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Abstract

In phase II platform trials, ‘many-to-one’ comparisons are performed when K experimental

treatments are compared with a common control to identify the most promising treatment(s)

to be selected for Phase III trials. However, when sample sizes are limited, such as when

the disease of interest is rare, only a single Phase II/III trial addressing both treatment selec-

tion and confirmatory efficacy testing may be feasible. In this paper, we suggest a two-step

safety selection and testing procedure for such seamless trials. At the end of the study,

treatments are first screened on the basis of safety, and those deemed to be sufficiently

safe are then taken forwards for efficacy testing against a common control. All safety and

efficacy evaluations are therefore performed at the end of the study, when for each patient

all safety and efficacy data are available. If confirmatory conclusions are to be drawn from

the trial, strict control of the family-wise error rate (FWER) is essential. However, to avoid

unnecessary losses in power, no type I error rate should be “wasted” on comparisons which

are no longer of interest because treatments have been dropped due to safety concerns.

We investigate the impact on power and FWER control of multiplicity adjustments which cor-

rect efficacy tests only for the number of safe selected treatments instead of adjusting for all

K null hypotheses the trial begins testing. We derive conditions under which strict control of

the FWER can be achieved. Procedures using the estimated association between safety

and efficacy outcomes are developed for the case when the correlation between endpoints

is unknown. The operating characteristics of the proposed procedures are assessed via

simulation.

1 Introduction

Clinical trials are often complex and costly undertakings, and many patients may be required

to reach a conclusion on whether a new therapy is efficacious. One way to reduce the logistical

burden of drug development is to simultaneously study K novel treatments within a single

multi-arm trial which also includes a common control arm. Comparing treatments with the

same control group can yield substantial reductions in sample size because only one control is
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needed compared with the K control groups that would be needed by K independent two-arm

trials [1]. Such Phase II platform trials are particularly appealing as an efficient way to identify

effective treatments for small populations, when reasonable numbers of patients can be chal-

lenging to recruit [2, 3]. In principle, multi-arm trials are appropriate for evaluating not only

different treatments but also different patient subgroups, doses, etc.

Once promising treatments have been identified, they are then traditionally taken forwards

to separate, confirmatory, Phase III trials. In this paper, we consider the design of a single-

stage Phase II/III trial intended to address both treatment selection and confirmatory efficacy

testing. Traditionally, confirmatory trials must ensure the family-wise error rate (FWER),

defined as the probability of claiming efficacy for at least one ineffective treatment, is con-

trolled at a suitably small level, which we denote by αnom [4] (for example, αnom = 0.05 or

αnom = 0.025 for two-sided and one-sided tests, respectively), for every configuration of inef-

fective treatments. The chance of making a false claim of efficacy for at least one treatment will

increase as K increases if the null hypothesis associated with each experimental treatment is

naively tested at local level αnom [5]. Multiple comparison procedures are regularly applied to

correct the local significance level at which each hypothesis test is performed to ensure that

strong control of the FWER level is maintained. When the primary efficacy endpoint is contin-

uous, a standard parametric procedure which accounts for the correlation structure induced

by the common control is the Dunnett test [6]. Under this and other methods (see, for exam-

ple, [7]), the reduction in the local significance level becomes more severe as the number of

comparisons increases [8–10].

Safety is of paramount importance in all phases of drug development. Suppose that at the

end of the Phase II/III trial, treatments may be abandoned due to safety concerns before being

tested for efficacy. Should one or more treatment arms be dropped in this way, when testing

the efficacy of the remaining treatments relative to control it would seem natural to perform

multiplicity corrections based only on the number of remaining treatments. Intuitively, it

seems unreasonable to spend parts of the overall nominal significance level on treatments for

which null hypotheses are not tested.

We will demonstrate that, in general, such a procedure (which selects safe treatments in a

data-driven way and then performs a multiplicity correction based on the remaining treat-

ments) will not control the FWER. However, we state sufficient conditions under which this

procedure does control the FWER; this will provide reassurance to clinical trialists should they

adopt designs satisfying these criteria. Furthermore, we propose a testing procedure which

maintains adequate FWER control should the sufficient conditions fail to hold. Throughout

this manuscript we restrict attention to the case where toxicity and efficacy are both measured

by normally distributed variables (where lower toxicity but higher efficacy measurements are

more favourable), a framework already used in similar settings [11–13].

Continuous safety parameters are often closely connected to the treatment of a patient. For

example spironolactones that are used in the treatment of patients with high blood pressure

with spironolactones, attention has to be paid on blood potassium levels, where increased lev-

els can lead to abnormal heart rhythms and in severe cases to cardiac arrests [14]. Another

example concerns treatments with agomelatine, a melatonergic antidepressants. Raised levels

of transaminases which indicate liver damage, are a contraindication and a prespecified reason

to discontinue a treatment using Valdoxan (a trade name of agomelatine) [15]. Another rele-

vant continuous safety parameter in drug development is the assessment of the QT-time, a

time interval in the electrical cycle of the heart [16]. A QT-time prolongation is especially rele-

vant in psychoactive drugs [17]. In all of the aforementioned examples, certain continuous

parameters are important to judge the safety and therefore the usefulness of a medicine.
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On the other hand multi arm trials are increasingly demanded in modern clinical research

[1–3]. In [18] an extensive list on multi arm trials published in 2009 is included, where 221 tri-

als with 3 or more arms reported to have a parallel group design. Another example of a multi

arm trial is [19], a study of Eplerenone (a selective aldosterone blocker intended for treatment

of hypertension), where 417 patients were randomized to 6 Eplerone arms, 1 Spironolactone

arm, and placebo. There the comparisons to placebo (or aldosterone) in serum aldosterion lev-

els, total plasma renin, and active plasma renin were done using the Dunnett test. As an impor-

tant tolerability endpoint, mean changes in blood potassium levels were measured. A further

example is a study of mixed amphetamine salts with extended releae for the treatment of

Attention-Deficit/Hyperactivity Disorder (ADHD) [20]. Efficacy comparisons of 3 treatment

arms to placebo were again done using the Dunnett test. Besides adverse events, safety analysis

included the measurements several continuous safety variable, e.g. mean colesterol decreases

and ECG measurements like the aforementioned QT-time.

These examples show the potential of uses of our two-step approach: the structured combi-

nation of multi-arm trials with safety considerations. In S1 Example, a numerical example will

illustrate this approach.

In Section 2, we present a motivating example which illustrates the testing problem at hand

and introduces the terminology used throughout this article. In Section 3, general notation is

defined and the bivariate normal data model is presented. The concept of maximum FWER
inflation is explained in Section 4. There we also present simulation results which show how

maximum FWERs vary with the correlation between normally distributed toxicity and efficacy

measurements, to see what can go wrong by performing safety selection before efficacy testing.

