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Abstract

This paper proposes an artificial electromyogram (EMG) signal generation model based on

signal-dependent noise, which has been ignored in existing methods, by introducing the sto-

chastic construction of the EMG signals. In the proposed model, an EMG signal variance

value is first generated from a probability distribution with a shape determined by a com-

manded muscle force and signal-dependent noise. Artificial EMG signals are then gener-

ated from the associated Gaussian distribution with a zero mean and the generated

variance. This facilitates representation of artificial EMG signals with signal-dependent

noise superimposed according to the muscle activation levels. The frequency characteris-

tics of the EMG signals are also simulated via a shaping filter with parameters determined

by an autoregressive model. An estimation method to determine EMG variance distribution

using rectified and smoothed EMG signals, thereby allowing model parameter estimation

with a small number of samples, is also incorporated in the proposed model. Moreover, the

prediction of variance distribution with strong muscle contraction from EMG signals with low

muscle contraction and related artificial EMG generation are also described. The results of

experiments conducted, in which the reproduction capability of the proposed model was

evaluated through comparison with measured EMG signals in terms of amplitude, frequency

content, and EMG distribution demonstrate that the proposed model can reproduce the fea-

tures of measured EMG signals. Further, utilizing the generated EMG signals as training

data for a neural network resulted in the classification of upper limb motion with a higher pre-

cision than by learning from only measured EMG signals. This indicates that the proposed

model is also applicable to motion classification.

Introduction

Surface electromyogram (EMG) signals obtained from the skin surface represent the action

potential generated from muscle fibers constituting each motor unit, and reflect muscle
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activation levels. Many studies have therefore investigated their applicability in areas such as

rehabilitation, prosthesis control, and motion analysis [1–5].

However, to apply the EMG signals in such areas, appropriate feature extraction for EMG is

needed. The EMG signals can be assumed to be stochastic processes with amplitudes that vary

with muscle activity [6, 7]. Hence, attempts to extract the EMG signal features have been con-

ducted by modeling their stochastic characteristics [6–13]. For example, De Luca [8] derived

EMG signal features such as the mean rectified value, the root mean square value, and the vari-

ance of the rectified signals from the stochastic properties of the inter-pulse interval and the

motor unit action potential train (MUAPT). This was done based on a mathematical model

derived with the underlying assumption that EMG signals are expressed as the sum of

MUAPTs. Hogan and Mann [6, 7] modeled the relationship between muscle force and EMG

signals based on a Gaussian white noise process with a zero mean and variance nonlinearly

depending on muscle force. Inspired by this underlying concept, Hayashi et al. [13] expanded

Hogan and Mann’s model by assuming that signal-dependent noise [14, 15] is superimposed

according to muscle activation levels onto the EMG signal variance, resulting in an expression

of the variance as a random variable following an inverse gamma distribution.

Mathematical EMG models such as these can also be applied to artificial EMG signal gener-

ation. A generation model that produces artificial EMG signals from an arbitrary characteristic

given as input can be implemented as the inverse model of the feature extraction model. Artifi-

cial EMG generation methods based on physiological processes have been proposed and devel-

oped in previous studies [16–19]. For example, Farina et al. [16] proposed an artificial EMG

generation model based on analytical derivations in EMG signals with cylindrical description

of the volume conductor. Further, Person et al. [17] generated synthetic EMG signals using the

summation of the firing patterns of action potentials.

One of the practical applications of artificial EMG signals is their use as training data for

EMG classification based on machine learning, which enables a reduction of the burden of

data collection and improvement of generalization capability. However, EMG signals are often

measured during strong muscle contraction, in which signal-dependent noise superimposed

according to the muscle activation levels cannot be ignored. In such situations, an artificial

EMG generation model should also include the superimposed noise. However, previous artifi-

cial EMG generation methods, which were based on physiological processes, never considered

this signal-dependent noise. In addition, these conventional methods tend to be cumbersome

for generating EMG signals because they consist of many physiological parameters that have

to be calibrated. As a result, they have not been applied to motion classification.

