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Abstract

Mutations in the proximal tubular sodium-dependent phosphate co-transporters NPT2a and

NPT2c have been reported in patients with renal stone disease and nephrocalcinosis, how-

ever the relative contribution of genotype, dietary calcium and phosphate, and modifiers of

mineralization such as pyrophosphate (PPi) to the formation of renal mineral deposits is un-

clear. In the present study, we used Npt2a-/- mice to model the renal calcifications observed

in these disorders. We observed elevated urinary excretion of PPi in Npt2a-/- mice when

compared to WT mice. Presence of two hypomorphic Extracellular nucleotide pyrophospha-

tase phosphodiesterase 1 (Enpp1asj/asj) alleles decreased urine PPi and worsened renal cal-

cifications in Npt2a-/- mice. These studies suggest that PPi is a thus far unrecognized factor

protecting Npt2a-/- mice from the development of renal mineral deposits. Consistent with

this conclusion, we next showed that renal calcifications in these mice can be reduced by

intraperitoneal administration of sodium pyrophosphate. If confirmed in humans, urine PPi

could therefore be of interest for developing new strategies to prevent the nephrocalcinosis

and nephrolithiasis seen in phosphaturic disorders.

Introduction

Mutations in the sodium phosphate co-transporters NPT2a [1–3] and NPT2c [4, 5] have been

associated with intraluminal stones (nephrolithiasis) and mineral deposits in the renal paren-

chyma (nephrocalcinosis) in patients with familial forms of hypophosphatemia. In genome-

wide association studies, NPT2a has also been associated with nephrolithiasis [6] and altered

renal function [7, 8]. With both genetic abnormalities affected individuals show renal phos-

phate-wasting, high circulating levels of 1,25(OH)2D, and absorptive hypercalciuria as a result

of increased intestinal uptake of calcium [4, 5, 9, 10], and oral phosphate supplements are cur-

rently thought to reduce the risk for renal mineralization by lowering circulating levels of 1,25

(OH)2D and absorptive hypercalciuria [11]. However, the relative contribution of genotype,
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dietary calcium and phosphate, and modifiers of mineralization to the formation of renal min-

eral deposits is unclear. Our recent work suggests that reduced levels of osteopontin (Opn), an

extracellular matrix factor affecting binding of phosphate to hydroxyapatite crystals, contribute

to the development of nephrocalcinosis in Npt2a-/- mice [12]. This may be due to the fact that

Npt2a-/- mice respond differently to dietary phosphate when compared to WT mice [13]. Fur-

ther evaluation in the Npt2a-/- cohort on different diets suggests that urinary calcium excretion,

plasma phosphate, and FGF23 levels appear to be positively correlated to renal mineral deposit

formation, while urine phosphate levels and the urine anion gap, an indirect measure of

ammonia excretion, appear to be inversely correlated [13]. In addition, local tissue levels of Pi

generated by tissue nonspecific alkaline phosphatase (Tnsalp) and ectonucleoside triphosphate

diphosphohydrolase 5 (Entpd5) may be important as suggested by decreased skeletal minerali-

zation in the absence of these enzymes [14, 15].

In the present report, we hypothesize that genes involved in the synthesis of pyrophosphate

(PPi) in the interstitial matrix may be associated with renal mineralization in these mice

[16, 17].

PPi is present in plasma at a concentration of 1–6 μM [18] and in urine levels are around

10 μM [19]. Calcium phosphate stone formers appear to have reduced urinary PPi excretion

when compared with control subjects [20–23]. Intravenous 32PPi is rapidly hydrolyzed in

plasma by tissue nonspecific alkaline phosphatase (Tnsalp) that is expressed in the proximal

tubules of the kidneys [24] and less than 5% of intravenous 32PPi appears in urine. These data

indicate that urine PPi is generated locally in the kidneys [25, 26].

Extracellular nucleotide pyrophosphatase phosphodiesterase 1 (Enpp1) hydrolyzes extracellu-

lar ATP into AMP and PPi and may be an important source of extracellular PPi in the body

[27, 28]. Enpp1 is the founding member of the ENPP or NPP family of enzymes [29]. It has

phosphodiesterase activity [27] and is a type II extracellular membrane bound glycoprotein

located on the mineral-depositing matrix vesicles of osteoblasts and chondrocytes [30] and the

vascular surface of cerebral capillaries [28]. Enpp1 is also expressed in the kidney collecting

duct and possibly other segments [25]. The second source of PPi generation in the kidney is

the mevalonate pathway inside mitochondria [26]. Intracellular PPi is released into the inter-

stitium and the urine by the transporter progressive ankylosis gene product (Ank) [31]. Ank is

located at the apical membrane of collecting ducts suggesting that it may function to inhibit

mineralization within the tubule lumen. Additionally, ecto-5-prime nucleotidase (Nt5E/CD73),
which inhibits Tnsalp by further hydrolyzing AMP to adenosine, and adenosine triphosphate-
binding cassette [32], and subfamily C, member 6 (Abcc 6), recently shown to secrete ATP from

hepatocytes [32], may both be involved in PPi generation.