For the procedure basing multiplicity corrections on the number of selected treatments, it is

proven that the maximum FWER inflation is monotonically increasing for decreasing correla-

tions, and therefore the maximum occurs when the correlation is −1. Then the main result of

this paper is presented, which states that so long as toxicity and efficacy have a non-negative

correlation, safety selection can be applied without inflating the FWER. The proof of this result

can be found in the Appendix. In Section 5, adjustments are proposed for the case when a posi-

tive (or zero) correlation cannot be assumed. A simulation study in Section 6 compares differ-

ent methods with a conservative procedure which always corrects the local signficance levels

of hypothesis tests for all K pre-specified comparisons.

2 Motivating example

Suppose we have three treatment groups indexed by i 2 {1, 2, 3} with corresponding expected

efficacy outcomes μ1, μ2, and μ3, which we wish to compare with a common control (indexed

by i = 0) on which the mean efficacy outcome is μ0. Treatment groups may represent, for

example, different treatment regimens, drugs, or drug levels. For i 2 {1, 2, 3}, the elementary

null-hypothesis Hi: μi − μ0� 0 which states that treatment i is not more efficacious than con-

trol, will be tested against the alternative HA
i : mi � m0 > 0. We reject Hi if the corresponding

test statistic exceeds a pre-specified threshold denoted by bi. Let us assume that the FWER is to

be controlled at a pre-specified level αnom. Then, the decision thresholds b1, b2, and b3 have to

be chosen such that under any configuration J� {1, 2, 3} of true null-hypotheses (indexing

treatments which are not efficacious relative to control), the probability of rejecting at least

one true null-hypothesis is less or equal to αnom. For ease of presentation, suppose that to

achieve FWER control we apply the simple Bonferroni correction. Then we split the nominal

level αnom equally among all elementary null-hypotheses Hi, i.e., each Hi is tested separately at

local significance level αnom/3. In subsequent sections, we will consider the Dunnett test to
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correct for multiple hypothesis testing; however, even under this approach, the arguments pre-

sented in this example remain essentially unchanged.

Safety, as well as efficacy, is an important issue in clinical drug development. If a treatment

appears to be unacceptable on the basis of observed toxicity data, should it still be considered

for efficacy testing? If the answer is no, then the next question is how can we select on the basis

of safety and still control the FWER for efficacy testing? To address this, let us continue with

our example and suppose that at the end of the trial, treatment 3 is considered unsafe. Then it

would seem unnatural to test the remaining hypotheses H1 and H2 at local significance level

αnom/3, since this wastes 1/3 of αnom on a treatment comparison that is no longer of interest.

Although a Bonferroni correction based on the initial number of planned treatment-control

comparisons would be valid in terms of FWER control, regardless of how treatments are

selected, it may result in a conservative procedure. A more natural and less conservative

approach would be to correct for the number of treatment-control comparisons that are actu-

ally performed after safety selection; in our example, this corresponds to testing H1 and H2 at a

multiplicity-adjusted level of αnom/2. We will refer to the former correction for initially

planned treatment-control comparisons as the ‘conservative correction’ and the latter approach

as the ‘natural correction’.

For the remainder of this paper, we will formally distinguish between the safety selection
step, where unsafe treatments are dropped, and the efficacy testing step, where the remaining

sufficiently safe treatments are each compared with a common control. The overall two-step
procedure is then the combination of both steps. Here it is implied, that for each selection of

treatments a multiple testing procedure is defined for this selection.

First focusing on such a multiple testing procedure in the efficacy testing step for treatments

defined by the index set S� {1, 2, 3}, let FWER(S, J) denote its unconditional (i.e. not condi-

tioning on any safety data and thus on how S was derived) probability for rejecting at least one

of the hypotheses Hi, i 2 S \ J. Here J again denotes the set of true null-hypotheses as defined

above. We say that for the efficacy testing step, FWER control is maintained at level αnom if

FWER(S) := maxJ � {1, 2, 3} FWER(S, J)� αnom for all possible subsets S. Given a predefined

safety selection rule, FWERo denotes the FWER of the overall two-step selection and testing

procedure. We say that FWER control for the overall two-step procedure is maintained at level

αnom if FWERo� αnom.

In our example, testing each null hypothesis indexed by S� {1, 2, 3} at significance level

αnom/|S| (here | � | denotes the cardinality of S) leads to FWER(S)� αnom, thus FWER is con-

trolled in the efficacy testing step at level αnom. However for particularly structured data this

does not imply FWERo control. The intuition here is, that if the selection of a treatment for

being tested for efficacy is associated with increased efficacy observations, FWERo can be

increased. This becomes particularly obvious, if for example an (unreasonable) selection pro-

cedure would always select just the most promising treatment in terms of efficacy and there-

fore no correction of the significance level is performed. In contrast, FWER control in the

efficacy testing step implies FWERo control for the conservative correction (where null hypoth-

eses for selected treatments are tested at level αnom/3) because rejection regions in this case do

not depend on which and how many other treatments are selected. Therefore the inclusion of

a selection procedure that precedes efficacy testing, can only reduce the number of false posi-

tive findings.

The main focus of this manuscript is on defining conditions under which the natural cor-

rection in the efficacy testing step leads to FWERo control, and on determining how to adjust

this correction to ensure FWERo control when these conditions do not hold.

Many-to-one comparisons in multi-arm clinical trials
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3 Model specification

As a general framework, we begin by assuming efficacy and toxicity data are normally

distributed.

3.1 General framework

Let I := {1, . . ., K} be the set of all experimental treatments. Denoting the average efficacy out-

come in group i as μi, Hi: μi − μ0� 0, i 2 I defines the elementary hypothesis stating that treat-

ment i cannot be regarded as more efficacious than the control (treatment 0).

We define the indicator τi, where τi = 1 when treatment i is excluded from efficacy testing

on the basis of the observed toxicity data, whereas τi = 0 indicates that treatment i is selected

for efficacy testing. Then

BS :¼
Y

i2S

ð1 � tiÞ �
Y

j2InS
tj

indicates the event that exactly the treatments in the (sub-)set S� I are selected for efficacy

testing, whereas the remaining treatments in I n S are dropped due to safety concerns.

At the end of the two-stage procedure, we represent the test decision on the rejection of an

elementary null hypothesis Hi by a binary indicator. As we have seen from our motivating

example, the final decision rule for a treatment will depend on the safety selection step. For

instance, the natural multiplicity correction depends on the actual number of treatments

selected for efficacy testing, that is, |S|. For each selection set S 2 I, let ZS
i for i 2 S, denote a

binary indicator, where ZS
i ¼ 1 denotes rejection of the ith null hypothesis, otherwise ZS

i ¼ 0.

Here the definition of ZS
i depends on the selection subset, which is reflected by the superscript

S. Since unsafe treatments are not subject to efficacy testing, we set ZS
i ¼ 0 for i 2 I n S, without

performing a statistical test of Hi.

Since J� I denotes the set of all true null-hypotheses,

φS
J :¼ 1 �

Y

i2S\J

ð1 � ZS
i Þ

indicates a type I error has been committed for one of the selected but inefficacious treatments.