This paper proposes an artificial EMG signal generation model based on signal-dependent

noise. In the proposed model, an EMG variance value is assumed as a random variable and is

generated from a probability distribution with a shape determined by the commanded muscle

force and signal-dependent noise. Artificial EMG signals are then generated by multiplying

the variance value and a white Gaussian noise that passed through a shaping filter, thereby

enabling the representation of artificial EMG signals with signal-dependent noise superim-

posed according to the muscle activation levels. In addition, the proposed model can generate

artificial EMG signals simply by setting a few variance distribution parameters, which can be

easily estimated from measured EMG signals.

Materials and methods

Model structure

Fig 1 gives an overview of the proposed model, which expresses an artificial EMG signal zt at

time t based on a process involving white Gaussian noise w 0t passed through a shaping filter

An artificial EMG generation model based on signal-dependent noise
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H and variance s2
t . Variance s2

t is the value at t of a random variable σ2 having a distribution

determined by a commanded muscle force component of variance �s2, derived from Eq (1),

and signal-dependent noise ε according to the commanded muscle force �F .

The relationship between �F and �s can be expressed as

�s ¼ k�F a; ð1Þ

Fig 1. Overview of the proposed model. The model expresses an artificial EMG signal zt at t, based on a process involving white Gaussian

noisew 0t passed through a shaping filter H and variance s2
t . Variance s2

t is the value at t of a random variable σ2 having a distribution determined

by a commanded muscle force component of variance �s2 and signal-dependent noise ε according to the commanded muscle force �F .

https://doi.org/10.1371/journal.pone.0180112.g001
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where k and a are constants that can be experimentally estimated [6, 7]. Then, σ2 is represented

by the sum of �s2 and ε:

s2 ¼ �s2 þ ε: ð2Þ

Assuming that ε is a random noise with a zero mean, the mean E[σ2] and variance Var[σ2] of

σ2 are calculated as follows:

E½s2� ¼ E½�s2� þ E½ε� ¼ �s2; ð3Þ

Var ½s2� ¼ E½ðs2 � �s2Þ
2
� ¼ Var ½ε�: ð4Þ

Considering that σ2 > 0, the inverse gamma distribution IG(α, β) is chosen as the distribution

of σ2 [13]:

Pðs2Þ ¼ IGðs2; a; bÞ ¼
b

a

GðaÞ
ðs2Þ

� a� 1e�
�

�2 ; ð5Þ

where α and β are parameters that determine the inverse gamma distribution and are referred

to as the shape parameter and the scale parameter, respectively [20]. The relationships between

[α, β] and the mean and variance of σ2 are expressed as follows:

�s2 ¼ E½s2� ¼
b

ða � 1Þ
; ð6Þ

Var ½ε� ¼ Var ½s2� ¼
b

2

ða � 1Þ
2
ða � 2Þ

: ð7Þ

The artificial EMG signal zt can be defined as the product of w 0t and random number series σt,

which is generated from the inverse gamma distribution determined by the mean �s2 and the

variance Var[ε]:

zt ¼ stw 0t ; ð8Þ

where w 0t is the Gaussian noise process, which has the same power spectrum as stationary

EMG signals, and is generated from the following shaping filter based on an Mth-order autore-

gressive (AR) model:

w 0t ¼
XM

j¼1

ajw
0

t� j þ
ffiffiffi
v
p

wt; ð9Þ

where wt is white Gaussian noise with mean = 0 and variance = 1, v is the estimated variance

of error, and aj (j = 1, � � �, M) is the coefficient of the AR model. Because these AR parameters

are estimated by normalized EMG signals with variance = 1, w 0t becomes Gaussian noise with

mean = 0 and variance = 1.

The above procedure is the general form for generating artificial EMG containing signal-

dependent noise superimposed according to the commanded muscle force (expressed as the

commanded muscle force-based generation in Fig 1). However, this procedure requires the

estimation of the parameters in Eq (1) that change depending on the skin condition and the

location of the electrodes for each subject. Therefore, this paper proposes another approach

called EMG variance-based generation. The proposed approach uses rectifying and smoothing

EMG signals by directly estimating the distribution of σ2 using a small number of EMG sam-

ples recorded in advance.

