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Abstract

Purpose

Metastatic breast cancer (MBC) progressing after endocrine therapy frequently activates

PI3K/AKT/mTOR pathway. The BOLERO-2 trial showed that everolimus-exemestane

achieves increased progression free survival (PFS) compared with exemestane. However,

there is great inter-patient variability in toxicity and response to exemestane-everolimus

treatment. The objective of this study was to perform an exploratory study analyzing the

implication of single nucleotide polymorphisms (SNPs) on outcomes from this treatment

through a pharmacogenetic analysis.

Patients and methods

Blood was collected from 90 postmenopausal women with hormone receptor-positive,

HER2-negative MBC treated with exemestane-everolimus following progression after prior

treatment with a non-steroidal aromatase inhibitor. Everolimus pharmacokinetics was mea-

sured in 37 patients. Twelve SNPs in genes involved in everolimus pharmacokinetics and

pharmacodynamics were genotyped and associations assessed with drug plasma levels,

clinically relevant toxicities (non-infectious pneumonitis, mucositis, hyperglycemia and

hematological toxicities), dose reductions or treatment suspensions due to toxicity, progres-

sion free survival (PFS) and overall survival.

Results

We found that CYP3A4 rs35599367 variant (CYP3A4*22 allele) carriers had higher everoli-

mus blood concentration compared to wild type patients (P = 0.019). ABCB1 rs1045642

was associated with risk of mucositis (P = 0.031), while PIK3R1 rs10515074 and RAPTOR

rs9906827 were associated with hyperglycemia and non-infectious pneumonitis (P = 0.016
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and 0.024, respectively). Furthermore, RAPTOR rs9906827 was associated with PFS (P =

0.006).

Conclusions

CYP3A4*22 allele influenced plasma concentration of everolimus and several SNPs in

PI3K/AKT/mTOR pathway genes were associated with treatment toxicities and prognosis.

These results require replication, but suggest that germline variation could influence everoli-

mus outcomes in MBC.

Introduction

Breast cancer is a life-threatening disease and is the second leading cause of cancer death

among women. It has been estimated that in 2017 there will be 255,180 newly diagnosed breast

cancer cases in the US, and approximately 40,610 women will die from breast cancer[1].

Although metastatic breast cancer is diagnosed in only 5% of cases at presentation, nearly one

third of breast cancer patients with non-metastatic tumors will eventually develop metastases

[2].

Breast cancer is considered a genetically heterogeneous and biologically diverse disease.

Endocrine therapies that target estrogen receptor (ER) signaling pathways for ER-positive dis-

ease and HER2-targeted therapies for HER2-positive disease play a critical role in the treat-

ment of most patients with breast cancer. For patients with ER-positive advanced breast

cancer, endocrine therapy is the recommended initial treatment. Since most patients eventu-

ally develop resistance to these therapies, the guidelines recommend another endocrine agent

when initial therapy fails [3].

Recent advances in elucidating the molecular mechanisms of disease progression have iden-

tified the existence of adaptive ‘‘cross-talk” between the ER and various growth factor receptor

and intracellular signaling pathways, allowing breast cancer cells to escape the inhibitory

effects of endocrine therapy[4]. These findings provide clinical rationale for enhancing or

extending endocrine sensitivity by combining endocrine therapy with a targeted agent against

compensatory pathways. The PI3K/AKT/mTOR pathway is a crucial mediator of tumor pro-

gression [5,6,7]. As the PI3K/Akt/mTOR pathway is heavily deregulated in breast cancer [8,9],

inhibitors of mTOR are of interest as potential therapeutic agents for breast cancer patients,

with everolimus and temsirolimus being the key drugs considered (S1 Table).

Robust clinical evidence favoring the use of everolimus plus exemestane rather than exe-

mestane alone was demonstrated by the BOLERO-2 trial, a phase 3 study in postmenopausal

women with ER-positive, HER2-negative advanced breast cancer progressing or recurring

during or following treatment with non-steroidal aromatase inhibitors (AI) (S1 Table). In

addition, PFS benefits were consistent across patient subgroups defined by age, race, presence

of visceral metastases, and prior chemotherapy [10,11,12].