The FWER is controlled in the efficacy testing step at level αnom if, for each possible selection

set S� I and each configuration of true null-hypotheses J, it holds that

E½φS
J � ¼ FWERðSÞ � anom, where FWER(S) := maxJ�I FWER(S, J). For the overall two-step pro-

cedure, FWERo is controlled at the nominal level if

X

S2MJ

E½BS � φ
S
J � � anom: ð1Þ

Here MJ :¼ fS � I : S \ J 6¼ ;g contains all possible selections with at least one true null

hypothesis.

If BS and φS
J are independent, then the addends in Eq (1) would decompose to

E½BS � φS
J � ¼ E½BS�E½φS

J �. In this case, FWER control in the efficacy testing step at level αnom

implies FWERo control at the same level, since the sum of the E½BS� is less than or equal to one

Many-to-one comparisons in multi-arm clinical trials
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and therefore Eq (1) holds. In general we have

E½BS � φS
J � ¼ PðBS ¼ 1;φS

J ¼ 1Þ

¼ PðBS ¼ 1jφS
J ¼ 1Þ � PðφS

J ¼ 1Þ

¼ E½BSjφS
J ¼ 1�E½φS

J �;

but the E½BSjφS
J ¼ 1� do not necessarily sum to a value less than or equal to one.

3.2 The bivariate normal model

For the control group (i = 0), all treatment groups i 2 I, and all patients j 2 {1, . . ., ni}, we con-

sider a two dimensional vector of measurements (xij, yij) coming from a bivariate normal dis-

tribution N((μi, θi), S) with S ¼
s2

i risioi

risioi o2
i

" #

. Here xij and yij denote an efficacy and a

toxicity measurement, respectively. Higher values for xij and yij shall be interpreted as higher

efficacy and toxicity, respectively. Pairs of outcomes (xij, yij) are assumed to be independent

across values of i and j. In what follows, let xi and yi denote the ni-dimensional vectors of effi-

cacy and toxicity outcomes measured in group i, respectively.

For the safety selection stage, ti :¼ 1fðby
i ;1Þg
ðTy

i ðyiÞÞ is defined before the start of the trial.

Here Ty
i is a pre-specified function of the group i toxicity data which is compared with the pre-

defined threshold by
i (here 1 denotes the indicator function, so that τi = 1 when by

i < Ty
i ðyiÞ

and 0 otherwise).

For the purposes of efficacy testing, data are summarised by the test statistics Tx
i and the

decision for null hypothesis Hi is given by ZS
i :¼ 1fðbx

i;S;1Þg
ðTx

i ðS;DÞÞ with pre-defined thresh-

olds bx
i;S and D := {x0, . . .,xK}. In our framework these critical thresholds are chosen such that

the FWER(S) is controlled (and therefore depend on the number of treatments in the selected

set S).

In what follows, when determining the efficacy success criteria we will focus on an impor-

tant multiple testing procedure in the many-to-one comparisons framework of normally dis-

tributed variables, namely the Dunnett Test. We will consider the case of equal group

variances (an assumption that will be discussed in Remark 2 in the Appendix), that is

s2
i ¼ s2 8i � I [ f0g, for both the Dunnett test for unknown (DT) and known variances (ZT),

where in the latter case hypothesis test decisions are based on Z-statistics. For both DT and

ZT, FWER(S) is easily determined, since on the one hand the dependence on S is only due to

the number of treatments in S, on the other hand in these cases the simplification of above def-

inition FWER(S) = FWER(S, I) = FWER(S, S) holds. The straightforward definition of DTs or

ZTs for every subset S by using |S| therefore ensures FWER control in the efficacy testing step.

Similar arguments apply also for the Bonferroni correction.

3.3 Example (Cont.)

We continue the motivating example in Section 2, but assume a Dunnett test (with known var-

iance) at one-sided level αnom = 0.025) instead of a Bonferroni correction to correct for multi-

ple comparisons.

In our notation the selection of treatments 1 and 2 would be implied by observing

Ty
i ðyiÞ � by

i for i 2 {1, 2} and by
j < Ty

j ðyjÞ for j = 3. Applying the natural correction in the

efficacy testing step would now require the Dunnett test for two treatments. Assuming for

example a variance of σi = σ = 1 and a group sample size of ni = 22 for i 2 {0, 1, 2} requires

boundaries of bx
1
¼ bx

2
¼ 2:21. In terms of p-values this would correspond to α-levels

Many-to-one comparisons in multi-arm clinical trials
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α1 = α2 = 0.0135. In comparison the conservative procedure would still use the boundaries

bx
1
¼ bx

2
¼ 2:35 (corresponding to α1 = α2 = 0.0094), which are adequate for a Dunnett test

with three treatment-control comparisons

4 FWER of the two-step procedure

In this section the relationship between the within patient correlation of safety and efficacy

measurements and the FWERo is investigated. First, simulation results will be presented for

the case of comparing two treatments groups with a single control and the maximum FWERo

will be calculated for different correlations. Then we will present sufficient conditions which

ensure FWERo control of the overall two-step procedure.

4.1 FWER maximizing correlation

We will show that FWERo control does not necessarily hold if the natural correction is applied

to negatively correlated toxicity and efficacy data. In our scenario, the nominal one-sided sig-

nificance level was fixed at αnom = 0.025. We will consider comparisons of K treatment groups

with a common control assuming patient responses follow the bivariate normal model defined

in Section 3, setting s2
i ¼ 1, for i = 0, 1, . . ., K, and o2

i ¼ 1, for i = 1, . . ., K, without loss of

generality. For simplicity, we also assume equal correlations ρ1 = . . . = ρK = ρ. Basing efficacy

decisions on one-sided two-sample z-tests, to find a clinically relevant effect of μd = 1 with

power 1 − β = 0.9, the per-group sample size is set to n ¼ 2ðz1� a þ z1� bÞ
2
=m2

d.

Similar to [12], we calculate the worst case FWERo of our test procedure for the situation

when all expected responses are zero, that is, when μi = 0, for i = 0, . . . ,K. This is the situation

where for the classical Dunnett test the FWER is maximized. Furthermore we set θi = 0, for

i = 1, . . ., K. We then search across values of the toxicity thresholds by
1; . . . ; by

K for monitoring

test statistics Ty
i ðyiÞ :¼ �y i to find the configuration at which the maximum (worst case)

FWERo.

In Fig 1 (left), values of FWERo maximized for all toxicity parameter configurations and

thresholds are shown for different numbers of treatments K 2 {2, 3, 4} and different correla-

tions ρ 2 (−1, 1) in the ZT situation (where the variances are known). The worst case FWERo is

maximized at ρ = −1 and decreases for increasing correlation until ρ = 0 is reached. For non-

negative correlation, the worst case FWERo is constant at the nominal level αnom.

Fig 1 (left) suggests that the worst case FWERo inflation is maximized at ρ = −1. The follow-

ing theorem provides a general statement about this observation. Here it is again assumed that

Ty
i ¼ �y i, but similar results are also straightforward to prove so long as after transformation of

the data, a multivariate normal distribution is the resulting model.