An artificial EMG generation model based on signal-dependent noise
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EMG variance-based generation

Hayashi et al. assumed that EMG signal x follows a Gaussian distribution with a mean of zero

and a variance that follows an inverse gamma distribution. Consequently, they proposed an

approximate estimation method for the mean and variance of variance that utilizes the prop-

erty of rectified-smoothed EMG signals [13]. Unlike [13], we propose a new method to deter-

mine �s2 and Var[ε] by proportional modulation with an introduced gain η:

�s2 ¼
1 �

PN� 1

i¼0
ai

PN
i¼0

bi

 !2

p

2
Z2E½yt�

2
; ð10Þ

Var ½ε� ¼
ð�s2Þ

2

ðâ � 2Þ
; ð11Þ

where a0, a1, � � �, aN−1 and b0, b1, � � �, bN are the coefficients of an Nth-order low-pass filter, η is

the gain for proportional variance modulation, yt is a rectified-smoothed EMG signal at t, E[yt]

is the expectation of yt, and â is the shape parameter of variance distribution. From Eqs (3)

and (4), the estimated values of �s2 and Var[ε] correspond to the mean E[σ2] and variance

Var[σ2] of σ2, respectively. Var[σ2] can therefore be estimated from �s2 by setting â in advance.

â is fixed and is estimated prior by maximizing the marginal likelihood of pre-measured EMG

dataset xpre using the steepest descent method. Note that the proportional gain ηmodulates

the EMG variance; thus, in the case of η = 1, the proposed model generates artificial EMG sig-

nals to reproduce the variance distribution of the measured signals.

As stated above, �s2 and Var[ε] can be estimated and modulated using the rectified-

smoothed signal yt, shape parameter â, and proportional gain η based on Eqs (10) and (11).

Experiments

Ethics statement. This study was approved by the Human Research Ethics Committee of

the Hyogo Institute of Assistive Technology. All subjects were told the aim of the experiments

and provided written informed consent before participating in the trial. The individual in this

manuscript has given written informed consent (as outlined in PLOS consent form) to publish

these case details.

Subjects. Ten healthy young adults (males, age range: 22–24 years; mean age: 21.8 ± 1.0

years) and four healthy young adults (males, age range: 21–23 years; mean age: 22.6 ± 0.8

years) were recruited in Experiment 1 and Experiment 2, respectively. Both experiments were

conducted in Hyogo Rehabilitation Center from August 2015 to January 2016. All subjects

were right-handed and were included on the basis of the following criteria: no previous physi-

cal, neurological, or sensory disorders, no medication that might influence their muscle activ-

ity, and no history of intense exercise in the previous 24 hours.

Experiment 1: Evaluation of generated artificial EMG signals. We conducted an evalua-

tion experiment for artificial EMG signals generated using the proposed model. In the experi-

ment, we first measured the EMG signals during constant isometric contraction of the biceps

brachii of ten healthy subjects. By using the measured EMG signals, the variance distribution

parameters �s2 and Var[ε] and the parameters for the shaping filter H were estimated. Artificial

EMG signals were then generated based on the estimated parameters. Further, the accuracy of

the generated signals was evaluated by comparing them with the measured EMG signals.

For EMG signal recording, the subjects were seated, with the right upper arm pointing

downward, the right forearm bent forward to the horizontal, and the palm turned upward

(Fig 2). EMG signals were recorded using a pair of electrodes attached to the skin surface of

An artificial EMG generation model based on signal-dependent noise
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the biceps brachii at a sampling frequency of 1000 Hz while the subjects were weighted with a

load hanging vertically on the right wrist with the elbow on a desk (Fig 2). The subjects were

instructed to maintain the posture for 10 seconds with the elbow at 90˚. The load weight was

varied through values of 500, 1000, 1500, and 2000 g, and one trial was conducted for each

load weight. The range of these load weights was selected on the basis of the following criteria:

it appears in everyday activities, subjects do not feel muscle fatigue, and the differences in the

muscle activation levels can be acquired clearly. The latter five-second part of the ten seconds

of recorded data was used for comparison and variance distribution estimation. A multi-tele-

meter system (NIHON KOHDEN, WEB-5000, high-frequency cutoff: 100 Hz, low-frequency

cutoff: 5.4 Hz) was used for measurement.