In the present study, we used Npt2a-/- mice to model these disorders. Renal mineral deposits

in Npt2a-/- mice are found at intraluminal and interstitial sites, they contain calcium, phospho-

rus and osteopontin, and it has been suggested that they ultrastructurally resemble the compo-

sition of Randall’s plaques [33, 34]. The extent of renal mineralization is highest between

newborn and weaning age Npt2a-/- mice [35]. Mineralization resolves subsequently on 0.3–

0.6% dietary phosphate, but persists beyond weaning age when diets are supplemented with

1.65% phosphate [35] or 1.2% phosphate [12, 36]. Ablation of 25(OH)-vitamin D-1-alpha
hydroxylase (Cyp27a1) prevents renal mineralization, as shown in Cyp27a1-/-/Npt2a-/- double-

knockout mice [35].

We here report that urine PPi levels are increased in Npt2a-/- mice when compared to WT

mice, possibly to protect from renal mineralization in the setting of hyperphosphaturia. Pres-

ence of two hypomorphic Enpp1asj/asj alleles decreases urine PPi and worsens renal calcium

phosphate deposit formation in Npt2a-/- mice. Conversely, development of mineral deposits in

these mice can be reduced by intraperitoneal administration of sodium pyrophosphate. These

Pyrophosphate reduces calcification in kidneys of Npt2a-/- mice
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studies suggest that PPi may be a thus far unrecognized factor modulating the development of

renal calcifications in Npt2a-/- mice which may be, if confirmed in humans, of diagnostic and

therapeutic relevance for phosphaturic disorders.

Materials and methods

Animals

Male and female C57BL/6 mice were obtained from Charles River Laboratory, MA. Male and

female Npt2a-/- mice (B6.129S2-Slc34a1tm1Hten/J, Stock No: 004802), and Enpp1asj/asj mice

(C57BL/6J-Enpp1asj/GrsrJ, Stock No: 012810) were purchased from The Jackson Laboratory,

ME. The Enpp1asj allele is partially active and shows approximately 15% level of Enpp1 activity

compared to wild-type controls [37]. Mice were genotyped by PCR amplification of genomic

DNA extracted from tail clippings as described [29, 38–40]. Mice were weaned at 3 weeks of

age and allowed free access to water and regular chow (1.0% calcium, 0.7% phosphorus, of

which 0.3% phosphorus is readily available for absorption, Harlan Teklad TD.2018S). Mice

received daily intraperitoneal (i.p.) injection of Hanks Buffered Saline (Gibco, Life Sciences) or

sodium pyrophosphate in HBSS for two weeks until age four weeks as previously described

(160 micromole/Kg/day) according to [41]. To determine whether renal mineral deposits per-

sist beyond weaning age mice were followed for an additional 10 weeks of age after weaning

on regular chow. The background of all mouse lines is C57Bl6, use of littermates for controls

further reduced bias based on genetic background. No difference in renal mineral deposits was

observed between sexes as previously reported by us [12, 36] and thus genders were combined

here.

Mice were euthanized following orbital exsanguination in deep anesthesia with isoflurane

and vital organs were removed as described [12, 36]. The research under IACUC protocol

2014–11635 was first approved Oct. 22 2014 by the Yale Institutional Animal Care and Use

Committee (IACUC), was renewed Sept. 7 2016, and is valid through Sept. 30 2017. Yale Uni-

versity has an approved Animal Welfare Assurance (#A3230-01) on file with the NIH Office of

Laboratory Animal Welfare. The Assurance was approved May 5, 2015.

Blood and urine parameters

Biochemical analyses were done on blood samples (taken by orbital exsanguination) and spot

urines collected following an overnight fast at the same time of day between 10 AM and 2 PM.

Following deproteinization of heparinized plasma by filtration (NanoSep 300 K, Pall Corp.,

Ann Arbor, MI), plasma and urinary total pyrophosphate (PPi) concentrations were deter-

mined using a fluorometric probe (AB112155, ABCAM, Cambridge, MA). Urine PPi was cor-

rected for urine creatinine, which was measured by LC-MS/MS or by ELISA using appropriate

controls to adjust for inter-assay variability.