Theorem 1. Consider the bivariate normal model in Eq (3.1) and let ; 6¼ J� I be the set
indexing inefficacious treatments. Let safety selection be based on the group mean toxicities �y i.

Then the worst case FWERo for the ZT and the DT is reached at ρi = −1, 8i 2 {1, . . ., K}.

A proof of this result can be found in the Appendix.

4.2 FWER control for positive correlation

Fig 1 (left) indicates that a worst case FWERo inflation will not occur if the correlation between

toxicity and efficacy responses is non-negative. Using the concept of association introduced in

[21], we can generalize this observation with the following theorem:

Theorem 2. Consider the bivariate normal model in Eq (3.1) and let ; 6¼ J� I be the set
indexing inefficacious treatments. Let safety selection be based on the group mean toxicities �y i. If

Many-to-one comparisons in multi-arm clinical trials
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ρi� 0, 8i 2 I, and FWER(S)� αnom holds 8S� I, then the FWER of the overall procedure is also
controlled at level αnom for the ZT and the DT.

The proof of Theorem 2 is presented in the Appendix, together with a discussion of possi-

bilities and limitations of extensions.

5 Correlation-based adjustments

We have seen that when applying the natural correction, the FWERo depends on the true cor-

relation ρi. For known non-negative correlation it is reasonable to prefer the natural to the

conservative correction, since the former approach achieves higher power, while the FWERo is

still controlled. To compare FWERo for different procedures we write FWERNA
o ðrÞ when using

the natural correction and when the true correlation is ρ (NA stands for natural correction).

Here the assumption is equality of correlations across all treatment groups or, if equality can-

not be assumed, we substitute the minimum correlation between toxicity and efficacy found

across all groups. Using the monotonicity of the worst case FWERo as a function of the true

correlation as discussed in the context of Theorem 1, this choice of ρ then serves to derive

an upper bound for the maxFWERNA
o . For the conservative procedure, we write FWERCO

o ,

where CO stands for conservative. It is clear that maxFWERNA
o ðrÞ � maxFWERCO

o for all corre-

lations ρ.

In this section our goal is to define an adjustment to the natural multiplicity correction for

known negative correlation which can be used as an alternative to the conservative test proce-

dure. Then we apply this idea to case of unknown correlation.

Fig 1. Maximum FWERo (left) and corresponding adjusted nominal levels (right). In the left figure, worst case FWERo for varying correlations ρ
between toxicity and efficacy are drawn for the ZT for 2, 3, and 4 treatments. The maximum FWERo is constant for values of ρ� 0 and increases for

decreasing ρ < 0. At ρ = −1 the maximum worst case FWERo is reached. In the right figure, the corresponding adjusted nominal levels αa to be used in a

ZT correcting for the number of selected treatments are presented as a function of the true group correlations ρ (as described in Section 5.1). Positive

correlation implies FWERo control, in which case αa = αnom. In case of negative correlation the FWER in the efficacy testing step has to be controlled at a

specific level αa < αnom to ensure control of the worst case FWERo at level αnom.

https://doi.org/10.1371/journal.pone.0180131.g001
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5.1 Known correlation

We have seen that maxFWERNA
o ðrÞ > anom for ρ< 0. To avoid any inflation in the family-

wise error rate, our proposed strategy is to apply the natural correction to a nominal signifi-

cance level αa� αnom which is chosen so that FWER(S)� αa, for all subsets S� I, implies

FWERo� αnom. This means that at the efficacy testing stage, each test statistic relating to an

elementary null hypothesis for a selected treatment is compared with the Dunnett thresholds

calculated at nominal level αa adjusting for the number of selected treatments.

In Fig 1 (right), values of αa used in the adjustment of the natural correction are drawn for

different true and equal correlations in the ZT framework when comparing 2, 3, and 4 treat-

ments with a common control. Of course these curves behave “inversely” to the curves shown

in Fig 1 (left). Since for ρ� 0, no FWERo inflation occurs and therefore no adjustment of the

nominal level is necessary we have αa = αnom. In other words, in case of non-negative correla-

tion, the correlation-adjusted two-step procedure is identical to the natural procedure, because

due to Theorem 2 the latter controls the FWERo. For negative values of ρ however, to decrease

the maximum FWERo from FWERNA
o ðrÞ > anom to FWERKC

o ðrÞ � anom, the natural correction

has to be applied based on a lower significance level αa< αnom (KC means known correlation).

The lowest value of αa has to be applied at ρ = −1, where the worst case FWERNA
o is maximized.

5.2 Unknown correlation

In this section we extend our designs to accommodate an unknown correlation. If, in the

method described above, the adjusted nominal level, αa, is calculated assuming the common

correlation is ρa when in fact ρ is the true correlation, we write FWERKC
o ðr; raÞ for the FWERo.

In this more general notation, we can write FWERKC
o ðrÞ ¼ FWERKC

o ðr; rÞ and

FWERNA
o ðrÞ ¼ FWERKC

o ðr; 0Þ. Our results so far indicate that ρa< ρ< 0 implies conservatism,

that is, maxFWERKC
o ðr;raÞ < anom, which implies that our adjustment is more severe than nec-

essary. The opposite is true when ρ< ρa< 0, in which case maxFWERKC
o ðr; raÞ > anom.

We propose basing multiplicity adjustments on an estimate r̂ of the common correlation.

To account for the variability of the estimate we define FWERPI
o :¼ E½FWERKC

o ðr; r̂Þ�, where

the expectation is taken over realizations of r̂ (PI stands for ‘plug-in’).

The standard way to define r̂ is as follows:

1. Estimate the empirical correlation coefficients ri between efficacy and toxicity in group i,
8i 2 I.

2. Apply Fishers’s z-transformation (see e.g. [22]) to each estimate ri, i.e. calculate

zi :¼ 1
2
ln 1þri

1� ri

� �
. It follows from theory that approximately zi � N 1

2
ln 1þr

1� r

� �
; 1
ni� 3

� �
.

3. The estimator for the correlation is then defined as r̂ ¼ tanh 1
jI j
PjI j

i¼1 zi
� �

, using the equal

correlation assumption.

FWERPI
o control is no longer guaranteed. To investigate possible inflation, the worst case

FWERPI
o of the overall procedure was simulated for the cases that two or three treatments are

compared with a common control, setting the per-group sample size as n = 5, 10, 22, 50 or

100. The testing scenario is as described in Section 4.1 and 5 � 105 simulations were run for

each value of ρ to estimate the maximum FWERPI
o .

In Fig 2 an incremental inflation of the maximum FWERPI
o is visible for correlations around

−0.7. On the other hand, for low sample sizes the procedure is slightly conservative for ρ close

to 0. This is reasonable since overestimating ρ when in truth ρ = 0 does no “harm” in terms of
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FWERo, because αa (interpreted as a function of r̂) remains then constant. Only the error of

underestimation takes effect by shifting the maximum FWERo slightly down. For increasing

values of n, both effects diminish because the correlation estimate tends to be closer to the true

value of ρ, so the impact of the conservatism due to underestimation of ρ is reduced. Tables of

the simulated values in Fig 2 are presented in S1 Tables.

