in the absence and presence of PesA overexpression from pGM-pesA. As shown

in Fig 9A, there was an approximately 25% reduction in GFP activity in the PA14 ΔpesA back-

ground. In the presence of pGM-pesA overexpressing PesA, in wild-type background, GFP

activity increased approximately 30%. These results suggested that PesA positively regulates

pyoS3I expression. To test whether translation of pyos3A gene was necessary to have this PesA

effects on pyos3I, we generated a second mono-cistronic reporter derivative, pBBR1-pyoS3I::

Fig 4. PesA deletion enhances sensitivity to ciprofloxacin. Antibiotic disk diffusion was performed on LB-

agar plates spread with 106 CFU bacterial cells of wild-type PA14 and ΔpesA mutant strains. The diameters of

the inhibitory zones were measured after overnight incubation at 37˚C. Data derive from three independent

experiments. Values represent the mean ± SD. Statistical significance by Student’s t-Test is indicated: **p<
0.01.

https://doi.org/10.1371/journal.pone.0180386.g004
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sfGFP, carrying the same pyoS3A-I region as pBBR1-lacZ::pyoS3A-I::sfGFP in which only the

pyoS3I gene was translationally fused with sfGFP. GFP analyses confirmed that PesA influence

in a positive manner the regulation of pyoS3I in the mono-cistronic construct, with a ~20%

increment in GFP activity in the presence of PesA overexpression in the wild-type back-

ground, and a ~40% decrease in the PA14 ΔpesA background (Fig 9B). This suggested that the

translation of the two genes is not merely and solely coupled and that the effect of PesA on

pyoS3I do not require the translation of pyoS3A.

To assess the influence of PesA also on the pyoS3A gene, we substituted the sequence coding

for the F’LacZ domain in pBBR1-lacZ::pyoS3A-I::sfGFP with the one of the reporter gene

mCherry, and monitored simultaneously the activity of both mCherry and sfGFP of the trans-

lational fusion mCherry::pyoS3A-S3I::sfGFP. As shown in Fig 9C, the ~50% increase in sfGFP

activity followed by PesA overexpression, and the ~25% decrease in the PA14 ΔpesA back-

ground reconfirmed the positive regulation exerted by PesA on the pyoS3I gene. mCherry also

showed an increase in activity when PesA was overexpressed, suggesting that PesA also exerts

a positive regulation on the upstream gene pyoS3A. Thus, PesA seems to be a positive regulator

of the whole pyoS3 operon.

Quantitative RT-PCR on total mRNA of wild-type and ΔpesA strains was also performed to

check whether PesA influenced pyoS3 mRNA levels. Samples were taken at mid-, late-expo-

nential and stationary phase (OD600 of 0.8, 1.6 and 2.7, respectively) and both genes, pyoS3A
and pyoS3I, were analyzed for their expression levels. No significant differences were observed

either for pyoS3A or pyoS3I in wild-type and ΔpesA backgrounds at any time-point. Notably,

the expression levels of the two genes were comparable at every time-point and seemed not to

be influenced by the growth phase, being constant along the growth curve (S5 Table). We con-

clude that PesA exerts positive regulation on pyoS3A-I mRNA by modulating mRNA translat-

ability and without influencing its stability.

Fig 5. PesA deletion enhances UV sensitivity similarly to pyoS3 operon deletion. 3 μl of cultures of

PA14 wt, ΔpesA and ΔpyoS3, serially diluted 10-fold, were spotted onto LB-agar plates, and treated with UV

light at the indicated doses. Surviving CFUs were observed after overnight incubation at 37˚C.

https://doi.org/10.1371/journal.pone.0180386.g005
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By the use of the IntaRNA web tool [44, 45], we also detected a putative interacting region

between PesA and the leader sequence of the pyoS3 operon, from -76 to -42 from the TTG

start codon of the pyoS3A gene. To evaluate whether PesA was also able to influence the

S3-operon translation by acting on its leader sequence, we generated the translational fusion

leader-pyoS3A::sfGFP, by cloning the whole leader region of the pyoS3 operon and the

sequence encoding the first 37 aminoacids of pyos3A gene, in frame with the sfGFP reporter.

The comparison of the fluorescence activity of the leader-pyoS3A::sfGFP translational fusion

between the wild-type and ΔpesA genetic background did not show any significant difference,

not even in presence of PesA overexpression from pGM-pesA in wild-type (S2 Fig). Spurious

outside interactions of PesA with sfGFP and mCherry open reading frame were ruled out

using alternative reporter plasmids carrying the sfGFP and mCherry genes alone (S2 Fig).