The greater PFS benefit associated with everolimus plus exemestane was accompanied by

increased toxicity, including a higher incidence of mTOR-inhibitor class-effect adverse events

(AEs) such as stomatitis, non-infectious pneumonitis (NIP) and hyperglycemia, as well as

higher incidences of hematologic toxicity, asthenia, fatigue, and weight loss. Most of these

adverse events were mild to moderate in severity, and were generally manageable by dose

reduction or interruption. In the BALLET expanded-access study (CRAD001YIC04), the pri-

mary reason for discontinuation during the first 3 months of treatment was AEs; for 16% of
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patients, treatment was discontinued due to toxicity. The most frequent drug-related AEs of

grade 3 or more were stomatitis (10%), hyperglycemia (4%), asthenia (6%) and NIP (2%)[13].

A retrospective exploratory analysis of tumor tissue was unable to identify any predictive

biomarkers of everolimus efficacy in patient subgroups defined by each of the 4 most fre-

quently altered genes/pathways, when assessed individually (PIK3CA, CCND1, TP53 and

FGFR1). Patients with low levels of markers of chromosomal instability had better PFS [14].

No studies to date have evaluated the contribution of germline variants to everolimus treat-

ment outcome in MBC, although some have assessed a limited number of polymorphisms in

patients with other types of tumors [15,16].

Thus, there is an urgent need to identify patients that will have early relapse or severe toxici-

ties from everolimus-exemestane, leading to discontinuation of treatment. We carried out an

exploratory study with the aiming of defining the impact of germline variation on outcomes

following everolimus-exemestane treatment. For this purpose we recruited MBC patients

treated with this therapy. We genotyped twelve SNPs in genes involved in everolimus metabo-

lism and transport and genes in the PI3K/AKT/mTOR pathway, and evaluated their associa-

tion with everolimus pharmacokinetics and toxicity and survival.

Materials and methods

Patients

All patients were treated at the 12 de Octubre University Hospital, the hospital institutional

ethics committee approved the study in accordance with the principles of Good Clinical Prac-

tice, the Declaration of Helsinki, and other applicable local regulations. Written informed con-

sent was obtained from all patients before enrollment.

All patients had locally advanced or MBC and were previously exposed to AI in either the

neoadjuvant/adjuvant or palliative setting. Eligible patients were postmenopausal women with

ER-positive, HER2–non-amplified, advanced breast cancer whose disease was refractory to

previous letrozole, anastrozole or exemestane. Letrozole, anastrozole or exemestane did not

have to be the most recent treatment before enrollment, but recurrence or progression during

receipt of the most recent systemic therapy had to be documented. Patients who had previ-

ously received other anticancer endocrine treatments or prior chemotherapy regimens for

advanced disease were included. Patients also had to have an Eastern Cooperative Oncology

Group (ECOG) performance status of 2 or less and adequate organ and hematologic functions.

Exclusion criteria included previous treatment with mTOR inhibitors.

All patients were treated on an outpatient basis until disease progression or dose-limiting

toxicity occurred. All patients had treatment initiated with a daily oral dose of 5 or 10 mg of

everolimus and 25 mg of exemestane. Two dose reductions were allowed for grade 3 or higher

hematologic or non-hematologic toxicities related to everolimus, or grade 2 for NIP.

DNA isolation, SNP selection and genotyping

Blood samples for DNA isolation were collected from patients in treatment with exemestane-

everolimus in any time of the treatment. Genomic DNA was isolated from peripheral blood

using the FlexiGene DNA Kit (Qiagen, Valencia, CA, USA). DNA concentration was quanti-

fied by PicoGreen (Invitrogen, Carlsbad, CA, USA).

