
RESEARCH ARTICLE

Bayesian Lasso and multinomial logistic

regression on GPU

RokČešnovar☯, Erik Štrumbelj☯*

Faculty of computer and information science, University of Ljubljana, Večna pot 113, 1000, Ljubljana,

Slovenia

☯ These authors contributed equally to this work.

* erik.strumbelj@fri.uni-lj.si

Abstract

We describe an efficient Bayesian parallel GPU implementation of two classic statistical

models—the Lasso and multinomial logistic regression. We focus on parallelizing the key

components: matrix multiplication, matrix inversion, and sampling from the full conditionals.

Our GPU implementations of Bayesian Lasso and multinomial logistic regression achieve

100-fold speedups on mid-level and high-end GPUs. Substantial speedups of 25 fold can

also be achieved on older and lower end GPUs. Samplers are implemented in OpenCL and

can be used on any type of GPU and other types of computational units, thereby being con-

venient and advantageous in practice compared to related work.

Introduction

Bayesian methods play an increasingly important role in modern statistics and machine learn-

ing due to their robustness and conceptual simplicity. One of the main drawbacks of Bayesian

methods is that it is often analytically and computationally difficult to infer from the posterior

distribution. We typically resort to structural approximations or computationally intensive

sampling-based approximations, in particular, Markov Chain Monte Carlo (MCMC). In this

paper, we describe an efficient Bayesian parallel implementation of two classic statistical mod-

els—the Lasso (L1-regularized regression) and multinomial logistic regression. Our implemen-

tation is based on two existing data-augmentation approaches that lead to efficient Gibbs

sampling schemes for posterior inference from the two models. We focus on parallelizing the

key components: matrix multiplication, matrix inversion, and sampling from the full condi-

tionals. All the methods described in this paper are implemented in the R package bayesCL

(https://cran.r-project.org/web/packages/bayesCL/index.html).

Graphics Processing Units (GPUs) have been extensively used for computationally intensive

applications since the introduction of CUDA and OpenCL. In essence, a GPU is a massively

parallel co-processing unit, with thousands of smaller cores that are optimized to run in parallel.

To efficiently run an application on a GPU, we need to split the application into a large number

of threads, usually grouped in blocks. The exact number of threads is a trade-off between utiliz-

ing all of the many computing cores in a GPU and the cost of creating additional threads. For

efficient execution, the threads should require minimal communication, have their memory

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Češnovar R, Štrumbelj E (2017) Bayesian

Lasso and multinomial logistic regression on GPU.

PLoS ONE 12(6): e0180343. https://doi.org/

10.1371/journal.pone.0180343

Editor: Junwen Wang, Mayo Clinic Arizona,

UNITED STATES

Received: April 15, 2017

Accepted: June 14, 2017

Published: June 28, 2017

Copyright: © 2017 Češnovar, Štrumbelj. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The work was supported by the

Slovenian Research Agency (ARRS, https://www.

arrs.gov.si/en/) applied project grant L1-7542. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://cran.r-project.org/web/packages/bayesCL/index.html
https://doi.org/10.1371/journal.pone.0180343
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180343&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180343&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180343&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180343&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180343&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180343&domain=pdf&date_stamp=2017-06-28
https://doi.org/10.1371/journal.pone.0180343
https://doi.org/10.1371/journal.pone.0180343
http://creativecommons.org/licenses/by/4.0/
https://www.arrs.gov.si/en/
https://www.arrs.gov.si/en/


accesses coalesced and avoid divergent paths of execution. To fully utilize the memory hierarchy

of the GPU, threads within blocks should use shared memory whenever possible.

Bayesian statistics on the GPU have already received some attention, both model specific

and in general. A GPU implementation for Bayesian mixture models with MCMC is outlined

in [1]. The R package cudaBayesReg implements the Bayesian multilevel model for the analysis

of brain fMRI data [2]. The parallel implementation produces a speed-up of 60 compared to

the CPU-only version. A GPU implementation of the Bayesian inference of the Realized Sto-

chastic Volatility Model is proposed in [3]. The GPU implementation produces a speed-up of

17 compared to the CPU version of the algorithm. BioEM [4] is a hybrid CPU-GPU imple-

mentation of the Bayesian inference of electron microscopy images. A case-study on popula-

tion-based Markov chain Monte Carlo methods and Sequential Monte Carlo methods shows

GPU implementations achieve speedups from 35- to 500-fold over single-threaded CPU exe-

cution [5]. A GPU-accelerated algorithm for Latent Dirichlet Allocation, based on collapsed

Gibbs sampling, is proposed in [6]. Terenin et al. [7] proposed a Gibbs-sampling-based GPU

implementation of Horseshoe regularized probit regression. They demonstrate speedups on

the order of 100s compared to the sequential R version of the algorithm. The work most

related to our own is by Beam et al. [8], who proposes a GPU implementation of the Bayesian

multinomial logistic regression model with Hamiltonian Monte Carlo. They demonstrate

speedups on the order of 10 compared to the R package glmnet [9] and speedups of approxi-

mately 100-fold for individual key components of HMC (the leapfrog update and gradient cal-

culation). However, we use more efficient Gibbs sampling, and there is no need for leapfrog

updates or gradient calculations.

Note that all these related works base their GPU implementations on CUDA, which only

supports NVIDIA GPUs. Instead, we use OpenCL, which supports the GPUs of multiple ven-

dors (NVIDIA, AMD/ATI, and Intel) and thus makes our implementations more portable.