Discussion

We studied the novel P. aeruginosa sRNA PesA, which was originally identified as being tran-

scribed from the horizontally acquired pathogenicity island PAPI-1 in the strain PA14. Our

analysis revealed that PesA is widespread in clinical isolates from patients affected by chronic

respiratory diseases, such as CF, being expressed in 55% of the cases tested. Moreover, PesA

expression is responsive to low oxygen conditions, a hallmark of CF and COPD, and impacts

P. aeruginosa pathogenicity in CF bronchial cells. These results suggest that PesA could be rele-

vant during P. aeruginosa infection in chronic respiratory diseases.

Fig 6. Time course of cell viability of IB3-1 cells following bacterial infection with P. aeruginosa PA14

wild-type andΔpesA. Cell viability, assessed as a reduction of MTT salt, was quantified by the optical

density (OD) at 490 nm. IB3-1 cells were seeded at a density of 5 × 104 cells/well into 96-well microplates, and

infected with 5 × 106 bacterial cells (MOI 1:100). At every time point, data are shown as the difference in

OD490 between the PA14 wild-type strain and the sRNA-deleted mutant ΔpesA. Uninfected cells were used

as positive control of cell viability. Data derive from three independent experiments. Results are shown as the

difference in the OD490 reached at the different time points by IB3-1 cells infected by the mutant strain or non-

infected, subtracted of the OD490 reached by IB3-cells infected with the wild-type strain. Values represent the

mean ± standard error of the mean (SEM). Statistical significance between wild-type and ΔpesA strains by

Student’s t-Test is indicated: *p< 0.05.

https://doi.org/10.1371/journal.pone.0180386.g006
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Fig 7. Interaction of PesA with pyoS3A-I mRNA. A) Prediction by TargetRNA software of the base-pairing

interactions between PesA and pyoS3A-I mRNA. B) In vitro interaction between PesA RNA and pyoS3A-I

mRNA by an electrophoretic mobility shift assay. Increasing amounts of PesA RNA (0, 0.08, 0.15, and 0.25

pmol; lanes 1–4) or, as a negative control, E. coli RseX RNA (0.25 and 2.5 pmol; lanes 5 and 6) were

incubated at 37˚C for 20 min with 0.15 pmol radiolabeled pyoS3A-I mRNA and loaded onto a native 6%

polyacrylamide gel.

https://doi.org/10.1371/journal.pone.0180386.g007

Fig 8. PesA deletion impairs the production of pyocin S3. Plate showing the effects of pyocin S3 present

in the filtered supernatants of PA14 wild-type, ΔpesA and ΔpyoS3A-I on the killing of the indicator strain P.

aeruginosa ATCC 27853. Drops of 5 μl of filtered supernatants from PA14 wild-type, ΔpesA and ΔpyoS3A-I

cultures at OD600 = 1 were deposited on Luria-Bertani agar plates. A layer of the indicator strain P. aeruginosa

ATCC 27853 was plated over the dried drops by inclusion in 0.7% agar. Plates were incubated overnight at

37˚C. Clearer haloes represent inhibition (killing) of the indicator strain by pyocin S3 present in the sedimented

supernatants.

https://doi.org/10.1371/journal.pone.0180386.g008
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We speculated that PesA had the potential to act as a trans-encoded base-pairing sRNA

involved also in the post-transcriptional regulation of genes located outside PAPI-1 and thus

performed genome-wide bioinformatics screenings for target genes. One predicted target was

the pyoS3A-I operon coding for pyocin S3. We then confirmed that both pyoS3A and pyoS3I
genes are positively influenced by PesA. The interaction of PesA with the bicistronic pyoS3A-I
mRNA is suggested to simultaneously stimulate translation initiation and termination of

pyoS3I and pyoS3A, respectively, without influencing stability of the pyoS3A-I mRNA. Interest-

ingly, PesA could impact a putative mechanism of translation coupling between pyoS3I and

Fig 9. PesA positively regulates the expression of both the pyoS3A and pyoS3I translational fusions in