Twelve SNPs located in genes involved in everolimus metabolism (CYP3A4, CYP3A5 and

CYP2C8)[17] or everolimus transport (ABCB1)[17] or in genes belonging to the PI3K/AKT/mTOR

pathway (FGFR4, PHLPP2, AKT2, PIK3R1, RAPTOR and AKT1)[18,19,20]were selected for geno-

typing taking into consideration the allele frequency and evidence of functionality (Table 1). The
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latter included published data showing altered activity and/or expression. Reported associations

with survival for patients with other tumor types were also considered.

Genotyping was carried out on 15 ng of genomic DNA using the KASPar Technology

(KBioscience, UK) and including DNA samples with known genotypes and negative controls.

The Sequence Detection System ABI PRISM1 7900HT (Applied Biosystems) was used for the

detection of fluorescence and allele assignment. The allele frequencies of the SNPs were similar

to those described for Caucasians in1000 Genomes Project and all SNPs had P-values >0.05

Table 1. SNPs included in the study and their genotype frequencies.

Gene Gene category SNP Variant type MAF Genotype

countsa
Reference for selection

CYP3A4 Everolimus metabolizing enzyme rs35599367 C>T Intronic 0.04 C/C 83 (93%) [17], [21]

C/T 6 (7%)

T/T 0 (0%)

CYP3A5 Everolimus metabolizing enzyme rs776746 G>A Intronic (splicing defect) 0.07 G/G 76 (85%) [17,22]

G/A 13 (15%)

A/A 0 (0%)

CYP2C8 Everolimus metabolizing enzyme rs11572080 G>A Missense (R139K) 0.12 G/G 64 (71%) [17,23]

G/A 23 (26%)

A/A 3 (3%)

ABCB1 Everolimus transporter rs1045642 C>T Synonymous (I1145I) 0.41 C/C 20 (24%) [17,24,25]

T/C 48 (56%)

T/T 17 (20%)

ABCB1 Everolimus transporter rs1128503 C>T Synonymous (G412G) 0.40 C/C 30 (34% [17,25]

C/T 39 (45%)

T/T 18 (21%)

ABCB1 Everolimus transporter rs2032582 G>T Missense (A893S) 0.35 G/G 28 (32%) [17,25]

G/T 46 (53%)

T/T 13 (15%)

FGFR4 mTOR pathway rs351855G>A Missense (G388R) 0.29 G/G 48 (55%) [15]

G/A 35 (40%)

A/A 5 (6%)

PHLPP2 mTOR pathway rs61733127 T>C Missense (L1016S) 0.16 T/T 61 (69%) [16]

T/C 25 (28%)

C/C 3 (3%)

AKT2 mTOR pathway rs3730050 G>A Intronic 0.27 G/G 37 (42%) [26]

G/A 43 (48%)

A/A 9 (10%)

PIK3R1 mTOR pathway rs10515074 A>G Intronic 20 A/A 64 (71%) [26]

A/G 24 (27%)

G/G 2 (2%)

RAPTOR mTOR pathway rs9906827 C>T Intronic 49 C/C 24 (27%) [26]

C/T 44 (50%)

T/T 20 (23%)

AKT1 mTOR pathway rs2494732 A>G Intronic 43 A/A 30 (34%) [27]

A/G 46 (52%)

G/G 13 (15%)

MAF: minor allele frequency in this study.
aThe number of genotyped patients was 90, but some samples failed genotyping for individual SNPs.

https://doi.org/10.1371/journal.pone.0180192.t001
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for Hardy–Weinberg equilibrium, except ABCB1 rs2032582 with a minor deviation (P = 0.03).

After reviewing the cluster plots, this SNP was included in the analysis.

Pharmacokinetics

The pharmacokinetic (PK) profile of everolimus was studied by analyzing blood concentration

levels in individual samples. Blood samples for pharmacokinetic studies were collected from

patients at 1 time point, on day 14 of the first month of treatment. All samples were collected

in ethylenediaminetetraacetic acid-containing tubes.