OpenCL also has better support for Just-in-time compilation, which enables a more thorough

approach to run-time optimization for different GPU architectures. OpenCL also supports the

execution of the same implementations on massively parallel processors, such as the Xeon Phi,

as well as multi-core CPUs for cases when no GPUs are present.

In the remainder of this section, we introduce the Gibbs sampling schemes for the Bayesian

Lasso and Bayesian multinomial logistic regression. We proceed by describing our paralleliza-

tion methodology and empirically evaluating it on two real-world datasets.

Bayesian Lasso

Let y be the n x 1 vector of responses, and let X be the n x p matrix of standardized predictors.

The classic linear regression model is

yi � NðbTxi; s
2Þ;

where xi is the column vector representing the i-th row of X, σ2 is the unknown variance, and

β = (β1, β2, . . ., βp)
T is the set of coefficients to be estimated.

The Lasso is an approach to estimating the coefficients β by penalizing the least squares esti-

mate with the regularization term l
Pp

i¼1
jbij for some value of the regularization penalty

parameter λ [10]. Due to the L1-norm penalty, this approach is often referred to as L1-regulari-

zation. Due to the built-in coefficient shrinkage (feature selection), it is particularly useful in

cases where the number of predictors is of the same or higher order of magnitude than the

number of observations.

From a Bayesian perspective, the Lasso can be interpreted as a least-squares linear regression

with independent Laplace priors on the coefficients. We base our Bayesian implementation of

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 2 / 17

https://doi.org/10.1371/journal.pone.0180343


the Lasso on the scale-mixture of normals Gibbs sampling scheme by [11]. We place an inverse

Gamma prior on the variance σ2 * Gamma(a, b) and a Gamma hyperprior on the regulariza-

tion parameter λ2 * Gamma(r, δ) (see [11] for details). This results in the following full condi-

tionals and algorithm:
precomputeXT X and ~y ¼ y � y�
foreachGibbs samplingiterationdo

Dt ¼ diagðt2
1
; . . . ; t2

pÞ

S ¼ XTX þ D� 1
t

bm ¼ S� 1XT ~y
β|σ2, τ2 * N(βμ, σ

2Σ−1)

t2
i jb, σ

2, l
2
� Inv� Nð

ffiffiffiffiffiffi
l2s2

b2
i

q
; l

2
Þ

q ¼ 1

2
ð~y � b

TXÞTð~y � b
TXÞ þ 1

2
b
TD� 1

t
b

σ2|β, t2 � Inv‐Gammaðn� 1þp
2
; qÞ

λ2|τ2, d � Gammaðpþ r;
P t2

j
2
þ dÞ

end
This variant of the Gibbs sampler for the Bayesian Lasso already has a CPU implementation

in the R package monomvn [12]. We use it as a baseline for comparison in the empirical evalu-

ation. Note that the package also supports other types of regularization (ridge and Horseshoe)

and Reversible Jump MCMC for model selection.

Bayesian multinomial logistic regression

Let Y be the n x k matrix of responses, where n is the number of observations and k is the num-

ber of response categories. Let yij = Yij be the count of responses in category j for observation i,
and ni ¼

Pp
j¼1

yij. Again, let X be the n x p matrix of predictors. The classic multinomial logis-

tic regression model is

ðyi1; . . . ; yikÞ � Multinomialðni; sððb
T
1
xi; b

T
2
xi; . . . ; b

T
k xiÞ

T
ÞÞ

where xi is the i-th row of X, βj is the j-th column of the p x k coefficient matrix β, and

sðzÞi ¼
eziPk

j¼1
ezj

is the vector softmax function. For identifiability, βk = 0p.

Typically, Laplace approximation [13, p. 213] or the Metropolis algorithm [13, p. 541] is

used to infer from logistic models. Recently, Polson et al. [14] proposed a data-augmentation

scheme that leads to a simple Gibbs sampler for Bayesian logistic regression. This data-aug-

mentation scheme is more efficient than Metropolis samplers and other data approaches (see

[14] for details) and easily extends to other categorical and count models such negative bino-

mial regression and our case of multinomial logistic regression. We place independent normal

priors of the coefficients βj * Np(β0j, S0j). This results in the following Gibbs sampling algo-

rithm for inferring from the posterior:
precomputekij ¼ yij � 1

2
ni

foreachGibbs samplingiterationdo
foreachcategoryj = 1..(k − 1) do
Dω = diag(ω1j, . . ., ωnj)
S ¼ ðXTDoX þ S� 1

0j m0Þ
� 1

bm ¼ SðXTkþ S� 1

0j m0jÞ

βj|w* Np(βμ, Σ)
ωij|βj * Polya-Gamma(ni, βj xi), i = 1..n

end
end

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0180343


This variant of the Gibbs sampler for the Bayesian multinomial logistic regression also has a

CPU implementation in the R package bayesLogit [15]. We use it as a baseline for comparison

in the empirical evaluation.

Polya-Gamma distribution. The Polya-Gamma (PG) distribution Polya-Gamma(h, z) is

a two-parameter continuous distribution (h> 0, z 2 R) (for a definition of its density, see

[14]).

The PG distribution is not easy to sample from and can produce a performance bottle-

neck, in particular when ni are large. In this paper, we are interested in sampling from

Polya-Gamma(h, z) when h is an integer. An important property of the PG distribution is

that if both X * PG(hx, z) and Y * Polya-Gamma(hy, z), then X + Y is distributed as Polya-

Gamma(hx + hy, z). Therefore, for an integer h, a random variate from PG(h, z) can be gen-

erated using h random variates from Polya-Gamma(1, z). This allows us to focus on sam-

pling from PG(1, z).

