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Abstract

Although chronic inflammation and immune disorders are of great importance to the patho-

genesis of both dementia and cancer, the pathophysiological mechanisms are not clearly

understood. In recent years, growing epidemiological evidence and meta-analysis data sug-

gest an inverse association between Alzheimer’s disease (AD), which is the most common

form of dementia, and cancer. It has been revealed that some common genes and biological

processes play opposite roles in AD and cancer; however, the biological immune mecha-

nism for the inverse association is not clearly defined. An unsupervised matrix decomposi-

tion two-stage bioinformatics procedure was adopted to investigate the opposite behaviors

of the immune response in AD and breast cancer (BC) and to discover the underlying tran-

scriptional regulatory mechanisms. Fast independent component analysis (FastICA) was

applied to extract significant genes from AD and BC microarray gene expression data.

Based on the extracted data, the shared transcription factors (TFs) from AD and BC were

captured. Second, the network component analysis (NCA) algorithm in this study was pre-

sented to quantitatively deduce the TF activities and regulatory influences because quan-

titative dynamic regulatory information for TFs is not available via microarray techniques.

Based on the NCA results and reconstructed transcriptional regulatory networks, inverse

regulatory processes and some known innate immune responses were described in detail.

Many of the shared TFs and their regulatory processes were found to be closely related to

the adaptive immune response from dramatically different directions and to play crucial

roles in both AD and BC pathogenesis. From the above findings, the opposing cellular

behaviors demonstrate an invaluable opportunity to gain insights into the pathogenesis of

these two types of diseases and to aid in developing new treatments.
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Introduction

Alzheimer’s disease (AD), which is the most common form of dementia, is a progressively

fatal neurodegenerative disorder characterized by irreversible cognitive and memory deterio-

ration that inevitably leads to death. AD has been known for more than 100 years and affects

more than 13% of people older than 65 and 43% older than 85. However, the genetic mecha-

nism and pathogenesis of AD are still unclear. An increasing number of studies show that

chronic inflammation and immunosenescence play an important role in the progression of

AD [1, 2]. Cancer, another type of age-related disorder, is a major health problem today. The

immune system has been shown to play a significant role in its pathogenesis, though the exact

pathophysiological mechanism has not been clearly defined [3, 4].

In recent years, growing epidemiological evidence suggests that there is an inverse relation-

ship between cancer and neurodegenerative diseases, particularly AD [5–8]. That is, people

with AD have a decreased risk of cancer, while people with prevalent cancer have a lower risk

of AD. For example, a prospective longitudinal study involving 5278 elderly people diagnosed

and undiagnosed with dementia for a median of 12.5 years showed that cancer-specific mortal-

ity was inversely associated with AD and other types of dementia [9]. In their study, cancer

was reported significantly less often in individuals with possible or probable AD (5.8%) or

non-AD dementia (6.3%) than in those without dementia (26.5%). In their unadjusted Cox

model, the risk of cancer-specific mortality was decreased in participants with AD (hazard

ratio = 0.45) compared to patients with other non-AD dementia (hazard ratio = 0.62) and

those without dementia (reference group). Another prospective cohort study that included

3020 white adults aged 65 years or older with means of 5.4 and 8.3 years for dementia and

cancer, respectively, showed that the presence of AD had a reduced risk of future cancer hospi-

talization and that a history of cancer might decrease the risk of AD [6]. In contrast, no signifi-

cant association has been found between cancer and the development of vascular dementia

(VaD) [6, 10]. This view is also supported by the epidemiological and demographic analysis in

the study by [11]; specifically, there was shown to be an inverse association between tumors

and AD that was more evident in women and for endocrine-related tumors. Furthermore,

many longitudinal cohort studies and meta-analyses have revealed that the inverse association

between AD and cancer was not due to the earlier mortality of cancer or under-diagnosis or

under-reporting of cognitive impairment because the patterns were present both before and

after the diagnosis of each disease and in both survivors and non-survivors [6, 9]. Although

these epidemiological studies and meta-analyses indicate that the rate of developing cancer

might decrease the risk of AD over time and vice versa, the biological and pathophysiological

mechanisms for the inverse association between these two diseases are not clear.

We know that the characteristic pathology in AD changes and increases neurotic and syn-

aptic degeneration as well as neuronal cell death. Conversely, cancer is a process of unlimited

cellular proliferation. This suggests that AD and cancer may share certain fundamental biolog-

ical processes, particularly those favoring apoptosis and cell proliferation, such as metabolic

dysregulation, oxidative stress, DNA damage/repair, aerobic glycolysis, inflammation and

immunosenescence, which play critical but opposite roles in both diseases [12–16]. Some

shared proteins, including p53, a typical stress response gene and tumor suppressor related to

the development of cancer when it is inactivated [17–19], correlated with the accumulation of

Amyloid beta(Aβ), which is a neuropathological hallmark of AD, and led to progressive degen-

eration and neuronal death when activated [20]. Pin1 is an intracellular signaling molecule

that plays a key role in the cell cycle and cell signaling, regulation of transcription and splicing,

and neuronal protein maintenance, including beta-amyloid and tau [21]. It has been reported

that Pin1 is inversely expressed in AD and cancer [19, 22]. Some common biological processes
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and pathways, such as the Wnt signaling pathway, ubiquitin–proteasome system (UPS), cellu-

lar metabolism, elevated aerobic glycolysis and oxidative phosphorylation (OxPhos), have

been revealed to play opposite roles in AD and cancer [11,12,14,16,17]. The ERK/MAPK path-

way has also been found to be oppositely regulated between glioblastoma (GBM) and AD [23].

Particularly, estrogens have been shown to play an important role in operating mitochondrial

activity, modulating growth and synaptic plasticity, reducing neuronal apoptosis and Aβ for-

mation, and inducing tau protein synthesis, which could explain the inverse associations

between female-related tumors and AD [11,15].

Furthermore, biochemical and neuropathological studies of AD brains provide clear evi-

dence for an activation of inflammatory pathways [24]. Recent studies have shown that AD

deterioration is closely correlated with immune processes through amyloid clearance deterio-

ration, increase of amyloid deposition by activated inflammatory cytokines, and alteration of

the receptor for advanced glycolytic end products [1,2,13]. Additionally, the contribution of

the innate and adaptive immune systems is of great importance to the pathogenesis of cancer.

However, the high-throughput microarray data are also limited to understanding whether and

how the inverse association occurs in immune processes between these two types of diseases.

Therefore, further study of the whole transcriptome may provide insight into the contribution

of the immune system and the pathophysiological differences between AD and cancer.

The aim of our study is to identify inverse signaling pathways from the immune response

mechanism between AD and cancer via a bioinformatics method. We first performed research

on breast cancer (BC) because it is one of the most common cancers in the world. Because the

survival rate is high, the public gene expression microarray datasets for BC are abundant.

To find certain fundamental biological processes and shared genes that are differentially

expressed in both AD and breast cancer, fast independent component analysis (FastICA) [25],

an efficient biclustering matrix factorization technique among various ICA methods, was

applied to identify significant genes from the AD and BC microarray datasets. ICA has the

ability to group genes in different meaningful biological processes so that the feature genes can

be easily discovered from different signaling pathways. And its improved algorithms such as

ICA-based penalized discriminant method were successfully used for tumor classification [26].

This method outperforms principal component analysis (PCA) and traditional clustering

methods, such as k-mean, self-organizing maps (SOM) and hierarchical clustering in feature

extraction, as well as the classification of gene expression datasets [27–29].