PA14. Comparison of the sfGFP and mCherry activities expressed in arbitrary units (AU) resulting from the

translational fusion of (A) lacZ::pyos3A-I::sfGFP, (B) pyoS3I::sfGFP and (C) Cherry::pyoS3A-I::sfGFP

combined with the control vector (pGM931) or the plasmid overexpressing PesA (pGM-pesA), in PA14 wild-

type and PA14 ΔpesA. The strains were grown to an OD600 of 1.8 in LB medium supplemented with gentamicin

and carbenicillin, to maintain pBBR1- and pGM- plasmids, respectively, and arabinose, to induce PesA

overexpression. Cells were harvested and treated for sfGFP and mCherry activity determination by measuring

fluorescence polarization FP485/535 and fluorescence intensity FI590/635, respectively. sfGFP and mCherry

activities are expressed as ratio FP485/535/Abs595 and FI590/635/Abs595, respectively. Data derive from three

independent experiments. Values represent the mean ± SD. Statistical significance by Student’s t-Test is

indicated: *p<0.05; **p< 0.01.

https://doi.org/10.1371/journal.pone.0180386.g009
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pyoS3A [22] that remains to be elucidated. However, in this paper we demonstrate that stimu-

lation of pyoS3I by PesA does not require translation of the upstream pyoS3A thus suggesting

that the two genes are not strictly translationally coupled. This scenario, as a whole, is compati-

ble with the role of PesA in assuring balanced expression of toxin S3A and antitoxin S3I to pre-

vent deleterious effects on the producing host. Overall, these data obtained with the reporter

genes are consistent with the observation that PesA deletion results in strong reduction of pyo-

cin S3 production (Fig 8).

It is conceivable that PesA can be involved in mechanisms of niche establishment via pyocin

S3. PesA was in fact also detected in environmental isolates and its expression from PAPI-1

might confer a selective advantage that favours PAPI-1 maintenance in the environment due

to its regulation of pyocin S3.

It is likely that PesA has a broad set of target genes whose functions go beyond the niche

establishment. The observation that PesA deletion induces less killing in infected CF bronchial

epithelial cells suggests that PesA could modulate, directly or indirectly, virulence factors of P.

aeruginosa. It was previously shown that pyocin S2 is endowed with cytotoxic activity on

human cell lines [46]. It can be argued that pyocin S3 has similar effects and can act as viru-

lence factor whose regulation is under the control of PesA.

Furthermore, PesA could regulate the expression of genes involved in DNA damage

repair as suggested by the increased sensitivity of ΔpesA mutant to fluoroquinolone antibiotic

ciprofloxacin and to UV irradiation. Intriguingly, the degree of UV sensitivity displayed by

the ΔpesA mutant is comparable to that of a strain deleted for pyoS3A-I. These results imply a

potential involvement of the DNase activity of pyocin S3 in DNA damage repair, and intro-

duce an intriguing network among sRNAs, pyocins and DNA damage repair that will require

additional experiments to be elucidated. To our knowledge this is the first work characteriz-

ing a sRNA encoded in a pathogenicity island in P. aeruginosa. In addition, our results indi-

cate that PesA is able to modulate key genes located outside the PAPI-1. In summary, the

horizontal acquisition of PAPI-1 could provide the new host with a regulatory function that

can switch the expression of genes involved in niche establishment, virulence and stress

resistance.

Supporting information

S1 Fig. Validation of PesA deletion and overexpression. A) PA14 wild-type and PA14 ΔpesA
were grown in BHI medium until an OD600 of 2.7. Culture samples were taken and processed

for total RNA extraction and analysis by Northern blot. B) PA14 strains harbouring pGM-

pesA or the control empty vector pGM931 were grown in BHI medium with carbenicillin until

an OD600 of 0.8. Cells were split into two flasks, and 10 mM arabinose (ara) was added to one.

Culture samples were taken at the indicated OD600 and processed for total RNA extraction

and analysis by Northern blot probing PesA RNA. Intensities of the bands of PesA were quan-

tified and normalized to those of 5S RNA in the same lane. Values are expressed as arbitrary

units (AU) in the histograms below the Northern blot.

(TIF)

S2 Fig. Fluorescence activity to check PesA regulation on the leader of pyoS3A gene, and

spurious outside interactions of PesA with sfGFP and mCherry open reading frames. A)

Comparison of the sfGFP activity resulting from the translational fusion leader-pyoS3A::sfGFP
in PA14 wild-type and PA14 ΔpesA (-), and combined with the control vector (pGM931) or

the plasmid overexpressing PesA (pGM-pesA) in PA14 wild-type. B) Comparison of the fluo-

rescence activity of the reporter gene sfGFP combined with the control vector (pGM931) or

the plasmid overexpressing PesA (pGM-pesA), in PA14 wild-type and PA14 ΔpesA. C)
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Comparison of fluorescence activity of the reporter gene mCherry combined with the control

vector (pGM931) or the plasmid overexpressing PesA (pGM-pesA), PA14 wild-type and PA14

ΔpesA.

(TIF)
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