Our parallel algorithm is based on the algorithm from [14], which is based on sampling

from the (exponentially tilted) Jacobi distribution J�(1,z) [16] and the relationship whereby if

X * J�(1,z/2), then Y = X/4 * PG(1, z). Therefore, our sampling problem reduces to sampling

from J�(1,z). The density f(x) of a J�(1,z) distributed random variable contains an infinite sum

and can only be approximated (the same obviously holds for the density of PG(1,z)), which

makes sampling difficult. However, it has an alternating series representation

f ðxÞ ¼
X1

i¼0

ð� 1Þ
icoshðzÞ exp �

z2x
2

� �

aiðxÞ;

aiðxÞ ¼
pðiþ 1=2Þ

2

px

� �3=2

exp �
2ðiþ 1=2Þ

2

x

� �

0 < x < t

pðiþ 1=2Þ exp �
2ðiþ 1=2Þ

2
p2

2
x

� �

x > t;

8
>>><

>>>:

where the optimal choice of t, where this two-part bounding curve fits f(x) most tightly, is near

0.64 (see [16] for details).

The partial sums of the series SiðxÞ ¼
Pi

j¼0
ð� 1Þ

jajðxÞ satisfy

S0ðxÞ > S2ðxÞ > � � � > f ðxÞ > � � � S3ðxÞ > S1ðxÞ;

which facilitates a modified rejection algorithm for sampling from f(x). The problem that f(x)

cannot be evaluated is circumvented by iteratively calculating the partial sums and stopping

early using the above property of Si(x). Given an upper hull (envelope) function g(x)> f(x), we

can sample from f(x) by sampling from g(x) and accepting each sample x0 with probability

f(x0)/g(x0), which can be done by sampling U * U(0, g(x0)) and checking U< f(x0). Due to

the property of the partial sums, we know that all odd terms are less than f(x); therefore, if

U< Si(x0) for odd i, then we can deduce that U< f(x) and accept the sample. Similarly, if

U> Si(x0) for even i, then we can deduce U> f(x) and reject the sample.

The first partial sum S0(x) is a natural (and efficient [14]) choice for the upper hull function

g(x), and it can be sampled from a mixture of a truncated inverse-Gaussian distribution and a

truncated exponential distribution

X �
IGðjzj� 1

; 1ÞIð0;t� with prob: p see ½14�

Expð� z2=2þ p2=8ÞIðt;1� with prob:1 � p:

(

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 4 / 17

https://doi.org/10.1371/journal.pone.0180343


Left-truncated exponential variates can be generated trivially by translating and scaling a

Exp(1) variate. Inverse-Gaussian variates are sampled using the method of [17], which is based

on Exp(1) and standard normal N(0, 1) variates. For further details on the above algorithm for

sampling from J�(1,z) and therefore PG(1, z), see [14]. Note that other, faster approximate

approaches for sampling from PG have been developed [18] but are unstable for larger h.

Parallelization

The parallel implementations that are described below are a part of the bayesCL package for R.

Input checking is mostly implemented in R, while the computations are implemented in C

and OpenCL. OpenCL was used to support GPUs of all vendors.

Matrix multiplication and matrix-vector multiplication

The common case of matrix multiplication is the case with square matrices or non-square

matrices with dimensions of the same order. These cases of matrix multiplication were imple-

mented as advised in GPU parallel programming guides and papers on the optimization of

matrix multiplication [19–21]. When not stated otherwise, each created thread computes a sin-

gle value of the resulting matrix. All the matrix multiplications are performed by tiling the

input matrices to use shared memory. No architecture-specific optimization is used to support

a wider range of GPUs. When the input matrices are large (tens of millions of values in the

resulting matrix) in these common cases of matrix multiplication, it is sometimes useful to

have single threads compute multiple values of the resulting matrix. The exact number of val-

ues that a single thread calculates depends on the size of the input matrix and the GPU used.

This is used in the matrix multiplication of the inverse matrix.

In Bayesian computation, matrix multiplications of dimensions N × M times M × N arise,

where M is orders of magnitude larger than N. The resulting matrix is therefore of the size

N × N. If we were to use the parallelization discussed in the previous paragraph, we would cre-

ate N × N threads, and each thread would calculate the product of M elements and sum these

products. This means that each thread has a substantial workload (M can be larger than

500,000), while the overall number of threads is small (1000–3500). In such cases, we instead

split the calculation into two parts/kernels. In the first part, we create T × N × N threads in

such a way that each thread computes 1/T-th of the products and creates a partial sum. In the

second step, we create N × N threads, where each thread calculates the sum of all T partial

sums for one element of the resulting matrix.

Bayesian Lasso

The bottlenecks in each pass of the main loop in the Bayesian Lasso algorithm are the calcula-

tions of the inverse of the covariance matrix, sampling the coefficients β from the full condi-

tional, and matrix operations needed to compute βμ. These parts are the main focus of this

implementation and are explained in detail in the following subsections. All other parts of the

main loop are also executed on the GPU to avoid unnecessary data transfers between the CPU

and GPU. Their execution times on the CPU are negligible, and their parallel implementations

are trivial and thus omitted.

The matrix inverse is calculated by multiplying the inverse of the lower triangular Cholesky

decomposition of the input matrix and its transpose. The Cholesky decomposition is also the

main step in sampling β. The focus of our parallelization of the Bayesian Lasso algorithm was

therefore based on three steps: the Cholesky decomposition, the inversion of a lower triangular

matrix, and matrix multiplication.