To evaluate the reproducibility of the proposed model with respect to the measured EMG

signals, the estimation of variance distribution was conducted for each load weight. The model

order of the shaping filter was determined as M = 20 based on the Bayesian information crite-

rion (BIC) [21], and the estimated variance of error v and the model coefficients aj were deter-

mined using the Burg method [22]. The proportional gain was determined as η = 1.0, meaning

that the variance modulation was not applied. A second-order Butterworth low-pass filter (cut-

off frequency: 1 Hz) was used to smooth the EMG signals. Generation of artificial EMG signals

using estimated parameters was also conducted, with ten trials for each load weight. Tanizaki’s

method [23] and Box–Muller’s method [24] were used to generate inverse gamma and Gauss-

ian random numbers, respectively.

The accuracy of the artificial EMG generated was evaluated in terms of average amplitude,

frequency component, and kurtosis of EMG distribution. In general, the amplitude and the

frequency component are the important features of an EMG signal. Kurtosis is the fourth cen-

tral moment of distribution, and was utilized to evaluate the influence of the variation in

Fig 2. Scene of the EMG recording. The subjects were seated with the right upper arm pointing downward,

the right forearm bent forward to the horizontal, and the palm turned upward. EMG signals were recorded

from a pair of electrodes attached to the biceps brachii while the subjects were weighted with a load on the

right wrist and maintained the right elbow on a desk.

https://doi.org/10.1371/journal.pone.0180112.g002

An artificial EMG generation model based on signal-dependent noise
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variance on the shape of the EMG distribution. The average amplitude was determined from

the average value of the rectified and smoothed signals. Further, the absolute percentage errors

in the average amplitudes between the measured and artificial EMG signals were calculated for

each load weight. With respect to the frequency component, the power spectrum densities of

the measured and artificial EMG signals were calculated using the M0th-order AR model as fol-

lows:

Pðf Þ ¼
v 0

j1 �
PM 0

j¼1
a 0j e� i2pjf j

2
; ð12Þ

where f is frequency, a 0j ðj ¼ 1; � � � ;M 0Þ is the AR coefficient, and v0 is the estimated variance

error. The model order M0 was determined as M0 = 20 based on the BIC. a 0j ðj ¼ 1; � � � ;M 0Þ

and v0 were determined using the Burg method. The correlation coefficients in the power spec-

trum densities between the measured and artificial EMG signals were then calculated. Finally,

the kurtosis of the EMG distribution was calculated for each load weight. Note that kurtosis is

a measure of the tailedness of a probability distribution. The sample kurtosis for a univariate

random process x ¼ fxng
N
n¼1

can be calculated as follows:

K ¼
1

N

PN
n¼1
ðxn � �xÞ4

s4
� 3; ð13Þ

where �x and s are the mean value and standard deviation of x, respectively. The root mean

square error (RMSE) in the kurtosis between the measured and the artificial EMG signals was

then calculated in all trials as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

ðKt � K̂t Þ
2

s

; ð14Þ

where T is the number of trials (T = 10) for each load weight, and Kt and K̂t are the sample kur-

tosis of the measured and the artificial EMG signals at trial t, respectively.

In the proposed model, the shape parameter â and the parameters of the shaping filter need

to be set in advance of artificial EMG generation using pre-measured EMG signals for each

subject. Hayashi et al. [13] assumed that the shape parameter is a constant within an individual

regardless of muscle activation levels. However, this assumption has not been verified experi-

mentally. Therefore, because the muscle activation level on the pre-measured EMG signals can

affect the generation accuracy of the proposed model, generation and evaluation of the artifi-

cial EMG signals were conducted by changing the source of the preset parameters. These pre-

set parameters were set for each subject using EMG signals recorded in advance under each

load weight.

For comparison, artificial EMG signals were also generated based on the Hogan and

Mann’s model [6, 7], and evaluated. The major differences between the method based on the

Hogan and Mann’s model and the proposed method is that EMG variance is handled as a con-

stant and is estimated using maximum likelihood estimation in the former method. Finally,

artificial EMG generation based on the proposed model with the variance modulation by the

proportional gain was conducted to evaluate its generation accuracy. The EMG signals

recorded under a 1000 g load were set as the reference, and the gain η in Eq (10) was defined

as follows:

Z ¼
fw

f1000

; ð15Þ

An artificial EMG generation model based on signal-dependent noise
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where fw is the muscle force of the biceps brachii at load weight w = 500, 1000, 1500, 2000 g,

and is calculated from each load weight following the procedure adopted by Hayashi et al.
[13], with the body weight and the length from the elbow axis to the ulnar styloid. Note that by

using this proportional gain, the artificial EMG signals at each load weight were generated

only from the measured signals under a 1000 g load. These generated EMG signals were evalu-

ated by comparing the measured EMG signals at each load weight. We compared the average

value of the ten subjects in each index among the proposed method, the constant variance-

based method, the and proposed method with the variance modulation. In this comparison,

the shape parameter â and the parameters of the shaping filter were set for each subject using

the pre-measured EMG signals under a 2000 g load, and they were set in common throughout

the comparison.

Experiment 2: Motion classification. To evaluate the applicability of the proposed model

to motion classification, a classification experiment was conducted in which the generated

EMG signals were utilized as training data for a neural network. This experiment was con-

ducted on four healthy subjects (Subjects A–D). EMG signals were recorded using six elec-

trodes (L = 6: Ch. 1: extensor carpi ulnaris; Ch. 2: flexor digitorum profundus; Ch. 3: extensor

digitorum; Ch. 4: flexor carpi ulnaris; Ch. 5: triceps brachii; Ch. 6: biceps brachii) at a sampling

frequency of 1000 Hz (Fig 3). The subjects performed six motions (C = 6): flexion, extension,

supination, pronation, hand open, and hand grasp.

The EMG measurement system and the parameters for the smoothing process were the

same as in the evaluation experiment. Prior to the experiment, pre-measurement of EMG sig-

nals during a maximum voluntary contraction (MVC) was conducted for each motion. The

Fig 3. Location of the electrodes. EMG signals were recorded using six electrodes (L = 6: Ch. 1: extensor carpi ulnaris; Ch. 2: flexor digitorum

profundus; Ch. 3: extensor digitorum; Ch. 4: flexor carpi ulnaris; Ch. 5: triceps brachii; Ch. 6: biceps brachii) at a sampling frequency of 1000 Hz.

https://doi.org/10.1371/journal.pone.0180112.g003

An artificial EMG generation model based on signal-dependent noise
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channel corresponding to the agonist muscle in each motion was then determined as follows:

m ¼ arg max
l 2 f1;���;Lg

Et½ŷ
ðlÞ
t �; ð16Þ

where ŷðlÞt is a pre-measured rectified-smoothed EMG signal of channel l at time t and Et½ŷ
ðlÞ
t � is

the expectation of ŷðlÞt regarding t. The parameter â and parameters of the shaping filter were

also calculated from the pre-measured EMG signals for each subject.

In EMG signal recording, the muscle activation level rðlÞt ðl ¼ 1; 2; � � � ; LÞ in each channel

was calculated as a percent of MVC (%MVC) simultaneously with the measurement:

rðlÞt ¼
yðlÞt

yðlÞmax
; ð17Þ

where yðlÞt is the rectified and smoothed EMG signal of channel l at t, and yðlÞmax is the maximum

value of pre-measured ŷðlÞt during the MVC. The subjects were presented with the muscle acti-

vation level of the agonist muscle rðmÞt by using a bar graph in real time (Fig 4). The white verti-

cal line in Fig 4 showed the desired muscle activation level, and the subjects were instructed to

perform each motion while maintaining this line. First, the subjects performed and maintained

each motion for 10 seconds with the desired muscle activation level rðmÞt at 40%, and recording

of the training data was conducted. Next, the task of maintaining each motion for 10 seconds

was conducted over 10 trials in two conditions of the desired muscle activation level at 40%

and the target muscle activation level at 80%, and recording of the testing data was also con-

ducted. Feature extraction for the training and testing data was then conducted according to

the method proposed by Fukuda et al. [4], in which the measured EMG signals are rectified

and smoothed, and then normalized to make the sum of all the channels equal to 1.0.