In general, it is known that transcriptional activity is often controlled by only a relatively

small set of transcription factors in many biological systems. In light of the significant genes

extracted by FastICA, the shared genes, especially the transcription factors (TFs), in AD and

breast cancer can be captured. However, the hidden regulatory structures and TF activities on

target genes (TGs) cannot be determined from microarray datasets. To overcome this short-

coming, network component analysis (NCA) developed by Liao et al. [30] was applied to

determine the TF activities and regulatory influences on TGs in AD and BC.

Methods

Independent Component Analysis (ICA) in gene expression data

ICA is a high-order statistical and unsupervised algorithm that has been widely used in voice

signal blind separation, array processing, image processing, and medical ICA is a high-order

statistical and unsupervised algorithm that has been widely used in voice signal blind separa-

tion, array processing, image processing, and medical and biological signal analysis and has

been recently successfully used in gene clustering, classification and pathway and biomarker

identification. For gene expression datasets, ICA assumes that the gene expression data

Inverse association between Alzheimer’s disease and cancer
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represent a linear combination of specific independent biological process; therefore, the ICA

model can be written as

X ¼ AS ð1Þ

where X denotes n×m microarray gene expression data with m genes under n samples or con-

ditions. xij in X is the gene expression level of the j-th gene in the i-th sample; A = [a1, a2, . . .,

an] are the n×n mixing matrix; and S denotes the n×m gene signature matrix or expression

mode, the rows of which are statistically independent on one another. The gene expression

matrix X is considered to be a linear combination of the independent specific biological pro-

cess rows of S.

The matrix relationship shows that the i-th row matrix A contained the weights with which

the expression levels of m genes contribute to the i-th row of gene expression profile X. The

classification information for gene profile X is equivalent to the rows of A. Additionally, each

column of A contains the weights with which sn contributes to all of the observations and cor-

responds to one row of S. Therefore, if some columns in A are identified to match the class

labels in matrix X, their corresponding rows in S, sn, must contain useful biological informa-

tion for classification. The significant gene expression levels in sn may be the feature genes

related to disease regulatory pathways. To obtain the independent biological process S and

mixing matrix A, the demixing model can be expressed as

Y ¼WX � A� 1 � AS ð2Þ

where W is an n×n demixing matrix. FastICA, which was developed by Hyvärinen et al, and

this package can be downloaded from http://research.ics.aalto.fi/ica/fastica/, is one of most

efficient and popular ICA algorithms for obtaining Y and W [25]. In FastICA, maximizing

negentropy is used as the contrast function to measure the non-Gaussianity so that the itera-

tive components can be statistically independent, or as independent as possible. To estimate

the negentropy of yi = wxi, an approximation to identify the independent components is

designed as follows:

JGðwÞ ¼ ½EfGðw
TxÞg � EfGðvÞg�2 ð3Þ

where G can be practically any non-quadratic function and is selected according to the proba-

bility density distribution of the output signal y, E{�} denotes the expectation, and v is a Gauss-

ian variable of zero mean and unit variance.

In our former studies, FastICA was successfully used to identify many significant genes and

related pathways that play prominent roles in AD phenotypes as well as identify associations,

such as inflammation and APP expression, in molecular biological experiments.

Network Component Analysis (NCA) extracts transcription factor

activities

NCA is a network structure-driven matrix decomposition method presented by Liao et al. [30]

that can be used to deduce the quantitative TF activity (TFA) and regulatory control strength

(CS) from gene expression data and connectivity networks; this analysis provides the qualita-

tive regulatory information between TFs and their target genes (TGs). They approximate the

relationship between TFA and CS by a log-linear model as follows:

EiðtÞ
EiðtÞ

¼
Q TFAjðtÞ

TFAjð0Þ

� �CSij
ð4Þ

where Ei(t) is the expression level of gene i, TFAj(t) with j = 1, . . .; L is the activity level of TF j;
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CSij represents the control strength of TF j on gene I; and (t) and (0) designate condition t and

the reference condition 0, respectively. Then, log-linear transformation is used to model this

nonlinear system. NCA models the expression of a gene as a linear combination of the activity

of each TF that controls the expression of the gene. The matrix form of Eq 4, after taking the

logarithm, is shown as follows:

log½E� ¼ ½CS� log½TFA� ð5Þ

where E is the N×M gene expression matrix of N genes in M samples, Ei = Ei (t)/Ei (0); TFA is

the L×M matrix that denotes the activity of L TFs on M samples while TFAi = TFAi (t)/ TFAi

(0). The matrix [CS] represents the N×L connectivity strength of L TFs on N TGs. This log-lin-

earized form can be expressed in a canonical matrix form as:

½E� ¼ ½C�½P� ð6Þ

This matrix form denotes that gene expression is expressed as a linear combination of TFAs

weighted by their control strengths. The element cij in matrix [C] is set to 0 if there is no prior

regulatory information for gene i by TF j; otherwise, it is set to a nonzero number as an initial

value. To guarantee a unique decomposition solution of [E], Liao et al. presented three unique-

ness criteria for [C] and [P] that should be satisfied. To find the best solution for Eq 6, the fol-

lowing least-square algorithm is performed:

mink½E� � ½C�½P�k2
; s:t:C 2 Z0 ð7Þ

where Z0 is the topology induced by the network connectivity pattern. Then, the actual estima-

tion of [C] and [P] is performed by a two-step alternating least-squares algorithm that exploits

the biconvexity properties of linear decompositions (for specific details, see [30] by Liao et al.

(2003)). The NCA toolbox for Matlab can be downloaded from http://www.seas.ucla.edu/liao_

lab/downloads.html.

The procedure of exploring the differences of regulatory activities

The structure flowchart of the proposed two-stage procedure for comparing the significantly

cellular behaviors of two diseases is showed in Fig 1. In the first stage, significant genes of dif-

ferent diseases or datasets are extracted by using FastICA respectively, then the shared signifi-

cant genes of these two diseases/datasets can be obtained; in the second stage, the common

TFs out of the shared genes are found out to reconstruct the transcriptional regulatory network

by NCA algorithm, with which the regulatory activities and control strength of the same TFs

both in AD and BC can be discovered. The main target of this study is to investigate the inverse

association between AD and BC, therefore, the molecular biological functions of the TFs with

opposite activities are further studied.

In addition, another kind of experiments for one disease (AD or BC) on different datasets

have been studied in our research to investigate the biological mechanism between different

subtypes or grades in the same disease. The same two-stage procedure are performed on differ-

ent datasets of AD or BC. According to the NCA results, the common and opposite TF activi-

ties can be easily found. The TFs with common activities can be explored for the pathogenesis

of the disease. For investigating the deterioration mechanism or differences between subtypes

and grades, the TFs with different activities should be further studied. The results of two addi-

tional experiments (one is the comparison of BC with no metastasis with BC in 3 grades, and

other is the comparison of AD datasets in HIP with AD in 3 grades) and the biological analysis

can be seen in the discussion part.

Inverse association between Alzheimer’s disease and cancer
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Datasets

In this study, several publicly available microarray datasets of AD and BC are used to per-

form FastICA and NCA algorithms and the comparison analysis. They are series GSE5281,

GSE1297 for AD [31, 32] and GSE42568 for BC [33] from NCBI PubMed (National Center for

Biotechnology Information, U.S. National Library of Medicine, https://www.ncbi.nlm.nih.

gov/pubmed). For GSE5281 dataset, it contains 161 samples from 6 areas of the human brain,

including the entorhinal cortex (EC), hippocampus (HIP), medial temporal gyrus (MTG), pos-

terior cingulate (PC), superior frontal gyrus (SFG) and primary visual cortex (VCX). Each

sample contains 54675 gene probes for expression data by an Affymetrix Human Genome

U133 Plus 2.0 Array (HG-U133_Plus_2). Each area contains the following two types of sam-

ples: samples from normal aging marked as controls and AD condition samples tagged as

affected. In our study, here we used HIP expression data, which contains 13 control samples

and 10 affected samples. For series GSE1297, it includes hippocampal gene expression of 9

control and 7 incipient, 8 moderate and 7 severe AD subjects. For GSE42568 dataset, it

includes 104 breast cancer biopsies from patients aged between 31 years and 89 years at the

Fig 1. Structure flowchart of the proposed two-stage procedure. This flowchart shows the two-stage

procedure in this study to detect the inverse transcriptional regulatory process of AD and BC. The first stage is

to extract the feature genes of AD and BC datasets by FastICA, and the second stage is to deduce the

regulatory activities and control strength of common TFs by NCA, then the TFs with inverse association will be

selected for further study.

https://doi.org/10.1371/journal.pone.0180337.g001
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time of diagnosis and 17 normal breast tissues. For the 104 BC samples, there are 45 BC

patients with no metastasis and 59 BC patients with axillary lymph node metastasis samples.