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0180343


Data transfers

In the initialization phase of the algorithm, the covariance matrix is calculated on the GPU.

The input matrix to this calculation is the X matrix with M × N values. This is the only non-

negligible data transfer in the initialization phase. In the main loop, M random seeds used for

generating random values are transferred to the GPU, and M resulting β values are transferred

from the GPU to global memory on each pass. Because M usually numbers from a few tens to

a few thousand, these data transfers do not represent a large enough overhead to suppress the

speedup of the GPU execution and are also negligible in terms of the overall execution time.

Cholesky decomposition

For the Cholesky decomposition of a squared matrix A, we implemented a variation of the

blocked version of the algorithm, proposed in [22]. The input matrix is first split into parts as

shown in Fig 1. The size of the block A11 depends on both the properties of the GPU and the

input matrix size. In the first step, we calculate L11, which is the Cholesky decomposition of

A11 and the inverse that is used in the next steps. In this first step, we create a single block of

threads with the number of threads equal to the dimension of L11. The decomposition and the

inverse A11 are calculated in local memory. Sequential parts of the algorithm are calculated by

a single thread in the thread block. The update steps are executed in parallel with a local syn-

chronization barrier after each parallel execution. The second and third steps of the Cholesky

Decomposition are to calculate L21 and L22 as follows:

L21 ¼ A21ðL
T
11
Þ
� 1

L22 ¼ A22 � L21ðL21Þ
T
:

Fig 1. A step of the blocked Cholesky decomposition.

https://doi.org/10.1371/journal.pone.0180343.g001

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 6 / 17

https://doi.org/10.1371/journal.pone.0180343.g001
https://doi.org/10.1371/journal.pone.0180343


Matrix multiplication is again implemented in such a way that each thread computes a single

value of the resulting matrix and that the threads use shared memory. After these three steps

are completed, we obtain a partial result of the final Cholesky decomposition, as L11 and L21

can be copied to the resulting matrix. The L22 block is again split as shown in Fig 1, and the

steps are repeated. When the size of L22 is smaller than or equal to the block size of A11, only

the first step is executed, and the calculation is completed.

Matrix inversion

The first step of the matrix inversion is the Cholesky decomposition of the input matrix. This

is followed by the computation of the inverse of the resulting lower triangular matrix and the

multiplication of the inverse with its transpose. The Cholesky decomposition and matrix mul-

tiplications are implemented as discussed in the previous subsections. The basic CPU imple-

mentation of the inversion of the lower triangular matrices is not suitable for achieving

efficient implementation on a GPU. To better utilize the performance of the GPU, the solution

proposed in [23] is used. Their basic idea is to split the matrix into blocks, as shown in Fig 2.

First, we calculate the inverses of the smaller matrices A1 and A2. This is done in parallel,

with each smaller matrix assigned to one thread. The remaining part of the inverse is com-

puted using C3 = −C2A3C1. These are again matrix multiplication operations that are imple-

mented as previously discussed.

To better utilize the GPU, the matrix should be split into more than two blocks. The imple-

mentation supports numbers of blocks that are a power of 2, where the exact number used

depends on the properties of the GPU and the input size problem. An example of the execution

when the number of blocks is 8 is given in Fig 3.

Fig 2. The split of the lower triangular matrix inverse.

https://doi.org/10.1371/journal.pone.0180343.g002

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 7 / 17

https://doi.org/10.1371/journal.pone.0180343.g002
https://doi.org/10.1371/journal.pone.0180343


Multinomial logistic regression

The algorithm for the multinomial logistic regression is parallelized in full. The main bottle-

necks are the sampling from the PG distribution, the Cholesky decomposition, matrix inver-

sions and matrix multiplications. Other parts of the algorithm (summation, copying matrices,

etc.) are also executed on the GPU. The speed-up of the parallel execution of these smaller

parts on the GPU is not significant, but it eliminates the need to transfer the intermediate

results to the CPU and back to the GPU. The parallelization of the aforementioned bottlenecks

is described in the following subsections.

Sampling from the Polya-Gamma distribution. The basic case of sampling from the dis-

tribution is drawing r samples from PG(h, z). We focus on a more generalized problem of

Fig 3. A step of the blocked Cholesky decomposition.

https://doi.org/10.1371/journal.pone.0180343.g003

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 8 / 17

https://doi.org/10.1371/journal.pone.0180343.g003
https://doi.org/10.1371/journal.pone.0180343


performing l simultaneous samplings, each with different ri, hi, and zi. The total number of

samples to be drawn is R ¼ Sl
i¼1

ri.
The naive approach would be to split the problem such that each sampling i from PG(hi, zi)

is a task. In this way, each task is independent, therefore requiring no communication. How-

ever, we may face the problem of uneven workloads because threads that would perform

draws with large hi would have a substantially higher workload than would threads with small

hi. Furthermore, with small R, the low number of threads would not fully utilize the GPU

performance.

To address these drawbacks, we define a task to be a single draw from PG(1, zi). This makes

tasks more homogeneous and the workload of the threads more even, as the computational

complexity of PG(1, zi) is practically independent of zi. The number of tasks in this paralleliza-

tion is Rtask ¼ Sl
i¼1

rihi. Note that Rtask > R if there are hi> 1; therefore, we are able to better uti-

lize the GPU when R is small. The final step is to calculate the sum of hi samples from PG(1, zi)
to calculate the PG(hi, zi) draws, as explained in the PG section in the Introduction. When

drawing from PG(h, z) is used as a standalone process, the final step is performed on the CPU.