6 Simulation study

We perform simulations of the comparison of 3 treatments with a single control group using

the procedures discussed in the previous sections to adjust for multiple comparisons, namely

the natural correction (NA); the conservative correction (CO); the adjusted method for known

correlation (KC); and the adjusted method for unknown correlation with the plug-in correla-

tion estimate (PI). The underlying statistical model as well as the formulation of the null

hypotheses remains as described in Section 3. The group means of the efficacy data are said to

have a linear relationship if they take the following form: m1 ¼
1

3
m3, m2 ¼

2

3
m3. On the other

hand a constant relationship is defined as: μ1 = μ2 = μ3. For the control group, the mean is

always set to μ0 = 0. The true toxicity means are either constant (θ1 = θ2 = θ3 = 0), linearly

increasing (θ1 = 0, θ2 = 0.5, and θ3 = 1), or linearly decreasing (θ1 = 1, θ2 = 0.5, and θ3 = 0).

For Scenario 1, we define constant efficacy means and linearly increasing toxicity means.

In Scenario 2, efficacy means are linearly increasing, while toxicity means are constant. In Sce-

nario 3, efficacy and toxicity means both increase linearly. Scenario 4 describes an inverse

relationship between efficacy and toxicity such that efficacy means are linearly increasing

while toxicity means are linearly decreasing. In all scenarios, the variances of the efficacy and

toxicity outcomes are set to 1 and the correlation between toxicity and efficacy responses is

constant across treatment groups.

We evaluate the power of the overall procedure when we apply the DT with a sample size of

n = 22 in each treatment group and on control. The measure of interest is disjunctive power,

Fig 2. Simulated values of worst case FWERPI
o as a function of ρ. Two treatments were compared to one common

control with equal per-group sample sizes n. A conservative behavior is visible around 0, when the per-group sample size

is low.

https://doi.org/10.1371/journal.pone.0180131.g002
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which is the probability of rejecting at least one false null hypothesis. The one-sided nominal

significance level is set to αnom = 0.025.

The simulation process is split into two parts. First, the curve of values of αa corresponding

to the known correlation case as plotted in the right panel of Fig 2 (dotted line for 3 vs. 1) is

simulated for different correlations ρ. Here the number of simulation runs is 5 � 105. Afterwards

these simulated values are approximated by a cubic polynomial in the region of ρ 2 (−1, 0). In

the second step of the simulation study, patient responses are sampled from the bivariate nor-

mal model and the fraction of simulated trials leading to the rejection of at least one false null

hypothesis is counted. For the KC and PI procedures we use the simulated and smoothed αa

curve from the first step. The number of simulation runs in the second part is 20000.

6.1 Power

Fig 3 shows the results for Scenario 1. In the first column of figures, μ3 is set to 0.6, whereas in

the second and third columns we have μ3 = 0.8 and μ3 = 1, respectively. Rows of figures are

characterised by different values of the true correlation ρ, specifically −0.6, −0.3, 0, and 0.3. On

the horizontal axis, the toxicity threshold (assumed to be equal across treatment groups) is

drawn. On the vertical axis, we have the probability that the overall procedure rejects at least

one null hypothesis.

Rejection probabilities always converge to 0 as the toxicity thresholds becomes sharper

since eventually no treatment is selected and taken forwards for efficacy testing. However,

rejection probabilities interpreted as a function of varying toxicity thresholds are not necessar-

ily monotone. This can be explained by the fact that increasing the toxicity thresholds increases

the expected number of treatments selected, but more treatments in the efficacy testing stage

also implies sharper efficacy thresholds. Despite this, no large deviations from the rule-of-

thumb that increasing the toxicity thresholds leads to increased disjunctive rejection probabili-

ties are observed.

Regarding the curves for the two-step procedure using the natural correction and the proce-

dure using the conservative correction, it is visible that at a certain point the former procedure

starts to outperform the latter. This is the case when the safety selection rule begins to select

treatments with non-negligible probability. At this point the efficacy testing boundaries for

these procedures begin to differ and their power curves diverge. Increasing the toxicity thresh-

olds further, eventually we find that all treatments will be selected with a high probability. The

natural and conservative procedures then use the same boundaries in the efficacy testing step

and both power curves converge towards each other again.

When we use the procedure for known correlation, following the steps set out in Section

5.1, then its power will never converge towards that of the natural procedure when ρ< 0. This

is the case because a lower nominal significance level is assumed for the boundary calculation

in the efficacy testing step (as can be seen in Fig 1, right). Meanwhile, the adjusted natural pro-

cedure outperforms the conservative procedure in terms of power in settings where all treat-

ments are dropped with high probability. When ρ = −0.6, the gains in power made by the

adjusted natural approach on the conservative procedure are small relative to the losses in

power incurred when all treatments are regarded as safe. For increasing (negative) ρ, the

power curve of the KC approach converges to that of the natural procedure, making the region

of superiority over procedure CO broader. For non-negative correlation, KC is identical to NA

as explained in Section 5, and therefore these procedures have the same power. Regarding the

power of procedure PI, its power curve is very close to that of procedure KC.

For scenarios 2, 3 and 4 we set μ3 = 0.8 and ρ 2 {−0.3, 0, 0.3}. In Scenario 2 of Fig 4 (left col-

umn), toxicity means are equal but efficacy means are linearly increasing. As the toxicity
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Fig 3. Scenario 1; Power of different two-step procedures as a function of the toxicity thresholds. High values of the toxicity threshold (defined to

be the same in each group) imply more treatments are selected for efficacy testing. Rows correspond to different values of ρ 2 {−0.6, −0.3, 0, 0.3};

columns correspond to values of α3 2 {0.6, 0.8, 1} in the linear scenario (see also the main text). As ρ increases, the region where the adjusted approaches

dominate the conservative procedure in terms of power, increases in area. This behaviour accelerates for higher values of α3.

https://doi.org/10.1371/journal.pone.0180131.g003
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Fig 4. Power in Scenario 2 (left column), Scenario 3 (middle column) and Scenario 4 (right column). Different efficacy/toxicity patterns lead to

varying gains in power over procedure CO. Rows of figures are generated setting ρ = −0.3, 0 or 0.3. In all scenarios, μ3 = 0.8. The smallest gains in power

are made in Scenario 2, which represents an all-or-none selection situation. Deviating from this setting leads to gains in power in the area where dropping

treatments is expected (Scenarios 3 and 4). The largest power gains are seen in Scenario 4 where the slopes of the linear configurations of the toxicity and

efficacy means are of different signs.

https://doi.org/10.1371/journal.pone.0180131.g004

Many-to-one comparisons in multi-arm clinical trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0180131 June 26, 2017 13 / 23

https://doi.org/10.1371/journal.pone.0180131.g004
https://doi.org/10.1371/journal.pone.0180131


threshold increases, the probability that all three treatments are selected rapidly increases from

0 to 1. This is the case because toxicity means are all equal in this scenario and likely either all

the treatments satisfy the selection criterion or none do. Differences in toxicity sample means

are then due to random variation alone. Therefore in this scenario an all-or-none treatment

selection situation is likely. As we have noted for Scenario 1, the other testing approaches dom-

inate procedure CO in situations where dropping some (but not all) treatments is likely. There-

fore the size of the region where procedures KC and PI dominate CO is small and the margin

of dominance is negligible.