Fig 4. Screenshot of the EMG measurement system. The bar graph shows the muscle activation level of the agonist muscle.

https://doi.org/10.1371/journal.pone.0180112.g004

An artificial EMG generation model based on signal-dependent noise

PLOS ONE | https://doi.org/10.1371/journal.pone.0180112 June 22, 2017 9 / 20

https://doi.org/10.1371/journal.pone.0180112.g004
https://doi.org/10.1371/journal.pone.0180112


In the motion classification task, a neural network called the log-linearized Gaussian mix-

ture network (LLGMN) [4, 25], which can estimate the posterior probability of each class, was

used. For LLGMN learning, 100 samples of the artificial EMG signals at 80%MVC, which were

generated based on the proposed model, and 100 samples of the measured EMG signals, which

were randomly sampled from the training data at 40%MVC, were used for each motion.

To calculate the mean variance �s2
ðc;lÞ of the channel l in the motion c (c = 1, 2, � � �, C) at 80%

MVC, Eq (10) was vectorized:

�s2
ðc;lÞ ¼

1 �
PN� 1

i¼0
ai

PN
i¼0

bi

 !2

p

2
Z2

ðc;lÞE½y
ðc;lÞ
t �

2
; ð18Þ

where η(c,l) is the proportional gain of the channel l in the motion c, and is defined as follows:

Zðc;lÞ ¼
0:8

lðc;mcÞ

; ð19Þ

where λ(c,mc)
is the entire time mean value of the muscle activation level of the channel mc cor-

responding to the agonist muscle in the motion c at 40%MVC. The classification rate was cal-

culated for 1000 samples, sampled from the 5000-th sample to the 6000-th sample of the

testing data, and the average classification rate was derived from ten trials.

In the proposed method, 200 samples, including 100 samples of the measured data and 100

samples of the artificially generated data, were used for LLGMN learning, as described above.

It is well known that motion classification based on machine learning tends to improve classi-

fication accuracy by only increasing the number of training samples in general. For compari-

son, therefore, the average classification rate was also calculated for two cases: (1) learning

conducted with only 100 samples of the measured data at 40%MVC, and (2) learning con-

ducted with 200 samples accumulated by simply increasing the number of samples of the train-

ing data at 40%MVC by random sampling.

Results

Generation accuracy of the proposed model

Fig 5 shows examples of (a) the measured EMG signals, (b) the artificial EMG signals gener-

ated from the measured EMG signals under each load weight based on the proposed model,

and (c) the artificial EMG signals generated from the measured EMG signals under a 1000 g

load based on the proposed model with the variance modulation, for different load weights:

500, 1000, 1500, and 2000 g.

The influence of the recording source of the preset parameters is shown in Figs 6a, 7a and

8a. Fig 6a shows the average absolute percentage error in the average amplitude between the

measured and artificial EMG signals based on the proposed model for each load weight. The

preset parameters were set using data recorded under 500, 1000, 1500, and 2000 g loads. Fig 7a

shows the correlation coefficients in the power spectrum density and Fig 8a shows the RMSE

in the kurtosis. The figures show the average values of all the subjects. One-way ANOVA tests

(significant level: 0.5%) were performed for each index to detect the influence of the recording

source of the preset parameters on the generation accuracy of the proposed model, and there

were no significant differences.

The comparison results for the three generation methods are shown in Figs 6b, 7b and 8b.

Fig 6b shows the average absolute percentage error in the average amplitude between the

measured and artificial EMG signals based on the proposed model for each load weight
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compared with the constant variance-based method and the proposed model using the vari-

ance modulation. Fig 7b shows the correlation coefficients in power spectrum density and Fig

8b shows the RMSE in kurtosis. The figures show the average values of all the subjects. The sta-

tistical test results based on the Steel-Dwass method were also given.

Applicability to motion classification

Fig 9 shows examples of the measured EMG signals and the artificial EMG signals generated

based on the proposed model for a muscle activation level of 80%MVC.

Fig 10 shows the average classification rates for each method: (a) muscle activation level of

40%MVC and (b) muscle activation level of 80%MVC. The figure also shows the average clas-

sification rates of all the subjects for each muscle activation level. The statistical test results

based on the Holm multiple comparison test were also given.