When it is used as a step in the multinomial logistic regression model, the sums are calculated

on the GPU, therein using ri threads, where each thread calculates a single sum of hi draws

from PG(1, zi).
The homogeneity of the tasks also gives us the ability to easily group them into larger

homogeneous workloads. Each thread performs batches of B draws from PG(1, zi) instead of

single draws. This is useful when searching for the optimal point in the aforementioned

trade-off, for example, when Rtask is much greater than the number of execution units C on

the GPU. If each thread executes a single draw, the benefits of parallelization would become

small, as (Rtask − C) threads would be assigned to the queue. The cost of creating tasks would

therefore outweigh these benefits. In cases where C> Rtask, we could define B = 1, utilizing

all the execution units. With the ability to easily fine-tune B, we can obtain the best perfor-

mance from the GPUs of different vendors and under different architectures. Note that paral-

lelization within the execution of single draws from PG(1, zi) is not feasible, as these parallel

tasks would require substantial communication, thereby outweighing the benefits of parallel

execution.

The algorithm for sampling from PG(1, z) requires random variates from the distributions

U(0, 1), N(0, 1), and Exp(1). We implemented the XORShift128 [24] uniform random num-

ber generator, as this generator is one of the fastest on the GPU and possesses satisfactory sta-

tistical properties [25, 26]. Unit uniform variates U(0, 1) are generated trivially by dividing

the generated number by the maximum possible uniform random number. Standard normal

variates N(0, 1) are generated using U(0, 1) variates and the Box-Mueller transform [27].

Exponential variates Exp(1) are generated using the U(0, 1) variates and the inverse transform

method.

Data transfers. As noted previously, the whole multinomial logistic regression algorithm

is executed on the GPU; therefore, the majority of data transfers are executed only once in the

initial phase of the algorithm. Compared to the latter execution of the burn and sampling

phase, these data transfers are negligible. During the burn and sampling phase, only the β sam-

ples are transferred back to the CPU. These transfers are more efficient if all the samples for all

sampling steps are transferred after the sampling phase, but this would require us to store all

the samples on the GPU; this would not be feasible on low-end GPUs with low amounts of

global memory on the GPU. The only data that are transferred to the GPU are new random

seeds for the PG sampling phase. Both of these transfers are negligible in terms of their execu-

tion time compared to the execution times of other steps.

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0180343


Parameters of the parallel implementation

Previous sections noted parameters of the implementation that can be manually tuned for the

target GPU. The list of the parameters that were manually tuned for each GPU are given in

Tables 1 and 2. We focus on the parameters of the bottlenecks of both implementations. Note

that all parameters are positive and integers.

Empirical evaluation

Data

The data used in the empirical evaluations are motivated by real-world problems. The data are

available for download S1 Data.

For the Lasso, we use data from environmental modeling, more precisely, pollutant concen-

tration prediction. The data set consists of 425 observations (days) of 71 predictors (meteoro-

logical measurements, meteorological model forecasts, and pollutant concentration data). The

goal is to predict the response variable—the next day’s tropospheric ozone concentration. In

daily pollutant concentration prediction, it is common to have 100s of observations and 100s

or even 1000s of predictors, in particular, if pairwise interactions are considered. This makes

regularized regression very suitable for this task.

For the multinomial regression, we use data from a common problem in geography—land-

scape classification. This problem is relevant for both geographical and economic reasons. In

landscape classification, it is very common to have 100,000s of observations and a few orders

of magnitude fewer predictors. The data set consists of 506,450 observations (geographical

units) of 56 predictors (rainfall and temperature regimen, elevation, rock type, etc.). The goal

is to model the relationship between the predictors and the 9 predetermined land types to

automatically classify new geographical units.

Evaluation procedure and hardware

Our goal was to investigate both the maximum speedup and how the speedup depends on the

number of predictors for the Lasso and the number of observations for the multinomial

Table 1. Implementation parameters for the multinomial logistic regression.

Name Description

PGbatch The number of Polya-Gamma samplings for each thread

PGlocal Threads per block for the Polya-Gamma sampling

MMlocal Threads per block for the matrix mult. in the logistic regression

MMT T for the matrix multiplication in the logistic regression

MVT T for the matrix-vector multiplication in the logistic regression

https://doi.org/10.1371/journal.pone.0180343.t001

Table 2. Implementation parameters for the Bayesian Lasso.

Name Description

CholBlock The size of the block A11 in the Cholesky decomposition

MInvBlocks The number of blocks for the first step of the matrix inversion

MMLocal Threads per block for the matrix mult. in the inversion

MMWPT The number of resulting matrix values assigned to a thread

The number of blocks for the fist step of the matrix inversion is determined with M2−a, where M is the matrix

dimension and a = MInvBlocks.

https://doi.org/10.1371/journal.pone.0180343.t002

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 10 / 17

https://doi.org/10.1371/journal.pone.0180343.t001
https://doi.org/10.1371/journal.pone.0180343.t002
https://doi.org/10.1371/journal.pone.0180343


Table 3. The list of hardware configurations.