In Scenario 3 (Fig 4, middle column), toxicity means are linearly increasing. As the toxicity

threshold is gradually relaxed, one-by-one the three treatments can be deemed safe in the

sense that they will satisfy the safety selection criterion with high probability. Therefore, since

the expected number of selected treatments increases incrementally with the safety threshold,

the slope of the power curve is less steep compared to Scenario 2. On the other hand gains in

power of NA, KC, and PI over procedure CO are larger than those seen in Scenario 2.

In Scenario 4, (Fig 4, right column), efficacy means are increasing across treatment groups

1, 2 and 3, while toxicity means are decreasing. This mimics the situation where toxicity might

negatively impact on efficacy. In this scenario treatments with higher efficacy are more likely

to be selected. Similar to scenario 3, since toxicity means for treatments are not all equal, we

see a more gradual increase in power compared with Scenario. For intermediate values of the

safety threshold, the treatments most likely to be selected are those with higher efficacy. There-

fore, relaxing the boundaries of the DT results in a greater increase of power compared with

other testing scenarios (where safer treatments are also less efficacious) and differences

between the power curves of procedure CO and the other procedures are more marked.

In all scenarios, as the toxicity threshold is relaxed the expected number of null hypotheses

that are tested increases. What can be gained by applying the proposed two-step procedures in

comparison to the conservative procedure in terms of disjunctive power, depends on the exact

configuration of toxicity and efficacy means. It can be seen from Figs 3 and 4 that changes in

the safety selection rule have a similar impact on the operating characteristics of all MTPs,

although clearly some procedures are more powerfull than others due to differences in the

exact choice of efficacy boundaries applied to the selected null hypotheses. For example the

possibilities for power gains compared to the conservative procedure increase, if treatments

are selected, that also have the largest treatment effect. This situation is reflected in Scenario 4.

6.2 Impact of varying the sample size

Fig 5 plots the power of the two-step procedures under varying toxicity thresholds. Rows con-

sider Scenario 1, Scenario 3 and Scenario 4, and different values of the correlation coefficient

(ρ 2 {−0.3, 0.3}). In the left column, the per-group sample size is n = 50 and μ3 is set equal to

0.52. In the middle (n = 100) and right (n = 500) column, we set μ3 = 0.368 and μ3 = 0.164,

respectively. Values of μ3 are chosen such that a single treatment-control comparison has

power 0.9 of detecting the effect μ3 for the given group size. As n increases, the power curves of

the two-step procedures essentially converge towards step functions. The reason for this is that

with increasing sample size, the true toxicity means can be estimated with greater accuracy. As

the sampling error of the group sample mean toxicities decreases, we can clearly distinguish

between ‘safe’ and ‘toxic’ treatments; thus, varying the toxicity threshold on an interval

between two true toxicity means has little impact on the treatment selection procedure in

terms of the expected number selected and the identity of the treatments selected.

From Figs 3–5 it can be seen, that the prespecified sample sizes n 2 {22, 50, 100, 500} per

group are large enough to achieve a high correspondence between the KC and the PI
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procedure. One intuitive explanation for this reason is that over- und underestimation of ρ
which occurs by using the empirical correlation coefficient, roughly balance out, as explained

in Section 5.2. On the other hand the conservativeness of the PI procedure for small sample

sizes around ρ = 0 as seen in Fig 2, suggests a small power loss compared to PI in this setting.

Fig 5. Power of the four two-step procedures under varying toxicity thresholds and (per-group) sample sizes in Scenarios 1, 3, and 4. For each

group size, the effect size μ3 is chosen as the difference a single treatment comparison can detect with power 0.9. The correlation is set as ρ 2 {−0.3, 0.3}.

https://doi.org/10.1371/journal.pone.0180131.g005
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Fig 6. Selection probabilities for different toxicity patterns. In the upper plot the probabilities of selecting

treatments 1, 2 or 3 are drawn. The probabilities of selecting exactly 1, 2, or 3 treatments are drawn in the

lower plot.

https://doi.org/10.1371/journal.pone.0180131.g006
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In S1 Fig a power curve is plotted for ρ = 0 and n = 5 in the situation of Scenario 1 with μ3

again chosen such, that the power for a single treatment-control comparison is 0.9. The graph

shows a small power loss of the PI procedure due to estimation error.

6.3 Impact of the selection probability

The behaviour of the power curves seen in Fig 5 can be explained by taking a closer look at the

safety selection procedure. The top plot of Fig 6 shows the probabilities of selecting different

treatment groups. Rows correspond to constant (Scenario 2), linear increasing (Scenario 1 and

3), and linear decreasing (Scenario 4) toxicity means. The columns are characterised by differ-

ent sample sizes. For increasing sample sizes, estimation of the group toxicity means becomes

more precise, which leads to a decreased variability in the selection process and therefore to

steeper power curves. At the boundaries 0, 0.5, and 1, the probabilities of being selected are

sharply increasing for the corresponding group. In the lower plot of Fig 6, the probabilities of

selecting at exactly 1, 2, or 3 treatments are drawn. For larger sample sizes, the area of overlap

between these curves diminishes. This is the reason for the plateaus visible in Fig 5.

7 Discussion

We have considered two-step procedures, where safety selection precedes efficacy testing of

multiple hypotheses using naive Dunnett boundaries and adjusting just for the number of

selected treatments. For such a procedure we demonstrated that the FWER of the overall pro-

cedure may exceed the nominal level α. The size of this deviation depends on the unknown

distribution of the toxicity measurements and pre-defined toxicity thresholds. In addition, the

dependency structure of the efficacy and toxicity outcomes determines the size of the maxi-

mum possible FWERo. We assumed a bivariate normal model for efficacy and toxicity mea-

surements, in which case the dependency structure is captured by correlations. Here toxicity

was represented by a normally distributed variable. In practice, the adverse effects of a drug on

the kidneys, liver or heart are often monitored by continuous parameters such as laboratory

values or variables from an ECG, respectively.

A major finding of the present work is that selection of treatments based on observed safety

data is indeed possible and multiple comparison procedures such as Dunnett or Bonferroni

tests which adjust only for the number of selected treatments will control the FWERo, so long

as toxicity and efficacy measurements are (positively) associated in the sense of [21]. Intuitively

this can be explained by the fact that in case of a positive association, treatments that show

high efficacy are more likely to be dropped. Or, conversely, if a treatment is selected on the

basis of lower toxicity, under the null hypothesis it will be more likely that lower efficacy is

observed too. In the bivariate normal model, this is the case when the correlation between tox-

icity and efficacy outcomes are non-negative in all treatment groups. Clearly, if all correlations

are zero, selection is independent of efficacy testing. Then a Dunnett adjustment for the

remaining treatments controls the FWER and depending on the safety selection rule, it may

become conservative.