The Affymetrix Human Genome U133 Plus 2.0 Array (HG-U133_Plus_2) was used to mea-

sure the gene expression data with 54675 gene probes. In this study, the 17 control and 45 BC

samples with no metastasis were used to perform the two-stage method.

Results

Feature gene extraction by FastICA

To perform FastICA on AD gene expression dataset, we used the data of hippocampus in

GSE5281. the t-test was applied to 23 samples to reduce gene noise firstly, which displayed no

distinct differences between the control and AD data. Then 8000 genes with t≧2.85 and

p≦0.016446 were selected as the FastICA input. In FastICA algorithm, the nonlinear function

g(y) = tanh(a1�y), where a1 is a constant, was used as the probability density distribution of

the outputs y during the iterations. Considering the random initializations for the maximiza-

tion of the constraint function and the problem of convergence to local optima by FastICA, we

iterated FastICA 30 times to alleviate the instability of the slightly different results in each

interaction. For each FastICA decomposition result, the extracted significant genes were differ-

ent according to columns of A, which matched the classification information in the rows in

the gene expression matrix E. We selected thousands of top genes as significant genes by calcu-

lating the number of significant genes. Finally, 2027 significant genes whose frequencies were

greater than or equal to 21 were extracted as significant AD genes.

The same feature extraction process by FastICA was performed for the 17 control and 45

BC patient samples in the GSE42568 dataset. 1830 significant genes whose frequencies were

greater than or equal to 20 were extracted as BC significant genes. Comparison of the 2027 AD

significant genes with the 1830 BC significant genes showed that 267 shared genes were signifi-

cantly differentially expressed in both AD and BC.

NCA results and transcriptional regulatory process identification

The second stage in this study was to find the activities of the shared TFs and their regulatory

influence on TGs by NCA. Two inputs are needed to perform NCA. One is a TG gene expres-

sion profiles matrix [E] and the other is an initial matrix [C0], a pre-defined regulatory influ-

ence matrix that provides the initial estimates of the influence of each TF on its TGs. To define

key TFs and the original biologically qualitative regulatory influence on the TGs, the ITFP

(integrated platform of mammalian transcription factors, http://connection.ebscohost.com/c/

articles/34651881/itfp-integrated-platform-mammalian-transcription-factors) was used to

identify significant TFs from the shared 267 genes. 40 TFs with 1212 TGs were identified.

Through KEGG pathway analysis, 26 of the 40 TFs and their 237 TGs were identified in 37 bio-

logical pathways. Based on the KEGG analysis, we performed the NCA method on these 26

selected significant TFs with their 237 TGs for AD and BC.

For AD, the gene expression matrix [E] was a 237×23 matrix that denoted the microarray

expression profiles of 237 TGs in 23 AD samples, including 13 control and 10 AD-affected sam-

ples. Matrix [C0] was a 237×26 matrix that represented the predefined connectivity strength of

237 TGs by 26 TFs. Element cij in matrix [C0] was set to 0 if there was no connectivity strength

for TG i by TF j; otherwise, it was set to 1. To meet the uniqueness criteria requirements, matrix

[C0] was cut down to a 166×17 matrix when performing NCA. Then, the final 17 TF activities

on 23 samples (matrix [P]) and control strengths of the 17 TFs on 166 TGs (matrix [C]) were

quantitatively obtained. Fig 2 shows the dynamic transcriptional regulatory networks from the

17 TFs on 166 TGs for the control (Fig 2 (A)) and AD-affected samples (Fig 2 (B)).

Inverse association between Alzheimer’s disease and cancer
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In Fig 2, 17 TFs are denoted by diamonds, with their activities values in different colors

in the middle of the regulatory networks, and the gene expression of the 166 TGs are shown

with circles on either side of the TFs. In these two sub-figures, TFs and TGs were placed in

the same positions; this helps to easily detect dynamic changes between the control and AD-

affected datasets. It is clear that the regulatory activity of the ASH1L, CFLAR, CIRBP, EWSR1,

HMGB3, LPP, NASP, NFIA, SMARCA4, SSRP1, TARDBP, WDR1, ZCCHC7 and ZNF160

TFs increased from the control to the AD-affected samples. By contrast, the regulatory activi-

ties of the MATR3, ZBTB20 and ZNF131 TFs declined distinctly. Table 1 shows the KEGG

pathway analysis of the selected 17 TFs and 166 TGs and shows the signaling pathways that are

most relevant to these significant TFs and TGs.

The NCA method was also applied to the BC transcriptional gene expression data. The selected

17 TF activities from 62 BC samples (matrix [P]) and the control strengths of the 17 TFs on the

Fig 2. Dynamic transcriptional regulatory networks for the AD dataset. (A) presents the transcriptional regulatory network for the control samples, and

(B) shows the transcriptional regulatory network for AD samples. The diamonds in the middle denote TFs with different colors according to their activity

values. The different colored circles display TG gene expression, and the different colored lines between the TFs and TGs show the control strength.

https://doi.org/10.1371/journal.pone.0180337.g002
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same 166 TGs (matrix [C]) were obtained after performing NCA. Similarly, Fig 3 shows the

dynamic transcriptional regulatory networks for the 17 TFs on 166 TGs for the BC results.

The positions of the TFs and TGs in Fig 3 are the same as they were in Fig 2. According to

these two sub-figures in Fig 3, we can clearly see that the regulatory activities of the EWSR1,

MATR3, NASP, NFIA, TARDBP and ZCCHC7 TFs increased from the control to BC samples,

while the activities of the ASH1L, CFLAR, CIRBP, HMGB3, LPP, SMARCA4, SSRP1, WDR1,

ZBTB20, ZNF131 and ZNF160 TFs declined from the control to BC samples. Table 2 shows 17

TFs with their TGs and the increased or declined states (in up or down arrows) in AD and BC

corresponding to their control samples.

Table 1. KEGG pathway analysis of the shared TGs in AD and BC.