Fig 5. Examples of measured and artificial EMG signals for each load weight. (a) Measured EMG signals. (b) Artificial EMG signals generated from

the measured EMG signals under each load weight based on the proposed model. (c) Artificial EMG signals generated from the measured EMG signals

under a 1000 g load based on the proposed model with the variance modulation.

https://doi.org/10.1371/journal.pone.0180112.g005
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Fig 6. Average absolute percentage error in average amplitude for each load weight. (a) Influence of the recording source of

the preset parameters. (b) Comparison of each generation method. Error bars represent the standard deviations for all subjects.

https://doi.org/10.1371/journal.pone.0180112.g006
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Fig 7. Correlation coefficient in power spectrum for each load weight. (a) Influence of the recording source of the preset

parameters. (b) Comparison of each generation method. Error bars represent the standard deviations for all subjects. All correlation

coefficients had p < 0.001.

https://doi.org/10.1371/journal.pone.0180112.g007
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Fig 8. Root mean square error (RMSE) in kurtosis for each load weight. (a) Influence of the recording source of the preset

parameters. (b) Comparison of each generation method. Error bars represent the standard deviations for all subjects.

https://doi.org/10.1371/journal.pone.0180112.g008
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Discussion

Fig 5 shows that the amplitudes of the measured and artificial EMG signals increased together

as the load weights increased. In addition, the amplitudes of the artificial EMG signals are sim-

ilar to those of the measured EMG signals for each load weight. This result can be confirmed

from the average absolute percentage errors in the amplitude shown in Fig 6. In the case where

the measured EMG signals were reproduced for each load weight, the error rates in the ampli-

tude of the proposed method are approximately 4% for all sources of the preset parameters

and the load weights. No significant differences were found between the results of the pro-

posed method without modulation and those of the constant variance-based method (Fig 6b).

However, the standard deviations of the constant variance-based method are larger than those

of the proposed method because the accuracy of the variance estimation based on Hayashi

Fig 9. Examples of artificial and measured EMG signals with a muscle activation level of 80%MVC. (a) Artificially generated EMG signals for each

channel. (b) Measured EMG signals for each channel. The artificial and measured EMG signals are used for a part of the test and the training data in

motion classification, respectively.

https://doi.org/10.1371/journal.pone.0180112.g009
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et al.’s method [13] is better than that of the estimation based on the maximum likelihood

method. In the case of using the proportional variance modulation with the gain, the proposed

model can predict/generate artificial EMG signals for other load weights with an error rate of

10% or less even if the reproducibility of the EMG amplitude tends to be worse, except for the

reference load weight of 1000 g.

Fig 10. Average classification rates of each method. (a) Muscle activation level of 40%MVC. (b) Muscle

activation level of 80%MVC. Error bars in the results of Subjects A–D represent the standard deviations for all

trials and those in the average of all subjects represent the standard deviations for all subjects.

https://doi.org/10.1371/journal.pone.0180112.g010
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Fig 7 shows that the correlation coefficients in the power spectrum densities exhibit strong

correlations of over 0.90 regardless of the source of the preset parameters and the load weights

for each subject. In addition, no significant differences were confirmed among the three meth-

ods because the frequency setting component was the same in each method (Fig 7b). The pro-

posed model therefore can reproduce the frequency component with high accuracy because

the frequency components of the proposed model are determined using the AR model given

from each subject.

In Fig 8a, no significant differences in RMSE in the kurtosis due to the differences in the

recording source of the preset parameters are shown. Fig 8b shows that the RMSE in the kurto-

sis for the proposed method without/with modulation tends to be lower than that for the con-

stant variance-based method. This result indicates that the artificial EMG signals generated

using the proposed model can express the kurtosis of the measured EMG more precisely than

those generated by the constant variance-based method. In the case of EMG generation using

the constant variance-based method, the artificial EMG follows a Gaussian distribution. How-

ever, Hunter et al. experimentally showed that the probability density of EMG is more sharply

peaked near zero than a Gaussian distribution [26]. Bilodeau et al. and Nazarpour et al. also

reported that the measured EMG density has a larger kurtosis than a Gaussian distribution

[27, 28]. In contrast, because the variance is randomly determined from the variance distribu-

tion in the proposed model, the artificial EMG signals generated based on the proposed model

do not follow a Gaussian distribution. Instead, they follow a distribution with a kurtosis that is

more similar to the measured EMG. This indicates that the proposed model based on variance

distribution enables artificial EMG signal generation with consideration of the signal-depen-

dent noise affecting fluctuations in the EMG variance value. It should be noted that this repre-

sentation capability is the most significant point of the proposed model as conventional

generation methods cannot generate artificial EMG signals including this noise.