Everolimus concentrations were determined using a chemiluminescentmicroparticle

immunoassay (CMIA) by cross-reaction with anti-Sirolimus antibodies, on the Architect

i2000SR System (Abbott). Prior to the analysis, a manual pre-treatment step was performed

in which the whole blood sample was extracted using a precipitation reagent, then heated

(42˚C, 10 minutes) and centrifuged (11800 rpm, 4 minutes). The clear supernatant was

decanted into a transplant pretreatment tube and analyzed using an Architect i2000SR ana-

lyzer. The calibration range of the assay was 0.0–30.0 ng/mL with a sensitivity of 1 ng/mL.

The samples that had a concentration greater than 30 ng/ mL were diluted with Calibrator

A and retested.

Outcomes

AEs were recorded from the patients’ medical records retrospectively. Toxicity event was

defined as the termination, temporary interruption and/or dose reduction of everolimus.

Adverse events were graded using the National Cancer Institute Common Terminology Crite-

ria for Adverse Events, Version 4.03 (NCI CTCAE). The efficacy of everolimus treatment was

defined as PFS defined as the time elapsed between treatment initiation by everolimus and

tumor progression or death from any cause. Tumor response was determinated at 6 to 12

weeks using Response Evaluation Criteria in Solid Tumors (RECIST) (version 1.1) by each

investigators. Patients without documented clinical o radiographic disease progression were

censored on the date of the last follow-up. OS was defined as the time elapsed between treat-

ment initiation by everolimus and death from any cause.

The following clinical data were collected from the date of cancer diagnosis to the end of

the study: demographic characteristics; number of metastases and their localization; cancer

treatment (adjuvant hormonotherapy or chemotherapy; number of hormonotherapy lines in

metastatic situation and number of chemotherapy lines in metastatic situation prior to everoli-

mus treatment; everolimus treatment, everolimus initiation, initial dose, date and reason for

everolimus termination, temporary(s) interruption(S) and/or dose reduction(S); biological

results (hemoglobin, platelets, white cells, neutrophils, albumin, glycaemia, transaminases);

presence of AEs.

Statistical analysis

Associations between SNPs and everolimus concentrations were assessed using Mann-Whit-

ney-U test. Associations with a selection of clinically relevant toxicities (NIP, mucositis, hyper-

glycemia, leukopenia, lymphopenia and thrombopenia) were assessed using logistic regression.

Cox regression was applied to study the associations between SNPs and time to treatment modi-

fications (treatment dose reduction or treatment interruption due to toxicity), PFS and OS.

Factors associated with the outcome variable under study with a P value <0.1 in univariate

analyses were included as covariates in multivariable analyses; when no factors reached this

threshold, relevant clinical factors were included as covariates, as indicated in the text. An

additive (per-allele) genetic model was assessed initially, and for those with P<0.1, alternative
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genetic models were explored. SPSS v.19 was used for all statistical analyses. P-values less than

0.05 were considered statistically significant.

Results

Patient characteristics

A total of 90 women were recruited from October 2011 through January 2015. Baseline charac-

teristics are described in Table 2. For 11 patients the starting dose of everolimus was 5 mg. The

median duration of treatment with everolimus was 204 days (range, 13–815 days). Adverse

events were consistent with those previously described and are listed in S2 Table.

Everolimus pharmacokinetics

Pharmacokinetic analysis was carried out using data from 37 patients who had PK data on day

14 of the first everolimus cycle. At this time point, the median concentration of everolimus

was 30.5 ng/mL (SD = 27.5) with a minimum of 2.8 ng/mL and a maximum of 130.6 ng/mL.

Of the 6 SNPs involved in everolimus metabolism (CYP3A4, CYP3A5 and CYP2C8 genes) and

transport (ABCB1), only CYP3A4 rs35599367 (CYP3A4�22 allele) showed a statistically signifi-

cant association with everolimus concentration (P = 0.019). CYP3A4�22 variant carriers

(n = 4) had 2.7-fold higher everolimus concentration compared to wild type patients (median

Table 2. Baseline demographic and clinical characteristics.