Name GPU CPU

GTX1070 NVIDIA GTX 1070 Intel i5-6600K @ 3.50 GHz

GTX760 NVIDIA GTX 760 Intel i7-4790 @ 3.6 GHz

HD5750 ATI Radeon HD 5750 Intel i7-4790 @ 3.6 GHz

TeslaK20m Tesla K20m Intel Xeon E5-2620 @ 2 GHz

https://doi.org/10.1371/journal.pone.0180343.t003

Table 4. Values of the tunable parameters in the experimental evaluation.

Name GTX1070 GTX760 HD7570 K20m

PGbatch 35 20 25 30

PGlocal 64 256 128 64

MMlocal 32 16 16 32

MMT 256 128 256 256

MVT 128 32 32 128

CholBlock 80 40 64 45

MInvBlocks 5 4 4 5

MMLocal 28 32 32 16

MMWPT 7 4 4 4

https://doi.org/10.1371/journal.pone.0180343.t004

Fig 4. Lasso speedup relative to CPU-only version (on Intel i5-6600K @ 3.50 GHz) for different GPUs and an increasing number of predictors.

https://doi.org/10.1371/journal.pone.0180343.g004

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 11 / 17

https://doi.org/10.1371/journal.pone.0180343.t003
https://doi.org/10.1371/journal.pone.0180343.t004
https://doi.org/10.1371/journal.pone.0180343.g004
https://doi.org/10.1371/journal.pone.0180343


logistic regression. For this purpose, we created several data sets from the original data sets

with varying numbers of predictors (observations). These data sets were obtained by sampling

from the predictors (observations) of the original data set with replacement. All reported mea-

surement points for Lasso are medians of 3 repetitions of 50 iterations of Gibbs sampling and

medians of 3 repetitions of 100 iterations of Gibbs sampling for the multinomial logistic

regression. All the reported measurements for sampling from PG are medians of 500

repetitions.

We used four different hardware configurations (see Table 3). Note that all speedups are

relative to the CPU-only version of the algorithm running on a hardware configuration con-

sisting of an Intel i5-6600K CPU running at 3.50 GHz and 32 GB of DDR4 RAM with a

2400 MHz clock frequency. The execution time for the baseline packages (BayesLogit and

monomvn) was measured using the microbenchmark R package [28] because the aforemen-

tioned packages do not measure their execution time. The execution time for our implementa-

tion was measured in C and was returned to R as one of the resulting vectors. The time spent

on passing the input from R to C and the output from C to R is therefore not included in our

measurements. Because this time is negligible in terms of the overall execution time, this does

not affect the speedups presented in this section.

Table 4 shows the values used in the empirical evaluations for all the tunable parameters

discussed in the previous section. These values were obtained empirically by measuring the

execution times for different input sizes on all four hardware configurations.

Fig 5. Lasso computation times for GTX1070, broken down by key algorithm components. The results for other GPUs are very similar, and thus,

we omit them.

https://doi.org/10.1371/journal.pone.0180343.g005

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 12 / 17

https://doi.org/10.1371/journal.pone.0180343.g005
https://doi.org/10.1371/journal.pone.0180343


Results

The empirical results show that for Bayesian Lasso, speedups of 100 fold can be achieved for

2000–3000 predictors under high-end hardware configurations (see Fig 4), while maximum

speedups of 20 fold can be achieved for low-end and mid-range GPUs. The maximum mea-

sured speedup was 150 fold on the GTX1070 GPU. The computation with the GPU version is

dominated by the time needed to calculate the inverse and to sample from the multivariate

normal, where Cholesky decomposition is calculated (see Fig 5). The difference between these

two components is fairly constant—the former represents approximately 70% of the computa-

tion time, while the latter represents approximately 30%. The time spent on other parts of the

algorithm becomes negligible.

For multinomial regression, speedups of 100 fold are achieved for on the order of 10000

predictors (see Fig 6). This is also the maximum measured speedup achieved. With a fixed

number of predictors, the computation under the GPU version is dominated by matrix multi-

plications, while the calculation of η and the sampling from PG each take approximately

10-times less time than matrix multiplication (see Fig 7).

The parallelization of the sampling from the PG distribution remains practically relevant,

however. When measured with more detail, the results suggest a speedup of approximately 50

fold for n on the order of 100,000 (up to a maximum of 100 fold when there are millions of

observations) (see Fig 8). Therefore, the parallelization of the sampling from PG results in an

Fig 6. Multinomial logistic regression speedup relative to the CPU-only version (on an Intel i5-6600K @ 3.50 GHz) for different GPUs and an

increasing number of observations.

https://doi.org/10.1371/journal.pone.0180343.g006

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 13 / 17

https://doi.org/10.1371/journal.pone.0180343.g006
https://doi.org/10.1371/journal.pone.0180343


overall speedup of approximately 5 fold with 100,000s of observations. The results also show

that the speedup does not depend strongly on the value of z; however, larger values of z allow

for a slightly better speedup. This is due to the higher probability of a more computationally

complex execution path in PG sampling when z is larger.

Of the four GPUs used for the empirical evaluation, the Tesla K20m is the only compute-

only GPU. However, the recency of the architectures of the other three GPUs outweighs this

property in terms of overall performance. In Fig 6, we can see that the performance on the

K20m is similar to on the GTX760, which is a more recent mid-range GPU. Because the K20m

has a substantially larger number of computing cores, it outperforms the GTX760 for larger

numbers of predictors in the Bayesian Lasso. As expected, the overall best performance is

achieved by the most-recent high-end GPU of the four, the GTX1070. Given that the HD7570

is both older and a mid-to-high-end GPU, its performance is better than expected. This is

mostly due to the large differences in its architecture compared to the other 3 GPUs. The

architecture of the HD7570 is better suited for special cases whereby the number of threads is

low, which is the case in the first steps of the Cholesky decomposition and the forward substi-

tution in the matrix inversion.