Thus, it is clear that the proposed model can generate artificial EMG signals that reproduce

the amplitude, frequency component, and kurtosis of the measured EMG signals. The usability

of the proposed artificial EMG generation model is also suggested from the viewpoint of the

preset parameter setting because the recording source of the preset parameters does not signif-

icantly influence the generation accuracy of the model. Moreover, artificial EMG signals at the

arbitrary muscle activation level can be generated from EMG signals recorded under other

muscle activation levels with a certain precision if the proportional gain in Eq (10) is appropri-

ately given.

Fig 9 shows that the artificially generated EMG signals based on the proposed model pos-

sess features that are close to those of the measured EMG signals at 80%MVC. This result indi-

cates that multi-channel artificial EMG signals with a high muscle contraction level can be

generated from pre-measured EMG signals with a low muscle contraction level using the pro-

posed method. In Fig 10a, the testing data for the muscle activation level of 40%MVC show

that there are no significant differences between each method in the subjects, except for Sub-

ject C, and in the averages of all the subjects. These results suggest that the classification ability

of the proposed method is equal to or better than that of every other method when the muscle

activation levels of the training and testing data are equal.

By contrast, on the testing data for the muscle activation level of 80%MVC, the proposed

method shows significantly higher classification rates than other methods in all the subjects

and in their average (Fig 10b). The decreases in the classification rates for the methods, where

the measured EMG signals are only learned, can probably be attributed to the increased fluctu-

ation of the EMG patterns of the test data by signal-dependent noise during the strong muscle

contraction. Increasing the number of learning samples from the measured signals tends to

improve the classification rate. However, the proposed method can be used to generate
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artificial EMG signals with strong muscle contraction involving noise superimposed onto the

EMG depending on the increased muscle force estimated using only the measured EMG sig-

nals with low muscle contraction. This facilitates accurate classification without increasing the

burden on subjects during the training data collection. These results indicate that the proposed

artificial EMG generation model is highly applicable to motion classification via machine

learning.

The motion classification experiment conducted in this study was performed only in an off-

line condition. However, it is known that high classification accuracy in an offline condition

yields better classification performance in a real-time context [29]. The classification accuracy

in the online condition also tends to be better than that in the offline condition because the

subjects can adjust their EMG pattern according to the feedback of the classification results

[30]. Therefore, it can be expected that the proposed classification method will also work effec-

tively in an online environment. In addition, the proposed method should have high applica-

bility in a real-time context because it can directly generate artificial EMG signals for training

data using measured EMG signals by setting the parameters in advance. On the other hand,

because many factors (e.g. sensor movement, sweating, and muscle fatigue) affect classification

performance in the online condition, verification of the robustness of the proposed method

against such environments will have to be carried out in future studies.

Conclusion

This paper proposed an artificial EMG generation model based on signal-dependent noise.

The proposed model estimates the variance distribution of EMG signals using the inverse

gamma distribution, and generates artificial EMG signals with signal-dependent noise super-

imposed according to muscle activation levels. This is the major distinctive feature of our

method compared with existing artificial EMG generation models.

The evaluations conducted on the generated artificial EMG signals and the comparison in

terms of amplitude, frequent component, and kurtosis of EMG distribution revealed that the

proposed variance distribution-based generation method can reproduce the features of the

measured EMG signals during isometric muscle contraction. In the motion classification

experiments conducted, the classification rates during strong muscle contraction were

improved by using artificial EMG signals for training data. Thus, it is clear that the proposed

model can generate artificial EMG signals having similar features to the measured EMG sig-

nals by setting suitable variance distribution and frequency characteristics. Moreover, it is pos-

sible to effectively apply the proposed model to motion classification.

A limitation of the proposed model and the proposed classification method is an assump-

tion that a linear relationship exists between the muscle activation level and the mean of σ in

Eqs (10) and (18). Previous studies found that the relationship between the muscle force and

the EMG amplitude is sometimes nonlinear [31, 32]. In future research, therefore, it will be

necessary to consider this nonlinear relationship for a more accurate estimation and genera-

tion of EMG signals during strong muscle activation. Further, we would like to apply the pro-

posed model to control myoelectric hands.
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