In the case that the correlation between efficacy and toxicity is negative for at least one

treatment group, dropping such a treatment group would imply dropping a treatment which

likely has poor efficacy measurements relative to those on the other treatments. If then for the

remaining treatments the efficacy testing thresholds are relaxed, the overall FWER will be

inflated. In our particular setting, we have shown that this inflation will be maximized when all

correlations between efficacy and toxicity approach the value −1. We proposed an adjusted

approach, in which we change the nominal α-level to be used in the Dunnett adjustment for

efficacy testing depending on the correlation. This means that if one assumes no or positive
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correlations, then the resulting two-step procedure is exactly as described above. It is sufficient

to take Dunnett boundaries adjusting for the number of selected treatments at nominal level α.

Assuming negative correlations will result in Dunnett tests adjusting for the number of

selected treatments at a lower nominal α-level. When the correlation is unknown, which will

often be the case in clinical research, a reasonable lower boundary for the correlation may be

assumed. For example in oncology it is occasionally assumed that the correlation between effi-

cacy and toxicity is non-negative. On a trial level, this is shown by [23]. A reasonable lower

boundary for the correlation is then 0. According to our results it is then possible to drop treat-

ments due to toxicity and calculate the Dunnett boundaries at nominal level αnom adjusting for

the number of selected treatments only without inflating the FWER.

Alternatively it is suggested to estimate the correlation and use this estimate to adjust the

nominal α-level. This is especially useful, if correlations are assumed to be equal, which leads

to a pooling of the different groups in terms of correlation estimation. Simulations have

shown, that such a strategy is adequate even if results on exact overall FWER control or infla-

tion are missing. Compared to the conservative approach (always adjusting for all a-priori

defined comparisons) the proposed two-step testing strategies result in higher power for non-

negative correlations. For negative correlations there is a gain in power if it is very likely that

treatments have to be dropped due to toxicity. However, if all treatments are sufficiently safe

(and likelihood of dropping is negligible), the proposed two step-testing procedures will have a

loss of power as a lower nominal level alpha to be used in the Dunnett test. This is the price to

be paid for adjusting just for the number of selected treatments. However, negative correla-

tions may be implausible in many practical situations.

In the planning phase of a clinical trial, the first consideration is regarding the correlation

between toxicity and efficacy. In accordance to the arguments presented before, if the assump-

tion on positive or zero correlation is justified, then the use of the natural procedure is reason-

able and simulation studies for different scenarios as performed in Section 6 support decisions

regarding the planned per-group-sample sizes. Justification for non-negative correlation could

be derived from a scientific understanding of the relationship between two endpoints, or on

data from previous trials which measured the two endpoints. When an assumption on positive

correlation is not plausible, considerations on reasonable values of the correlation may enable

the use of the correlation-adjusted procedure. Another possibility is to estimate the correlation.

In each of these cases, a comprehensive simulation study would typically be performed ahead

of time to quantify the operating characteristics of the proposed testing procedure in scenarios

consistent with any assumptions about the correlation coefficient, and to establish the robust-

ness of properties to deviations from these assumptions. As a sidenote it should be mentioned,

that at the end of the study prefixed and biologically motivated toxicity thresholds are used to

perform the statistical analysis. Simulations for varying toxicity thresholds as performed in

Section 6 are essential to determine the sample sizes required and to evaluate the impact of the

proposed selection rule (and the underlying toxicity thresholds) on the operating characteris-

tics for different efficacy and toxicity means.

In summary the proposed two-step procedures are a way to integrate both safety and effi-

cacy aspects in a more formal way for decision making on the benefit and risk ratio of new

treatments. All safety and efficacy evaluations are performed at the end of the study, when for

all patients all safety and efficacy data are available. Treatments are first screened on the basis

of safety, and only those deemed to be sufficiently safe are considered for the efficacy testing

step. The arguments provided in this paper can be extended allowing to perform the safety

selection step already earlier and more frequently in the trial, e.g., for clinical trials where a

data and safety monitoring board will perform periodic safety monitoring when the trial is still

on-going and more patients still have to be included. For example in more “traditional”
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adaptive seamless designs [24–26] treatment selection is suggested to be conducted at an adap-

tive interim analysis, where only a first cohort of patients have been included in the trial. If

treatments are selected, a further cohort with new patients have to included and randomized

to the selected treatment arm. This is in contrast to the proposed two-step procedure in this

paper, where safety selection is conducted at the end. This prohibits a direct head-to-head

comparison as selection rules would have to differ substantially using different amount of data.

Therefore part of our future work is to extend our two-step procedures to allow interim safety

selection as well as a comparison to adaptive seamless designs [24, 25] using the same amount

of data for selection. Further investigations may focus on other types of safety data such as,

binary or ordinally scaled, where results of positive association may be applicable as well, for

example if the probability of having an adverse event increases with efficacy. A key point of the

two-step procedure is that the toxicity boundary have to be fixed in advance and no efficacy

data are involved when deciding which treatments shall be dropped.

Appendix

Proof of Theorem 1

We will prove Theorem 1 in Section 4.1. In this proof we will apply the Slepian theorem (see,

for example, the Appendix of [27]) which states that for every k-dimensional random vector z

following a multivariate normal distribution with zero mean and unit variance in each compo-

nent and correlation matrix R, the probability P(z1� c1, . . ., zk� ck) is a strictly increasing

function of every off-diagonal entry of R.

Proof. According to Eq (1), the FWERo is a sum with addends of the following form:
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where C :¼ Pð
T

i2S\Jf�x i � �x0 < bx
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i2Sf�y i � by

i gÞ (here we made use of the independence

between measurements in different groups). Following Slepian’s result, -C is monotonically

decreasing in ρ and the statement is proofed for the ZT framework. For the DT, all probabili-

ties in Eq (2) are conditional to an independent variance estimate (and also the thresholds bx
i;S

now depend on these estimates). On all these probabilities the monotonicity statement

remains to be true. Averaging over all possible values then shows, that our result is true in the

DT framework as well.

Proof of Theorem 2

In what follows we will provide and prove a sufficient condition for FWERo control of a proce-

dure that controls the FWER in the efficacy testing step. To do this we first need the notion of

association as defined in [21]:

By definition the random variables (Q1, . . ., QN) =: Q are associated if and only if

E½f ðQÞ � gðQÞ� � E½f ðQÞ� � E½gðQÞ� ð3Þ

for every componentwise non-decreasing functions f and g.

Remark 1. From the definition it follows immediately, that non-decreasing transformations

of associated random variables are also associated. Another intuitively clear property of associ-

ation is, that the set of a single variable is associated. Furthermore, if two sets of associated ran-

dom variables are independent, then the union is also associated. All of these properties are

proven in [21].