Conclusion

Our GPU implementations of Bayesian Lasso and multinomial logistic regression achieve

100-fold speedups on mid-level and high-end GPUs. Substantial speedups of 25 fold can also

Fig 7. Multinomial logistic regression computation times for GTX1070, broken down by key algorithm components. The results on other GPUs

are very similar, and thus, we omit them.

https://doi.org/10.1371/journal.pone.0180343.g007

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 14 / 17

https://doi.org/10.1371/journal.pone.0180343.g007
https://doi.org/10.1371/journal.pone.0180343


be achieved on older and lower end GPUs. Most of the speedup is due to the parallel matrix

multiplications, which are the dominate computations as the problem grows; however, paralle-

lizing the sampling from distributions, in particular, the PG distribution, also leads to substan-

tial speedups. Because the samplers are implemented in OpenCL, they can be used on any type

of GPU and other types of computational units, which is convenient in practice and advanta-

geous compared to related work.

We have two main directions for future work. First, the tuning of the parameter values

could be automated. Currently, default GPU implementation parameter values can be used or

the user can set values manually. Default values still lead to substantial speedups but can result

in an up to 50% drop in efficiency (relative to the optimal values). Therefore, the seamless

auto-tuning of the parameters is of practical importance. We plan to exploit the iterative

nature of Gibbs sampling (and MCMC in general), which lends itself to iterative parameter

tuning because the matrix and vector dimensions, which have the largest effect on the optimal

parameters, remain constant for all iterations. In addition, we plan to parallelize the general-

purpose algorithms that are at the core of current state-of-the-art samplers for Bayesian infer-

ence, in particular, Hamiltonian Monte Carlo (HMC). Note that HMC mixes well even on

imbalanced, large data sets, where Gibbs sampling has been shown to mix extremely poorly

[29]. Additionally, we plan on implementing a GPU version of the QR decomposition with

Fig 8. Polya-Gamma sampling speedup for GTX1070 relative to the CPU-only version (on an Intel i5-6600K @ 3.50 GHz) for increasing problem

size and different values of z.

https://doi.org/10.1371/journal.pone.0180343.g008

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 15 / 17

https://doi.org/10.1371/journal.pone.0180343.g008
https://doi.org/10.1371/journal.pone.0180343


rank-p updates [30], which could, in some cases, be used as a less efficient but more numeri-

cally stable alternative to the Cholesky decomposition [7].

Supporting information

S1 Data. The data used in the empirical evaluation. The two data sets are stored as serialized

R programming language objects (see saveRDS()). Each object holds the predictor matrix X
and response vector or matrix y separately. A detailed description of the meaning of the pre-

dictors is not included because it is not relevant to this paper. Further information can be pro-

vided on request.

(RAR)

Acknowledgments

This work was supported by the Slovenian Research Agency (ARRS Project L1-7542). The

authors would like to acknowledge the Slovenian Environment Agency (ARSO) and the

Anton Melik Geographical Institute (GIAM) for the pollutant data and land type data,

respectively.

Author Contributions

Conceptualization: Rok Češnovar, Erik Štrumbelj.

Methodology: Rok Češnovar, Erik Štrumbelj.

Software: Rok Češnovar, Erik Štrumbelj.

Writing – original draft: Rok Češnovar, Erik Štrumbelj.

Writing – review & editing: Rok Češnovar, Erik Štrumbelj.

References
1. Suchard MA, Wang Q, Chan C, Frelinger J, Cron A, West M. Understanding GPU programming for sta-

tistical computation: Studies in massively parallel massive mixtures. Journal of Computational and

Graphical Statistics. 2010; 19(2):419–438. https://doi.org/10.1198/jcgs.2010.10016 PMID: 20877443

2. da Silva AF. cudaBayesreg: Bayesian computation in CUDA. The R Journal. 2010; 2(2):48–55.

3. Takaishi T. GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model. Journal of

Physics: Conference Series. 2015; 574(1):012143.

4. Cossio P, Rohr D, Baruffa F, Rampp M, Lindenstruth V, Hummer G. BioEM: GPU-accelerated comput-

ing of Bayesian inference of electron microscopy images. Computer Physics Communications. 2017;

210:163–171. https://doi.org/10.1016/j.cpc.2016.09.014

5. Lee A, Yau C, Giles MB, Doucet A, Holmes CC. On the utility of graphics cards to perform massively

parallel simulation of advanced Monte Carlo methods. Journal of computational and graphical statistics.

2010; 19(4):769–789. https://doi.org/10.1198/jcgs.2010.10039 PMID: 22003276

6. Yan F, Xu N, Qi Y. Parallel inference for latent dirichlet allocation on graphics processing units. In:

Advances in Neural Information Processing Systems; 2009. p. 2134–2142.

7. Terenin A, Dong S, Draper D. GPU-accelerated Gibbs Sampling. arXiv preprint arXiv:160804329.

2016;.

8. Beam AL, Ghosh SK, Doyle J. Fast Hamiltonian Monte Carlo Using GPU Computing. Journal of

Computational and Graphical Statistics. 2016; 25(2):536–548. https://doi.org/10.1080/10618600.2015.

1035724

9. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate

descent. Journal of statistical software. 2010; 33(1):1. https://doi.org/10.18637/jss.v033.i01 PMID:

20808728

10. Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society

Series B (Methodological). 1996; p. 267–288.