Characteristic N (%)*

Median age (range), in years 62 (37–84)

Visceral involvement 55 (61)

Liver 36 (40)

Bone 38 (42)

>3 metastatic sites 37 (41)

ECOG performance status

0 71 (79)

1 10 (12)

2 9 (10)

Breast cancer IHC

Estrogen receptor positive 90 (100)

Progesterone receptor positive 75 (84)

Prior hormone therapy in metastatic setting 79 (87)

Median number of lines of therapy (range) 1.5 (0–4)

Anastrozole/letrozole 63 (70)

Fulvestrant 41 (46)

Exemestane 19 (22)

Tamoxifen 23 (26)

Prior chemotherapy in metastatic setting 45 (50)

Median number of lines of therapy (range) 2.4 (0–7)

Taxanes 18 (20)

Antracyclines 17 (19)

Capecitabine 32 (36)

IHC, immunohistochemistry

* Unless otherwise indicated

https://doi.org/10.1371/journal.pone.0180192.t002
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of 69.1ng/mL versus 25.7 ng/mL, respectively; Fig 1). For CYP3A5�1 carriers (n = 4) we found

no significantly differences.

Everolimus toxicities

Of the 90 patients recruited in the study, 69 (76%) experienced at least one adverse event

related to everolimus, 43 patients (48%) required a dose reduction to 5 mg daily and 6 (7%)

required a second dose reduction to 2.5 mg daily. Eight patients (9%) discontinued treatment

due to stomatitis, NIP, fatigue or thrombocytopenia (three, three, three and one patient,

respectively). Two patients (2%) died due to AEs, but only one event (NIP) was considered

drug-related (S2 Table).

The analysis of time to treatment modification due to toxicity showed a trend (HR = 0.58,

95%CI = 0.33–1.01, P = 0.056) for FGFR4 rs351855 under an additive genetic model (Table 3).

The association under a dominant model was statistically significant for both univariate

(HR = 0.50, 95%CI = 0.27–0.93; P = 0.028) and multivariable analyses, the latter correcting for

age at diagnosis (HR = 0.52, 95%CI = 0.28–0.97, P = 0.040).

Associations between SNPs and clinically relevant everolimus toxicities were detected using

logistic regression analysis (Table 3). For mucositis, patients with the T-allele of ABCB1 rs104

5642 had higher risk of toxicity (OR = 2.30, 95%CI = 1.08–4.77, P = 0.031; multivariable analy-

sis). The A-allele of RAPTOR rs9906827 was associated with lower risk of non-infectious pneu-

monitis (OR = 0.38, 95%CI = 0.16–0.88, P = 0.024; multivariable analysis). The minor allele

of PIK3R1 rs10515074 was associated with reduced risk of hyperglycemia (OR = 0.24, 95%

Fig 1. Box plot representing everolimus blood concentration by CYP3A4 rs35599367 (CYP3A4*22)

genotype. “C/C” corresponds to CYP3A4*22 wild type patients (n = 33), and “C/G” to CYP3A4*22

heterozygous carriers (n = 4). Comparison between groups was performed using the Mann-Whitney-U test.

https://doi.org/10.1371/journal.pone.0180192.g001
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CI = 0.07–0.76, P = 0.016), but increased risk of leucopenia (OR = 5.03, 95%CI = 1.89–13.35,

P = 0.001); there was also a trend with lymphopenia (OR = 2.48, 95%CI = 0.92–6.69,

P = 0.073), all in multivariable analysis. ABCB1 rs2032582 was significantly associated with

lymphopenia risk (OR = 2.23, 95%CI = 1.07–4.67, P = 0.033; multivariable analysis). No SNPs

were associated with thrombocytopenia.