Pathways Number of genes

Pathways in cancer 39

Cell cycle 34

Spliceosome 29

Regulation of actin cytoskeleton 24

Neurotrophin signaling pathway 23

Ubiquitin mediated proteolysis 23

Purine metabolism 23

Pyrimidine metabolism 20

Oocyte meiosis 19

Tight junction 18

Chronic myeloid leukemia 17

Insulin signaling pathway 17

RNA degradation 16

Adherens junction 15

DNA replication 14

Progesterone-mediated oocyte maturation 14

Prostate cancer 14

Pathogenic Escherichia coli infection 13

ErbB signaling pathway 13

p53 signaling pathway 12

Renal cell carcinoma 12

Pancreatic cancer 12

Non-small cell lung cancer 12

Small cell lung cancer 12

TGF-beta signaling pathway 12

Gap junction 12

Endometrial cancer 11

Glioma 11

Nucleotide excision repair 10

Mismatch repair 8

Bladder cancer 8

One carbon pool by folate 7

SNARE interactions in vesicular transport 7

RNA polymerase 6

Homologous recombination 6

Thyroid cancer 6

Non-homologous end-joining 5

https://doi.org/10.1371/journal.pone.0180337.t001
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Discussion

Comparison of several feature gene extraction methods

In recent years, several matrix decomposition methods have been widely used for feature gene

extraction, gene clustering and disease classification, including principle component analysis

(PCA) or singular value decomposition (SVD), ICA and nonnegative matrix factorization

(NMF). PCA or SVD is a statistical technique with the advantage of dimensionality reduction

under the assumption that decomposition of the data possesses an orthogonal structure. ICA

is also an unsupervised learning method that is used to identify biologically significant pro-

cesses by statistically independent basic functions. NMF decomposes high-dimensional gene

expression data into positive metagenes with a local biological representation based on non-

negative constraints, which is more natural than representing gene expression profiles. To

Fig 3. Dynamic transcriptional regulatory networks for the BC dataset. (A) presents the transcriptional regulatory network for the control samples, and

(B) shows transcriptional regulatory network for the BC samples. The diamonds in the middle denote TFs, with different colors according to their activity

values. The different colored circles display TG gene expression, and the different colored lines between the TFs and TGs show the control strength.

https://doi.org/10.1371/journal.pone.0180337.g003
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compare the feature gene extraction differences of these methods, we performed PCA, ICA

and NMF on AD gene expression data in our previous studies [34–36].

From the PCA results, the identified significant AD genes showed that they are mainly

related to immunoreactions, metal proteins, membrane proteins, lipoproteins, neuropeptides,

cytoskeleton proteins, binding proteins, ribosomal proteins and phosphoric proteins [34]. The

limitation of the PCA model is that the number of significant genes is much fewer than ICA

and NMF.

By performing NMF, more than 1500 significant AD genes were identified. A large number

of these genes were related to metal metabolism and inflammation, cell growth, cell cycle, apo-

ptosis, cellular fission and cell repair [35]. The shortcomings of the NMF method were that the

number of significant genes was hard to reduce and that the local characteristics that appeared

among the metagenes were not clear in our data.

Table 2. Common TFs with their TGs in AD and BC.

TFs "/# Description TGs

ASH1L AD"BC# ash1 (absent, small, or homeotic)-like (Drosophila) ARHGDIA, CNOT4, CRKL, ENO1, GART, HERC1, NCK1, PAPOLG, PFN1,

POLR2E, PPP1CA, SNRPA

CFLAR AD"BC# CASP8 and FADD-like apoptosis regulator BIRC5, BUB1B, BUB3, CAD, CCNA2, CCNB1, CDC20, CDC6, CHEK2,

DTYMK, GMPS, LIG1, LSM4, MAD2L1, MCM4, MCM7, PAICS, PPAT,

PRKDC, RFC5, TYMS

CIRBP AD"BC# cold inducible RNA binding protein IRAK1, MAPK14, MTHFD2, RALA, UBE2A

HMGB3 AD"BC# high-mobility group box 3 BIRC5, BUB1B, CAD, CCNB1, CDC20, CDC25A, GMPS, MCM3, MCM7,

POLR2G, RRM2, TUBB, TYMS

LPP AD"BC# LIM domain containing preferred translocation

partner in lipoma

BAD, BNIP1, CNOT2, PDE4C, PHKB, VTI1A

SMARCA4 AD"BC# SWI/SNF related, matrix associated, actin

dependent regulator of chromatin, subfamily a,

member 4

CAD, CDK2, DTYMK, ESPL1, GTF2H4, LSM4, MAD2L1, MAP2K2, MCM2,

MCM3, MCM4, MCM7, MSH6, POLR2E, PRKDC, RFC5, SNRPA, SYMPK,

TFDP1, TRAF4, TUBB, TYMS, UBE2I, XRCC5

SSRP1 AD"BC# structure specific recognition protein 1 APRT, BUB1, BUB3, CAD, CCNA2, CDC25A, CHEK1, CTNND1, CTPS,

DHFR, DIAPH3, GART, GTSE1, IMPDH2, LIG1, LSM2, LSM4, LSM7,

MAD2L1, MCM3, MCM4, MCM7, MSH6, PAICS, POLD1, POLR2G,

POLR2H, PPIH, PRKDC, RFC2, RFC3, RFC5, RRM1, SF3A3, SHMT1,

SHMT2, SNRPA, SNRPA1, SNRPB, SNRPD1, SNRPD2, SNRPF, TYMS,

UBE2C

WDR1 AD"BC# WD repeat domain 1 ARHGDIA, ARPC2, ARPC4, ARPC5, BCL2L1, CTNNA1, DAPK3, DCTD,

ENO1, FLOT2, GNAI3, GOSR2, MAPKAPK2, MYH9, NRAS, PDE8A,

POLR2E, PSEN1, PTPN11, RB1, RXRB, SHC1, SNAP23, TGFB1, VAMP3,

XRN2

ZNF160 AD"BC# zinc finger protein 160 ARHGEF1, CNOT2, IRS4, PDE4C

PGF, POLR1B, PPP2CA, RAD50, TOP3B

MATR3 AD"BC" martin 3 BUB3, CUL4B, DDX42, FN1, HSPA8, PAPOLA, RB1

EWSR1 AD"BC" Ewing sarcoma breakpoint region 1 SFRS3, SNRPA, SNRPB

NASP AD"BC" nuclear auto antigenic sperm protein (histone-

binding)

BUB1B, CCNB2, DUT, FBXO5, GTSE1, HDAC1, MCM2, MCM3, MCM5,

MCM7, MSH2, NCL, PCNA, TYMS, UBE2C

NFIA AD"BC" Nuclear factor I/A BID, BUB3, ESPL1, MAD2L2, MAPK14, NRAS, RIPK2

TARDBP AD"BC" TAR DNA binding protein BUB3, PPP2R1B

ZCCHC7 AD"BC" zinc finger, CCHC domain containing 7 ANAPC5, BIRC6, BRCA2, CUL4B, EPB41, GART, MAGED1, MAP3K2,

MDM4, NUDT9, PAK2, PIAS1, PPP2R5C, PTEN, RAD23B, SFRS4, SOS1,

STK4, TPR, UBE2E1, UBE2H, XRCC4

ZBTB20 AD#BC# zinc finger and BTB domain containing 20 ACTN4, ARHGEF12, BAD, BID, BUB1, BUB3, CDC20, CDC6, CDK7,

CHEK1, CREBBP, CTNNB1, GART, GNAI3, GTSE1, IRAK1, MAD2L1,

MCM5, NRAS, PAK2, PDE4C, POLR2D, RAD50, RALA, RFC2, RFC3,

SIAH1, SORBS1, TFDP1, TGFBR1, TJP1, TOP3B, TUBB, UBE2H, UBE2I

ZNF131 AD#BC# Zinc finger protein 131 CAMK2G, FBXO5, FN1, MAGOH, PPAT

https://doi.org/10.1371/journal.pone.0180337.t002
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From the biological analysis of the FastICA results on the same dataset, we found that the

significant genes were involved in immunoreactions, metal proteins, membrane proteins, lipo-

proteins, neuropeptides, cytoskeleton proteins, binding proteins and ribosomal proteins and

play prominent roles in AD phenotypes. FastICA also found many oncogenes and phosphoric

proteins that were significantly lowly expressed in AD.