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180343.s001
https://doi.org/10.1198/jcgs.2010.10016
http://www.ncbi.nlm.nih.gov/pubmed/20877443
https://doi.org/10.1016/j.cpc.2016.09.014
https://doi.org/10.1198/jcgs.2010.10039
http://www.ncbi.nlm.nih.gov/pubmed/22003276
https://doi.org/10.1080/10618600.2015.1035724
https://doi.org/10.1080/10618600.2015.1035724
https://doi.org/10.18637/jss.v033.i01
http://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.1371/journal.pone.0180343


11. Park T, Casella G. The Bayesian Lasso. Journal of the American Statistical Association. 2008;

103(482):681–686. https://doi.org/10.1198/016214508000000337

12. Gramacy RB. monomvn: Estimation for Multivariate Normal and Student-t Data with Monotone Missing-

ness; 2016. Available from: http://CRAN.R-project.org/package=monomvn.

13. Bishop CM. Pattern Recognition and Machine Learning. Springer-Verlag New York; 2006.

14. Polson NG, Scott JG, Windle J. Bayesian inference for logistic models using Pólya–Gamma latent vari-

ables. Journal of the American statistical Association. 2013; 108(504):1339–1349. https://doi.org/10.

1080/01621459.2013.829001

15. Polson NG, Scott JG, Windle J. Bayesian inference for logistic models using Polya-Gamma latent vari-

ables; 2013. Available from: http://arxiv.org/abs/1205.0310.

16. Devroye L. On exact simulation algorithms for some distributions related to Jacobi theta functions. Sta-

tistics & Probability Letters. 2009; 79(21):2251–2259. https://doi.org/10.1016/j.spl.2009.07.028

17. Luc D. Non-uniform random variate generation. NY: Springer. 1986;.

18. Windle J, Polson NG, Scott JG. Sampling Polya-Gamma random variates: alternate and approximate

techniques. arXiv preprint arXiv:14050506. 2014;.

19. NVIDIA Corporation. NVIDIA CUDA Compute Unified Device Architecture Programming Guide. NVI-

DIA Corporation; 2007.

20. Tan G, Li L, Triechle S, Phillips E, Bao Y, Sun N. Fast Implementation of DGEMM on Fermi GPU. In:

Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage

and Analysis. SC’11. New York, NY, USA: ACM; 2011. p. 35:1–35:11. Available from: http://doi.acm.

org/10.1145/2063384.2063431.

21. Lai J, Seznec A. Performance upper bound analysis and optimization of SGEMM on Fermi and Kepler

GPUs. In: Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Opti-

mization (CGO); 2013. p. 1–10.

22. Louter-Nool M. Block-Cholesky for Parallel Processing. Appl Numer Math. 1992; 10(1):37–57. https://

doi.org/10.1016/0168-9274(92)90054-H

23. Mahfoudhi R, Mahjoub Z, Nasri W. Parallel communication-free algorithm for triangular matrix inversion

on heterogenoues platform. In: 2012 Federated Conference on Computer Science and Information Sys-

tems (FedCSIS); 2012. p. 553–560.

24. Marsaglia G. Xorshift RNGs. Journal of Statistical Software. 2003; 8(1):1–6.

25. Demchik V, Kolomoyets N. QCDGPU: Open-Source Package for Multi-GPU Monte Carlo Lattice Simu-

lations. Computer Science. 2014; 1(1):13–21.

26. Manssen M, Weigel M, Hartmann AK. Random number generators for massively parallel simulations

on GPU. The European Physical Journal Special Topics. 2012; 210(1):53–71. https://doi.org/10.1140/

epjst/e2012-01637-8

27. Box GEP, Muller ME. A Note on the Generation of Random Normal Deviates. Ann Math Statist. 1958;

29(2):610–611. https://doi.org/10.1214/aoms/1177706645

28. Mersmann O. microbenchmark: Accurate Timing Functions; 2015. Available from: http://CRAN.R-

project.org/package=microbenchmark.

29. Johndrow JE, Smith A, Pillai N, Dunson DB. Inefficiency of Data Augmentation for Large Sample Imbal-

anced Data. arXiv preprint arXiv:1605.05798.

30. Andrew R, Dingle N. Implementing QR factorization updating algorithms on GPUs. Parallel Computing.

2014; 40(7):161–172. https://doi.org/10.1016/j.parco.2014.03.003

Bayesian Lasso and multinomial logistic regression on GPU

PLOS ONE | https://doi.org/10.1371/journal.pone.0180343 June 28, 2017 17 / 17

https://doi.org/10.1198/016214508000000337
http://CRAN.R-project.org/package=monomvn
https://doi.org/10.1080/01621459.2013.829001
https://doi.org/10.1080/01621459.2013.829001
http://arxiv.org/abs/1205.0310
https://doi.org/10.1016/j.spl.2009.07.028
http://doi.acm.org/10.1145/2063384.2063431
http://doi.acm.org/10.1145/2063384.2063431
https://doi.org/10.1016/0168-9274(92)90054-H
https://doi.org/10.1016/0168-9274(92)90054-H
https://doi.org/10.1140/epjst/e2012-01637-8
https://doi.org/10.1140/epjst/e2012-01637-8
https://doi.org/10.1214/aoms/1177706645
http://CRAN.R-project.org/package=microbenchmark
http://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.1016/j.parco.2014.03.003
https://doi.org/10.1371/journal.pone.0180343