Progression-free survival and overall survival in metastatic breast cancer

The minor allele of RAPTOR rs9906827 was associated with longer PFS in univariate Cox

regression analysis both in an additive and dominant genetic model (HR = 0.65, 95%

CI = 0.45–0.94, P = 0.023 and HR = 0.49, 95%CI = 0.29–0.82, P = 0.007, respectively; Fig 2).

After the inclusion of age, number of previous chemotherapy lines (Fig 2), number of previous

lines of hormone-therapy and presence of previous visceral disease, the association remained

statistically significant with no substantial changes in estimated HRs or P-values. No SNPs

were significantly associated with OS.

Discussion

The BOLERO-2 trial demonstrated a clinically meaningful improvement in PFS with everoli-

mus plus exemestane therapy in patients with ER–positive/HER2-negative advanced breast

cancer [10,11].Despite these encouraging results, not all patients benefit from everolimus, and

an optimal target patient population for this drug is yet to be defined. Moreover, the benefits

of treatment with everolimus come with an increased incidence of mTOR inhibitor-associated

toxicities. Thus, there is an urgent need for biomarkers that can predict response to everolimus

and better define the ideal target patient group.

Germline variants have previously been shown to be accurate biomarkers of drug toxicities,

and their stability over a subject´s life and easy assessment make them especially attractive.

The aim of this study was to explore whether germline variants are implicated in everolimus

toxicity and response to treatment. We performed a pharmacogenetic analysis using 90 MBC

patients treated with exemestane-everolimus, including a subset in which their PK profile was

determined. To the best of our knowledge, this is the first study investigating germline predic-

tors of exemestane-everolimus outcome in MBC. The impact on everolimus activity of SNPs

located in PI3K/AKT/mTOR pathway genes and the alteration of everolimus plasma concen-

tration caused by theCYP3A4�22variant, point towards germline variation as a relevant factor

Table 3. SNPs associated with toxicity.

Toxicity Gene SNP ID Genetic model Univariate analysis Multivariable analysisa

OR 95% CI P value OR 95% CI P value

Time to treatment modifications due to toxicity FGFR4 rs351855 G>A Additive 0.58 0.33–1.01 0.056 0.60 0.35–1.06 0.077

Dominant 0.50 0.27–0.93 0.028 0.52 0.28–0.97 0.040

Leucopenia PIK3R1 rs10515074 A>G Additive 4.67 1.80–12.1 0.0015 5.03 1.89–13.4 0.0012

Hyperglycemia PIK3R1 rs10515074 A>G Additive 0.39 0.16–0.95 0.037 0.24 0.07–0.76 0.016

Pneumonitis RAPTOR rs9906827 C>T Additive 0.40 0.18–0.91 0.028 0.38 0.16–0.88 0.024

Mucositis ABCB1 rs1045642 C>T Additive 2.11 1.02–4.37 0.043 2.27 1.08–4.77 0.031

Lymphopenia ABCB1 rs2032582 G>T Additive 2.33 1.12–4.81 0.023 2.23 1.07–4.67 0.033

aThe multivariable analysis performed for time to treatment modifications, mucositis, pneumonitis, hyperglycemia, leucopenia and lymphopenia included the

following covariates: age, presence of visceral disease, previous pneumonitis events, diabetes mellitus status, number of previous chemotherapy lines and

number of previous chemotherapy lines, respectively.

https://doi.org/10.1371/journal.pone.0180192.t003
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influencing everolimus outcomes in MBC. These results warrant replication in prospective

patient series.