Based on the molecular biological analysis of these three types of results, significant gene

extraction by ICA was better than those by PCA and NMF at identifying known and novel

genes in meaningful biological processes for AD. The comparison indicated that ICA is more

efficient at extracting potentially relevant genes from microarray data as well as mapping data

that is closer to AD pathogenesis. Moreover, all three of these methods are based on purely sta-

tistical constraints and do not use any biological knowledge or transcriptional regulatory infor-

mation. Therefore, their results cannot contain biological transcriptional regulatory networks,

which is also a primary reason that we used network component analysis (NCA) to detect the

disease transcriptional regulatory mechanisms after feature gene extraction.

Comparison of different datasets with the same methods

In this study, besides the above main experiments of discovering the inverse TFs activities

between AD and BC, two other experiments for exploring the regulatory mechanism for dif-

ferent subtypes or grades for the same disease (AD or BC) are studied as well. One is the exper-

iment of AD in HIP with AD in 3 varying severities, the other is the comparison of BC with no

metastasis with BC in 3 grades.

i) AD data in hippocampus vs. AD data in varying severities

To explore the differently regulatory mechanism between varying severities of AD, another

AD dataset, series GSE1297 [37], was studied as well. GSE1297 dataset includes hippocampal

gene expression of 9 control and 7 incipient, 8 moderate and 7 severe AD subjects. FastICA

was performed to these three varying severities data and 245, 268 and 324 significant genes

were extracted respectively from the incipient, moderate and severe AD samples [32]. To com-

pare this dataset with the above results of AD dataset GSE5281, the shared genes between these

two AD datasets were extracted. There are 311 shared genes between these two datasets and 50

out of them are also shared with the 267 significant genes. 34 TFs with 733 TGs in 45 KEGG

pathways were identified (the flowchart can be seen in Fig 4 (A)). Then, NCA algorithm was

performed to explore the similarities and differences of the activities of the 34 TFs between

these two datasets. For the first 17 TFs, their regulatory activities are similar, while the regula-

tory activities of other 17 TFs are in opposite directions. Table 3 shows the upregulated or

downregulated TF activities in these two datasets by the up or down arrows.

Table 3 shows that the regulatory activities of the first 17 TFs: CEBPD, CLTC, DDX3X,

GNB1, JUND, KLC1, LANCL1, NFIB, PAFAH1B1, PEX5, ZBTB20, FHL1, NCL, PEA15, QKI,

R3HDM1 and ZNF160 are in the same directions. The molecular biological analysis showed

that the changes of these TF activities and their target genes in the interactions of signaling

proteins in cell cycle, chronic inflammation and immune response play important roles in the

deterioration of AD.

By contrast, the regulatory activities of the other 17 TFs: DDX17, DICER1, GLS, GTF3A,

HMGB1, TTC3, ANK2, CIRBP, JUN, NFE2L1, NFKBIA, RBM8A, RPS4Y1, RPS11, SPTBN1,

TNPO1 and TRIM2 show great changes during the deterioration. The biological analyses of

the regulatory activities show the transcriptional changes for the deterioration of AD. As we

know that, in eukaryotic, the way to initiate transcription eukaryotic RNA polymerase requires

the assistance of proteins. Among these 17 TFs, many of them are related to the regulation of

RNA, such as DDX17, DICER1, CIRBP, RBM8A, RPS4Y1, RPS11 and TNPO1. It suggests that
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with the aggravation of AD, the regulation of RNA level changed greatly and they will lead to

the changes of the expression of many proteins. Additionally, the results show that some of the

TFs are associated with inflammation and they are incessantly upregulated during the deterio-

ration of AD such as NFE2L1 and NFKBIA.

ii) BC data with no metastasis vs. BC in different grades

In this experiment, we compare the BC dataset with no metastasis with BC in 3 grades to

explore the regulatory mechanism for the deterioration of BC. The two-stage procedure was

performed on BC series GSE42568, which is the same dataset in current study but in a different

classification rule. The 104 breast cancer samples were divided into 3 categories according to

their histologic grading: 11 tumours were grade 1; 40 were grade 2 and 53 were grade 3. in the

similar way, FastICA was performed to these three BC grades data respectively. 666 common

significant genes for three grades were extracted [38]. To compare this experiment with the

above results of BC data with no metastasis, the shared genes between these two BC datasets

were further analysed. There are 426 shared genes between these two datasets and 47 out of

them are also shared with the 267 significant genes of the first experiment. 23 TFs with 421

TGs which take part in the biological functions of 19 KEGG pathways were identified, and

Fig 4. Flowchart of the experiments for different datasets of one disease (AD/BC). (A) gives the flowchart of the two-stage procedure

in comparing AD-HIP dataset with AD in 3 severities dataset; (B) gives the flowchart of the two-stage procedure in comparing BC with no

metastasis dataset with BC in 3 grades dataset.

https://doi.org/10.1371/journal.pone.0180337.g004
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NCA algorithm was performed to explore the similarities and differences of the activities for

the 23 TFs (Fig 4 (B) shows the flowchart). Table 4 displays the activities of the shared TFs in

these two datasets by up or down arrows.

From Table 4 we can see, for the first 17 TFs, their regulatory activities are in the same

directions, such as ANK3, CYR61, ESR1, FOSB, HMGB3, IRX5, MYB, PRICKLE2, RETSAT,

SPTBN1 and ZBTB16 are upregulated in both BC datasets, and DOK7, ECT2, FHL1, FOS,

KRT19 and MESP1 are down-regulated in these two BC datasets. It is clear to find that the

continuous activation or inhibition of these TFs are closely associated with the deterioration of

breast cancer in the signal transduction pathways like cell proliferation, mitosis, apoptosis, Ras

signal transduction, DNA replication, cholesterol homeostasis and growth regulation. While

the regulatory activities of the other 6 TFs including DMD, EPS8L2, NKX3-1, PPP2R1B,

RNF150 and SPDEF show opposite regulatory activities between these two BC datasets. The

Table 3. Regulatory activities comparison of the shared TFs in two different AD datasets.

TF Description AD-HIP AD in 3 severities

CEBPD CCAAT/enhancer binding protein (C/EBP), delta " "

CLTC clathrin, heavy chain (Hc) " "

DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked " "

GNB1 guanine nucleotide binding protein (G protein), beta polypeptide 1 " "

JUND jun D proto-oncogene " "

KLC1 kinesin light chain 1 " "

LANCL1 LanC lantibiotic synthetase component C-like 1 (bacterial) " "

NFIB nuclear factor I/B " "

PAFAH1B1 platelet-activating factor acetylhydrolase 1b, regulatory subunit 1 (45kDa) " "

PEX5 peroxisomal biogenesis factor 5 " "

ZBTB20 zinc finger and BTB domain containing 20 " "

FHL1 four and a half LIM domains 1 # #

NCL nucleolin # #

PEA15 phosphoprotein enriched in astrocytes 15 # #

QKI quaking homolog, KH domain RNA binding (mouse) # #

R3HDM1 R3H domain containing 1 # #

ZNF160 zinc finger protein 160 # #

DDX17 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 " #

DICER1 dicer 1, ribonuclease type III " #

GLS glutaminase " #

GTF3A general transcription factor IIIA " #

HMGB1 high-mobility group box 1 " #

TTC3 tetratricopeptide repeat domain 3 " #

ANK2 ankyrin 2, neuronal # "

CIRBP cold inducible RNA binding protein # "

JUN jun D proto-oncogene # "

NFE2L1 nuclear factor (erythroid-derived 2)-like 1 # "

NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha # "

RBM8A RNA binding motif protein 8A # "

RPS4Y1 ribosomal protein S4, Y-linked 1 # "

RPS11 ribosomal protein S11 # "

SPTBN1 spectrin, beta, non-erythrocytic 1 # "

TNPO1 transportin 1 # "

TRIM2 tripartite motif-containing 2 # "

https://doi.org/10.1371/journal.pone.0180337.t003
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biological analyses of the inverse regulatory activities help us to exploring the transcriptional

mechanism from BC with no metastasis to the deterioration of BC. For example, NKX3-1 is a

tumor suppressor gene and PDEF is an oncogene. NKX3-1 can interact with cancer derived

Ets factor (PDEF) and suppress the ability of PDEF to transactivate the cancer specific pro-

moter. Our results show that during the deterioration of BC, NKX3-1 is downregulated con-

tinually while SPDEF is upregulated at the same time.