In preparation of proving Theorem 2, two lemmata are presented:
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Lemma 1. Let ; 6¼ J� I be the index set of inefficacious treatments. The maximum FWERo is
controlled at level αnom for a given multiple comparison procedure, if FWER(S)� αnom (that
means E½φS

J � � anom) and E½BS � φS
J � � E½BS� � E½φS

J � both hold for
8S 2MJ :¼ fS � I : S \ J 6¼ ;g.

Proof. We first note that only one of the binary indicators BS with S 2MJ can have the value

1 at once. Here MJ is the set of all possible selections, that contain at least one true null-hypoth-

esis. The sets S =2MJ are not relevant for type I error control. We have seen earlier in Eq (1)

that the FWER of the overall procedure can be written as FWERo ¼
P

S2MJ
E½BS � φS

J �. Because

E½BS � φS
J � � E½BS� � E½φS

J � holds for each addend it holds
P

S2MJ
E½BS � φS

J � �
P

S2MJ
E½BS� � E½φS

J �:

The factor E½φS
J � is bounded from above by αnom. Therefore it holds

X

S2MJ

E½BS � φ
S
J � � anom �

P
S2MJ
E½BS�

� �

� anom:

The last inequality follows from the fact that
P

S�MJ
E½BS� is just a sum of probabilities of disjoint

events and therefore less or equal 1 (in general equality only holds, if J = I).
Lemma 2. Let ; 6¼ J� I be the index set of inefficacious treatments. For all subsets S� I let

the families of indicators (τi)i2I and ðZS
i Þi2I have the following properties:

1. The vector (τi)i2InS is independent to the vector ððtiÞi2S; ðZ
S
i Þi2SÞ.

2. The set fti : i 2 Ig [ fZSi : i 2 Ig is associated.

Then 8S 2MJ it holds

E½BS � φS
J � � E½BS� � E½φS

J �: ð4Þ

Proof. Let S 2MJ be fixed. It holds E½BS � φS
J � ¼ E½

Q
j2InStj� � E½ð

Q
i2Sð1 � tiÞÞ � φS

J � due to the

definition of BS and property 1. We focus on the right-hand factor E½ð
Q

i2Sð1 � tiÞÞ � φS
J � and

note that f := (−1) � ∏i 2 S(1 − τi) and g :¼ φS
J both interpreted as functions of the τi and ZS

i are

monotonically non-decreasing. Due to the association assumption Eq (3) it therefore holds

E½ð
Q

i2Sð1 � tiÞÞ � φS
J � � E½

Q
i2Sð1 � tiÞ� � E½φS

J � (note that the minus sign in f reverses the

inequality sign). By again using the independence property 1, Eq (2) is proven.

We now have the tools to prove Theorem 2:

Proof. At first, we consider the ZT framework. We are going to prove that under the

stated assumptions Lemma 2 holds. Then Lemma 1 can be applied. We set ti :¼ 1ðby
i ;1Þ
ð�yiÞ

and ZS
i :¼ 1ðbx

i;S;1Þ
ð�x i � �x0Þ; 8i 2 I and for fixed S� I. The boundaries bx

i;S are chosen such,

that the FWER is controlled at level αnom in the efficacy testing step for every S� I. We

know that by construction the vectors ð�y i : i 2 I n SÞ and ð�x i � �x0; �y i : i 2 SÞ are indepen-

dent. This also holds for the corresponding vectors of the indicators τi and ZS
i , which verifies

property 1 in Lemma 2.

It is easy to see that Cov �y i; �x i � �x0ð Þ ¼
riso

ni
� 0 and for i 6¼ j it holds that

Cov �x i � �x0; �x j � �x0

� �
¼ s2

n0
� 0, and therefore all pairwise correlations are non-negative.

From [28] we know that positively correlated multivariate normal random variables are associ-

ated. This proves the association of the set of random variables

f�y i : i 2 Ig [ f�x i � �x0 : i 2 Ig. According to Remark 1, the same is then true for above

defined indicators, which are monotonically non-decreasing functions. This concludes the

Many-to-one comparisons in multi-arm clinical trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0180131 June 26, 2017 20 / 23

https://doi.org/10.1371/journal.pone.0180131


proof of Lemma 2. After applying Lemma 1, this proofs FWERo control at level αnom in the ZT
scenario, if all the correlations ρi are non-negative.

For the proof of the DT framework by Vi we denote the unbiased variance estimator in

group i, that is Vi :¼ 1

ni� 1

Xni

i¼1
ðxij � �x iÞ

2
. The test statistics of the DT use the overall variance

estimator, which is function of the group variance estimates VS :¼
P

I[f0g
ni � 1P

I[f0g
ðni � 1Þ

Vi. The

multivariate extension of a fundamental result in statistics states, that the sample covariance

matrix (consisting of Vi) defined for the data matrix of both efficacy and toxicity is indepen-

dent of the corresponding sample mean vector (see for example [22] p. 48). The same is then

true for overall variance WS := −VS, which is just a function of the sample covariance matrix,

and thererfore ð�y iÞi2InS and ðð�xi � �x0Þi2S; ð�y iÞi2S;W
SÞ are independent. WS just influences the

thresholds bx
i;S in ZS

i and therefore by using the same arguments as in the ZT case, the fulfilment

of property 1 in Lemma 2 is shown.

For property 2 we have to note that WS itself forms an associated set and due of indepen-

dence the same is then true for the set f�y i : i 2 Ig [ f�x i � �x0 : i 2 Ig [ fWSg. For increasing

WS (which means decreasing VS), bx
i;S is decreasing and therefore ZS

i is non-decreasing. For the

remaining the argument from the ZT case apply. This proves property 2 in Lemma 2.

Remark 2. It can be seen from the proof, that in the DT setting the assumption of equal

group variances as stated in Section 3.2 is not used, except that it implies the use of the group

variance estimator VS. This represents the classical situation of the Dunnett test. For the

straightforward generalization of different variances, Theorem 2 remains true, if the variances

are estimated by the Vi (or functions of these). For the ZT situation, σ can be substituted by σi

in the proof.

Extensions

The bivariate normal model also serves as a basis for an extension of the ZT approach for

binary toxicity indicators, e.g. adverse events. This can be done by defining indicators for

patient j in group i: zij :¼ 1fðbz
ij;1Þg
ðyijÞ with patient specific thresholds bz

ij, where the normally

distributed yij are now interpreted as latent variables. Safety selection would then be based on

the proportion of adverse events. Because the application of the indicator function on the

latent variables yij preserves association and independence, Theorem 2 can be easily extended

for the present case.

Extending the DT setting to binary toxicity data is more complicated since the variance esti-

mator and the proportion of adverse events are not independent any more. In this case the ful-

filment of property 2 of Lemma 2 cannot be shown by considering the union of the

independent associated sets.

Another possible extension for safety selection to consider the toxicity measurements of a

treatment group relative to the control measurements, in contrast to examine safety based on

the groups toxicity data only. If the control efficacy data is correlated with the group efficacy

data, the arguments in Theorem 2 based on independence again cannot be applied.

For the latter two cases, for the possibility of FWERo control formal proofs cannot be

derived. These scenarios remain an open topic for future research.
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