Everolimus is used in transplant recipients, tuberous sclerosis complex and metastatic

breast, kidney and neuroendocrine pancreas cancer. The transplantation literature includes

numerous associations between polymorphisms in genes encoding drug metabolizing

enzymes and drug transporters and the pharmacokinetics of immunosuppressive drugs (e.g.

tacrolimus, cyclosporine, everolimus). Most of these studies have been retrospective in design

and the most relevant associations correspond to variants in CYP3A5 and ABCB1[28,29],

[30,31], however, most studies of everolimus pharmacokinetics have given negative results

[32,33,34,35]. In this study, we found that CYP3A4�22 resulted in significantly higher plasma

levels of everolimus, consistent with the decreased activity caused by the CYP3A4�22 allele

[21], while no effect was detected for CYP3A5�3 with the same number of carrier patients This

Fig 2. Kaplan-Meier curve for progression free survival by RAPTOR rs9906827 genotype. P-value

corresponds to Cox regression analysis under a dominant genetic model including the number of previous

chemotherapy lines as covariate. HR, hazard ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0180192.g002
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suggests a greater influence of CYP3A4�22 than CYP3A5�3 in everolimus pharmacokinetics, at

least in MBC patients. Furthermore, everolimus dosing in cancer is much higher than in trans-

plant patients (i.e. 5–10 mg/day versus 2-5mg/day), thus, it is conceivable that in the cancer

setting, CYP3A4�22 might exert a greater and more clinical relevant effect on drug toxicity

than in the transplant setting. In this study we did not find statistically significant differences

in the toxicities evaluated for CYP3A4�22 variant carriers, however, only 6 carriers were identi-

fied, giving low statistical power. Thus, further studies are needed to clarify the impact of

CYP3A4�22 on everolimus toxicity.

Class-effect toxicities during mTOR inhibitor therapy are well characterized. The most

common adverse events observed in everolimus clinical trials include stomatitis (50%), rash

(40%), immunosuppression (40%), NIP (15%) and hyperglycemia (15%) [10,36,37,38,39].

Treatment modifications guided by biomarkers predictive of toxicity could minimize severe

toxicities and increase optimal outcomes. SNP rs10515074 in PIK3R1, a gene encoding the 85

kD regulatory subunit of phosphatidylinositol 3-kinase enzyme, which is an upstream member

that triggers thePI3K/AKT/mTOR signaling pathway, was associated with hyperglycemia and

leucopenia. This variant has previously been associated with survival in muscle invasive and

metastatic bladder cancer patients [40]. Furthermore, RAPTOR (regulatory associated protein

of mTOR) has a positive role in nutrient signaling and in the control of cell size[41], and its

intronic variant rs9906827 has been found to be associated with survival in muscle invasive

and metastatic bladder cancer patients [40]. In our study in breast cancer patients treated with

exemestane and everolimus, a statistically significant association in the same direction (variant

allele associated with better outcome) was observed for RAPTOR rs9906827 and PFS. Thus, our

results suggests that constitutive variation in the PI3K/AKT/mTOR pathway could result in alter-

ation in susceptibility to toxicities caused by drugs inhibiting this pathway and also exert an effect

in tumor outcome during treatment. In addition, SNPs in ABCB1 were associated with increased

risk of mucositis (rs1045642) and lymphopenia (rs2032582). These associations remained signifi-

cant after multivariable analysis, and warrant validation in an independent series.

Key limitations affecting our study were the limited sample size and the lack of replication

in an independent prospective study. However, this is a first exploratory study aimed at gener-

ating hypothesis, and with the exception of CYP3A4�22 allele, the SNPs associated with everoli-

mus outcome have a relative high allele frequency, increasing the power of the study. Another

limitation was that schedule and dose modifications were not dictated by protocol (they reflect

real life drug management), and the timing for radiological assessments was determined by

individual clinicians. Thus, courses of treatment were not standardized and outcomes were

assessed with regard to clinical practice.

In conclusion, this is the first study exploring the impact of germline variation on exemes-

tane-everolimus outcome in MBC. Our results provide evidence that the CYP3A4�22variant

influences everolimus PK and suggest that polymorphisms in ABCB1 and PI3K/AKT/mTOR

pathway genes could influence everolimus toxicity and response in MBC. These results require

replication in an independent prospective series. If confirmed, these genetic variants could be

used to inform individualized metastatic breast cancer treatment.
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