From the results of the above experiments, we can conclude that the quantification of the

changes of significant TFs provide an increased understanding to the regulatory laws of disease in

varying severity, different grades or even different diseases. The extracted significant genes and

TFs on different datasets of one disease were not the same, since FastICA extracts the statistically

independent biological process and feature genes based on the gene expression profiles of each

dataset. However, it is interesting that the molecular biological analysis showed that the TFs

related pathways were closely similar like mitosis, apoptosis, cell cycle, chronic inflammation and

immune disorder and so on. That means the method can find out the key regulatory changes of

one disease. To exploring the regulatory mechanism for different severities, grades, subtypes or

different diseases, selecting the common significant TFs and reconstructing their quantitatively

regulatory networks are effective to gain insights into the pathogenesis of diseases.

Transcriptional regulatory processes related to immune response

between AD and BC

There are many kinds of neurodegenerative diseases, among them AD is the largest proportion

of the diseases, and younger trend. Parkinson disease (PD) is the second most common

Table 4. The regulatory activities of the shared TFs in two different BC datasets.

TF Description BC with no metastasis BC in 3 grades

ANK3 ankyrin 3, node of Ranvier (ankyrin G) " "

CYR61 cysteine-rich, angiogenic inducer, 61 " "

ESR1 estrogen receptor 1 " "

FOSB FBJ murine osteosarcoma viral oncogene homolog B " "

HMGB3 high-mobility group box 3 " "

IRX5 iroquois homeobox 5 " "

MYB v-myb myeloblastosis viral oncogene homolog (avian) " "

PRICKLE2 prickle homolog 2 (Drosophila) " "

RETSAT retinol saturase (all-trans-retinol 13,14-reductase) " "

SPTBN1 Spectrin, beta, non-erythrocytic 1 " "

ZBTB16 zinc finger and BTB domain containing 16 " "

DOK7 docking protein 7 # #

ECT2 epithelial cell transforming sequence 2 oncogene # #

FHL1 four and a half LIM domains 1 # #

FOS FBJ murine osteosarcoma viral oncogene homolog # #

KRT19 keratin 19 # #

MESP1 mesoderm posterior 1 homolog # #

DMD dystrophin " #

EPS8L2 EPS8-like 2 " #

NKX3-1 NK3 homeobox 1 " #

PPP2R1B protein phosphatase 2, regulatory subunit A, beta " #

RNF150 ring finger protein 150 # "

SPDEF SAM pointed domain containing Ets transcription factor # "

https://doi.org/10.1371/journal.pone.0180337.t004
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neurodegenerative disease. Among people over age 60, there is a 2–4% for risk of Parkinson

[39,40]. Amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) also are neurodegen-

erative diseases that affect the central nervous system, both attack the body’s nerves and mus-

cles and be low incidence [41,42]. The causes of neurodegenerative diseases are not completely

clear, but a lot of evidence have proved with the related inflammation and immune changed.

In cancer studies, many results show the Immune response plays an important role in tumour

development, treatment and prognosis. Tumours in different stages have different characteris-

tics. However, inflammation and immune changes in tumour growth and also plays an impor-

tant role in the process of treatment [43, 44]. In our research, the transcriptional regulatory

pathway of inflammation and immune disorders of AD and BC were first studied, and other

kinds of neurodegenerative diseases and cancers will be studied in the next step.

Transcription factors are a diverse family of proteins that generally function in multi-sub-

unit protein complexes that are vital to the normal development of an organism and are

involved in routine cellular functions and responses to disease. The function of TFs allows

for the unique expression of each gene in different cell types and during development. There-

fore, it is very important to study TFs while analyzing pathways to understand disease patho-

genesis. From the TF activities from dynamic transcriptional regulatory networks in AD and

BC (Figs 2 and 3), we found that they shared 17 TFs, as calculated by NCA, that play important

roles in inflammation and the immune response in both AD and BC. Specifically, 10 out of 17

TFs showed inverse regulatory activities between AD and BC (top 10 TFs in Table 2), which

showed that these two diseases shared many genes and biological pathways, but that the genes

and pathways are regulated in different directions of the same spectrum. Combined with the

current understanding of the functions of the innate and adaptive immune systems, transcrip-

tional biological analyses related to the immune response were reviewed below to determine

the opposite pathogenic regulatory mechanisms of AD and BC.

Ascl1 (ASH1L), the activity of which increased in AD and declined in BC compared to con-

trol samples in the NCA results, is central to the differentiation of neuroblasts and the lateral

inhibition mechanism, which inherently creates a safety net in the event of damage or death in

these incredibly important cells, as well as neuronal commitment [45]. Ascl1 regulates astro-

cytes and oligodendrocytes by density and distribution in neurodegenerative diseases [46,47].

Under certain conditions, ASH1L can regulate interleukin-6 production. As a cytokine, inter-

leukin-6 production can regulate NF-κB, an important nuclear factor that is closely related to

inflammation, by mitogen activated protein kinase (MAPK) pathways [48–50]. As a TF, if

ASH1L displays abnormal regulation, it will lead to many diseases, such as cancer and neuro-

logical diseases [51–52]. ASH1L has been implicated in facioscapulohumeral muscular dystro-

phy. In this disease, human muscles will experience progressive wasting [53], which is a

common feature of AD, i.e., cells progressively degenerate in both diseases, and ASH1L

appears at the opposite end of BC.

The p53 gene is a tumor suppressor gene that is involved in anti-tumor formation and

inducing cell apoptosis. CFLAR (C-FLIP) can suppress caspase 8 activation and mediate apo-

ptosis [54]. However, some studies have reported that p53 can upregulate CFLAR, inhibit NF-

κB-regulated gene transcription and induce cell death in a caspase-8-independent manner. In

the NCA results, the CFLAR activities increased in AD and decreased in BC. Data from the lit-

erature show that CFLAR is also regulated by the IL-2 and MAPK pathway [55,56] and that

abnormal expression is related to some diseases, such as cancer and autoimmune diseases [57].

Cold-inducible RNA binding (CIRB) protein (CIRBP) is a TF that plays a critical role in

controlling cellular response upon confronting a variety of cellular stresses, including short

wavelength ultraviolet light, neuroinflammation, hypothermia and hypoxia [58–61]. Some

studies have indicated that CIRP regulates multiple pathways, such as MAPK, Wnt, apoptosis
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and many cancer-related signaling pathways in cerebral ischemia [62,63]. It has also been

reported to mediate neuroinflammation [64]. From our transcriptional regulatory network fig-

ures, we identified the inverse regulation of CIRBP between AD and BC, which increased in

AD and declined in BC.

Hmgb3 is a member of high mobility group DNA-binding motifs, which have been found

to increase the transcriptional regulatory process in AD and decrease this process in BC. It is

known that Hmgb3 over-expression can inhibit B-cell and myeloid differentiation. Therefore,

reducing the regulation of the HMGB3 protein levels is an important step for myeloid and B-

cell differentiation [65]. HMGBs bind to all of the immunogenic nucleic acids examined with a

correlation between affinity and immunogenic potential. Its suppression by small interfering

RNA led to impaired activation of the Irf3 and NF-κB transcription factors [66]. HMGB

expression disorders can lead to immunological disorders and some diseases, such as cancer,

neurological diseases, and microphthalmia syndromic [67].

In the transcriptional regulatory network figures from our research, lipoma preferred part-

ner (LPP) was shown to increase in AD and decline in BC. LPP plays a structural role at sites of

cell adhesion in maintaining cell shape and motility. In addition to these structural functions, it

is also implicated in signaling events and gene transcription activation. The LPP protein is local-

ized at sites of cell adhesion, such as focal adhesions and cell-cell contacts, and shuttles to the

nucleus where it has transcriptional activation capacities [67–69]. LPP and the expression of

fusion proteins probably mediate tumor growth [70]. Some studies have reported that LPP cor-

related innate and T cell-mediated immune responses [71]. This may be additional evidence

that AD and BC are both closely associated with the immune response, but at opposite ends.

The SMARCA4 (BRG1, SWI/SNF) protein belongs to the SWI/SNF family. Their members

have helicase and ATPase activities and are thought to regulate the transcription of certain

genes by altering the chromatin structure around those genes. A previous report has shown

that SWI/SNF regulates T cell inactivation and growth via cytokine promotion. Therefore,

SWI/SNF plays an important role in subsequent immune responses [72]. SWI/SNF expression

disorders have been found to lead to cancer and AD [73,74]. In the NCA results, we observe

that SMARCA4 is increased in AD and decreased in BC.

In the transcriptional regulatory networks, SSRP1 was shown to increase in AD and

decrease in BC. SSRP1 (FACT) is component of the FACT complex, a general chromatin fac-

tor that acts to reorganize nucleosomes. The FACT complex is involved in multiple processes

that require DNA as a template, including mRNA elongation, DNA replication and DNA

repair. During transcription elongation, the FACT complex acts as a histone chaperone that

both destabilizes and restores the nucleosomal structure. FACT and cisplatin-damaged DNA

may be crucial to the anticancer mechanism of cisplatin [75].

WD-repeat protein 1 (WDR1) or actin-interacting protein 1 (AIP1) is a highly conserved

WD-repeat protein in eukaryotes that promotes cofilin-mediated actin filament disassembly

[76]. The transcriptional regulatory results show that WDR1 was inversely regulated between

AD and BC. It is an emerging regulator of the actin cytoskeleton that is vital to filament disas-

sembly. When WDR1 loses its function, it leads to embryonic lethality, macrothrombocytope-

nia and autoinflammatory disease [77].

ZNF160 is shown to increase in AD and decline in BC. This TF represses the tlr4 gene, a

protein encoded by the Toll-like receptor (TLR) family, which plays a fundamental role in

pathogen recognition and activation of innate immunity by cytokines [78]. Under certain con-

ditions, TLR4 can increase AML-reactive T cell generation and suppress oncoproteins from

human papillomavirus E7 and E6 proteins [79].

MATR3 is a protein binding RNA and DNA. It may play a role in transcription or interact

with other nuclear matrix proteins to form the internal fibrogranular network. It interacts
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with TDP-43 to cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia [80].

A proteomic screen revealed that MATR3 is bound to calmodulin and suggested that it is

cleaved by both caspase-3 and caspase-8 [81,82]. In the transcriptional regulatory process, the

activities of this TF were increased in AD and declined in BC.

Fig 5 displays the related target genes, pathways and common pathophysiological mecha-

nisms with the opposing ends of the 10 inversely regulated TFs in the immune response

between AD and BC.

In Fig 5, the common TFs between AD and BC with inverse regulatory activities are dis-

played on both sides of the horizontal axis towards these two diseases. The genes, pathways

and biological processes regulated by or related to the common TFs are arranged on the verti-

cal axis and are involved in the MAPK pathway, Wnt pathway, inflammation, apoptosis, DNA

binding/replication/repair, T cell mediated immune response, and so on, which are closely

associated with innate and adaptive immune responses and play important roles in the patho-

genesis of both AD and BC.

To investigate how the activities of these 17 TFs on the 166 TGs change in the deterioration

of these two diseases, we performed the NCA algorithm of these TFs and TGs on the additional

AD and BC datasets respectively. The results are showed in Tables 5 and 6.

Table 5 shows the changes of activities of the 17 TFs during varying severities of AD. It is

clear to find that SSRP1 and ZNF160 are continuously activated during the deterioration of

AD; ASH1L, NFIA, ZBTB20, ZCCHC7 are upregulated in the incipient and moderate AD but

Fig 5. The inversely associated TFs in Table 2 and their related genes, pathways and biological processes. This figure shows the inverse

regulatory activities of the common TFs and pathways between AD and BC. From the biological analysis we can know that they are closely related

to innate and adaptive immune response.

https://doi.org/10.1371/journal.pone.0180337.g005
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downregulated in the severe AD; CFLAR and TARDBP are upregulated at the beginning of

AD and downregulated during the deterioration; by contrast, EWSR1, NASP, CIRBP, MATR3

and ZNF131 are downregulated at the beginning of AD and upregulated when the disease gets

worse; and the activities of HMGB3, LPP, SMARCA4 and WDR1 continuously decrease with

the deterioration of AD.

Table 6 provides the activities of the 17 TFs in 3 grades of BC dataset. The changes of the

activities of these 17 TFs are more complicated than those in AD. CIRBP, TARDBP, NASP,

Table 5. The regulatory activities of the 17 TFs in the additional AD datasets.

TFs Description AD incipient AD moderate AD severe

SSRP1 structure specific recognition protein 1 " " "

ZNF160 zinc finger protein 160 " " "

ASH1L ash1 (absent, small, or homeotic)-like (Drosophila) " " #

NFIA Nuclear factor I/A " " #

ZBTB20 zinc finger and BTB domain containing 20 " " #

ZCCHC7 zinc finger, CCHC domain containing 7 " " #

CFLAR CASP8 and FADD-like apoptosis regulator " # "

TARDBP TAR DNA binding protein " # #

EWSR1 Ewing sarcoma breakpoint region 1 # " "

NASP nuclear auto antigenic sperm protein (histone-binding) # " "

CIRBP cold inducible RNA binding protein # # "

MATR3 martin 3 # # "

ZNF131 Zinc finger protein 131 # # "

HMGB3 high-mobility group box 3 # # #

LPP LIM domain containing preferred translocation partner in lipoma # # #

SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a,

member 4

# # #

WDR1 WD repeat domain 1 # # #

https://doi.org/10.1371/journal.pone.0180337.t005

Table 6. The regulatory activities of the 17 TFs in the additional BC datasets.

TFs Description BC gradeI BC gradeII BC grade III

CIRBP cold inducible RNA binding protein " " #

TARDBP TAR DNA binding protein " " #

NASP nuclear auto antigenic sperm protein (histone-binding) " # "

NFIA Nuclear factor I/A " # "

HMGB3 high-mobility group box 3 " # "

ZCCHC7 zinc finger, CCHC domain containing 7 " # "

SSRP1 structure specific recognition protein 1 " # #

WDR1 WD repeat domain 1 " # #

ZNF131 Zinc finger protein 131 " # #

MATR3 martin 3 # " "

ASH1L ash1 (absent, small, or homeotic)-like (Drosophila) # " #

EWSR1 Ewing sarcoma breakpoint region 1 # " #

LPP LIM domain containing preferred translocation partner in lipoma # " #

ZBTB20 zinc finger and BTB domain containing 20 # # "

CFLAR CASP8 and FADD-like apoptosis regulator # # "

SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 # # #

ZNF160 zinc finger protein 160 # # #

https://doi.org/10.1371/journal.pone.0180337.t006
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NFIA, HMGB3, ZCCHC7, SSRP1, WDR1, ZNF131 and MATR3 are upregulated in the grade

Iof BC, but downregulated in either grade IIor grade III; among them, some TFs like NASP,

NFIA, HMGB3 and ZCCHC7 are even upregulated again in grade III; by contrast, MATR3,

ASH1L, EWSR1, LPP, ZBTB20, CFLAR are downregulated at the beginning of BC but upregu-

lated in grade IIor grade III, sometimes they downregulated again when the disease getting

into terminal period; SMARCA4 and ZNF160 continuously decrease with the deterioration of

BC.

It can be seen that the regulatory status of these 17 TFs in different course of AD and BC

are much different. In order to explore the regulatory status of the 10 inversely associated TFs

discussed in the AD-BC experiment in the similar course of diseases, we extract the TFs with

opposite association and compare their activities of incipient AD with BC in grade I, the mod-

erate AD with BC in grade II and severe AD with BC in grade III respectively (see Tables 7, 8

and 9).

Table 7 shows that there are 6 out of 10 TFs are inversely associated at the initial stage of

AD and BC, they are ASH1L, CFLAR, ZNF160, CIRBP, HMGB3 and WDR1. And 5 and 4 TFs

are in opposite regulatory directions in the middle and terminal period of AD and BC respec-

tively (Tables 8 and 9). Among them, CIRBP is a TF which have the ability to control cellular

response upon confronting a variety of cellular stresses, mediate neuroinflammation and regu-

late MAPK, Wnt, apoptosis and many cancer-related signaling pathways. From Tables 7 to 9

we can see that it is inversely associated during the deterioration of AD and BC. ZNF160 is

another important TF which is closely related to pathogen recognition and activation of innate

immunity by cytokines. ZnF160 motifs recognize DNA sequences by binding to the major

groove of DNA via a short alpha-helix, it can also bind to RNA and protein targets. From

Tables 7 to 9 we can see that ZNF160 is inversely associated during different courses of these

two diseases with the increasing in AD and declining in BC. Although the regulatory direc-

tions of these TFs are different in different states, even in different regions for the same disease,

they play important roles in many immunological disorders including regulatory processes in

inflammation, apoptosis, cellular response, innate and adaptive immune response. Consider-

ing the diverse changes in the different datasets of diseases, deep analysis is needed based on

more numbers of microarray datasets and more detailed molecular biology research.

Table 7. The TFs with inverse activities of incipient AD and BC in grade I.

TFs Description AD incipient BC gradeI

ASH1L ash1 (absent, small, or homeotic)-like (Drosophila) " #

CFLAR CASP8 and FADD-like apoptosis regulator " #

ZNF160 zinc finger protein 160 " #

CIRBP cold inducible RNA binding protein # "

HMGB3 high-mobility group box 3 # "

WDR1 WD repeat domain 1 # "

https://doi.org/10.1371/journal.pone.0180337.t007

Table 8. The TFs with inverse activities of moderate AD and BC in grade II.

TFs Description AD moderate BC gradeII

SSRP1 structure specific recognition protein 1 " #

ZNF160 zinc finger protein 160 " #

CIRBP cold inducible RNA binding protein # "

LPP LIM domain containing preferred translocation partner in lipoma # "

MATR3 martin 3 # "

https://doi.org/10.1371/journal.pone.0180337.t008
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Conclusions

Accumulating epidemiological evidence and meta-analysis data suggest that there is a strong

inverse correlation between AD and cancer. This suggests that there are shared genes or bio-

logical pathways regulated by both AD and cancer with dramatically different directions.

Some significant genes and signaling pathways play critical but opposing roles in both AD and

BC, such as p53 and Pin1; the Wnt, ERK/MAPK, and UPS signaling pathways; and some bio-

logical processes associated with metabolic dysregulation, such as oxidative stress, DNA dam-

age/repair, aerobic glycolysis, inflammation and cellular immunity. Convincing evidence

suggests that both AD and cancer are age-related immune dysregulation diseases and that age

plays a crucial role in their pathogenesis. We know that high-throughput DNA microarray

datasets can successfully investigate hundreds of thousands of gene expression profiles simul-

taneously; the high-dimensional data are typically the regulatory results of a small set of TFs

through an interacting network. However, high-throughput technologies that measure TF

activities are not yet available on a genome-wide scale. Therefore, some statistical computa-

tional methods were applied in this study to deduce the biologically significant information

and underlying transcriptional regulatory structure for the inverse regulatory mechanisms

between AD and BC. Based on our current understanding of the innate and adaptive immune

system in neurodegenerative diseases and cancer, we focused on the contribution of inverse

TFs in the present study to determine the immune balance and pathogenesis of AD and BC.

To identify the significant differential genes shared in AD and BC, FastICA was first applied

to microarray datasets from these two diseases. Our previous studies showed that as an unsu-

pervised matrix decomposition technique, FastICA preceded PCA and NMF in capturing the

potential biological processes via a statistically independent assumption. Second, NCA was

performed to determine the activities of the shared TFs and regulatory influences on TGs

because understanding dynamic TF regulation is a key component of understanding disease

pathogenesis. Based on the NCA results, dynamic gene regulatory networks were recon-

structed for AD and BC, from which the inverse regulatory activities of TFs were clearly

revealed. There were 17 TF activities with regulatory control strength acting on 166 TGs.

Among them, 10 significant TFs, including TFs: ASH1L, CFLAR, CIRBP, HMGB3, LPP,

SMARCA4, SSRP1, WDR1 and ZNF160, displayed inverse regulatory activities between AD

and BC, where the activities increased in AD and decreased in BC. Conversely, the activity of

the TF MATR3 decreased in AD and increased in BC.

From the molecular biological analysis, we found that all 10 inversely associated TFs were

closely related to cytokines and played important roles in the innate immunity, especially the

adaptive immune response. For example, TFs, such as ASH1L, CFLAR, HMGB3, ZNF160

and MATR3, displayed opposite behaviors on some cytokines; inflammatory factors; nuclear

and tumor factors, such as IL-2, IL-6, NF-κB, and Irf3; immunogenic nucleic acids; papilloma-

virus E7/E6; caspase-3/caspase-8; Toll-like receptor; and so on. Among them, the activities

of ASH1L, CFLAR, HMGB3 and ZNF160 increased in AD and declined in BC; conversely,

the activities of MATR3 decreased in AD and increased in BC. Furthermore, some typical

Table 9. The TFs with inverse activities of severe AD and BC in grade III.

TFs Description AD severe BC grade III

CIRBP cold inducible RNA binding protein " #

SSRP1 structure specific recognition protein 1 " #

ZNF160 zinc finger protein 160 " #

HMGB3 high-mobility group box 3 # "

https://doi.org/10.1371/journal.pone.0180337.t009
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biological pathways related to the adaptive immune response were revealed by the recon-

structed transcriptional regulatory networks based on the NCA results. These immune-related

biological processes included the Wnt and MAPK signaling pathways, apoptosis, myeloid dif-

ferentiation, neuroinflammation, B-cell differentiation, T cell-mediated immune responses,

pathogen recognition and activation of innate immunity by cytokines, which are regulated by

the same TFs, including CIRBP, LPP, SMARCA4, SSRP1 and WDR1, in both AD and BC, but

in different directions. The experiments on two additional AD and BC datasets with different

grades also show that the inverse associations of these TFs exists in the whole process of the

diseases and play important roles in the deterioration of diseases. We believe that uncovering

the inverse associations of cytokines and adaptive immune response in our work will add sig-

nificant contributions to diagnosis, immunotherapy and pathogenic discovery in both AD and

BC. The transcriptional regulatory mechanisms for the inverse associations between AD and

BC, as well as many other prevalent cancers based on immune dysregulation, will be investi-

gated further in our future studies.
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