Kidney histology

Left kidneys were fixed in 4% formalin/PBS at 4˚C for 12 h and then dehydrated with increas-

ing concentration of ethanol and xylene, followed by paraffin embedding. Mineral deposits

were determined on 10 um von Kossa stained sections counterstained with 1% methyl green.

Hematoxyline/eosin was used as counterstain for morphological evaluation. Histomorpho-

metric evaluation of sagittal kidney sections that includes cortex, medulla and pelvis was

performed blinded by two independent observers using an Osteomeasure System (Osteo-

metrics, Atlanta, GA). Percent calcified area was determined using the formula: % calc. area =

100�calcified area/total area (including cortex, medulla and pelvic lumen), and is dependent
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on number of observed areas per section. Mineralization size was determined using the for-

mula: calc. size = calcified area/number of observed calcified areas per section.

For transmission electron microscopy, a 1 mm3 block of the left kidney was fixed in 2.5%

glutaraldehyde and 2% paraformaldehyde in phosphate buffered saline for 2 hrs., followed by

post-fixation in 1% osmium liquid for 2 hours. Dehydration was carried out using a series of

ethanol concentrations (50% to 100%). Renal tissue was embedded in epoxy resin, and poly-

merization was carried out overnight at 60˚C. After preparing a thin section (50 nm), the tis-

sues were double stained with uranium and lead and observed using a Tecnai Biotwin (LaB6,

80 kV) (FEI, Thermo Fisher, Hillsboro, OR) at the Yale Center for Cellular and Molecular

Imaging (YCCMI).

Renal gene expression analysis

Right kidneys were used for preparation of total RNA using Trizol (Thermo Fisher Sci, Inc.,

Waltham, MA). qRT-PCR (Omniscript, QuantiTect, Qiagen, Valencia, CA) was performed in

an ABI-Step One Plus Cycler (Fisher, Life Technologies, Waltham, MA) using the mouse beta

actin forward primer: GGCTGTATTCCCCTCCATCG, and reverse primer: CCAGTTGGTAACAA
TGCCATGT, the mouse Enpp1 forward primer: CTGGTTTTGTCAGTATGTGTGCT and reverse

primer: CTCACCGCACCTGAATTTGTT, the mouse Entpd5 forward primer: CCAAAGACTCGA
TCCCCAGAA and reverse primer: TGTTAGAAAGTTCACGGTAACCC, the mouse Ank forward

primer: TACGGGCTGGCGTATTCTTTGand reverse primer: CACTGTAGGCTATCAGGGTGT,

and the mouse Tnsalp forward primer CCAACTCTTTTGTGCCAGAGAand reverse primer:

GGCTACATTGGTGTTGAGCTTTT.

Statistical analysis

Data are expressed as means±SEM and analyzed in Microsoft Excel 2010 or Graphpad Prism

6.0. Differences were considered significant if p-values, calculated using the unpaired, two-

tailed Student’s t-test, linear regression analysis, or one-way ANOVA using Tukey’s adjust-

ment for multiple comparisons, were smaller than 0.05.

Results

Renal PPi excretion is increased Npt2a-/- mice

Humans with loss-of-function of NPT2a [1–3] and NPT2c [4, 5] develop renal mineralization,

which may manifest during early childhood prior to specific therapy or when inappropriately

receiving active vitamin D analogs, but can also occur throughout life [9]. To model these kid-

ney abnormalities, we used 2 months old Npt2a-/- mice [39, 40] placed on a diet containing

0.6% calcium and 0.7% phosphorus (Harlan Teklad TD.2018S).

Interestingly, the urine PPi concentration was increased in Npt2a-/- mice (1257±272 micro-

mole/l, n = 19 vs. WT 157±13 micromole/l, n = 7, p = 0.042) (Fig 1A).

Similarly, urine PPi excretion corrected for urine creatinine was increased in Npt2a-/- mice

(3.0±0.53 micromole/mg, n = 19 vs. WT 1.3±0.42 micromole/mg, n = 9, p = 0.038) (Panel A in

S1 Fig). Evaluation of whole kidney gene expression was unchanged for the PPi-generating

enzyme Enpp1 (0.004±0.001, n = 9 vs. WT 0.005±0.001, n = 7, p = ns) and decreased for the

PPi transporter Ank (0.00015±2.8e-5, n = 9 vs. WT 0.001±0.00014, n = 10, p = 0.007) (Fig 1B

and 1C). Expression of the Pi-generating enzyme Entpd5 was decreased (0.06±0.01, n = 9 vs.

WT 0.6±0.15, n = 10, p = 0.0073) and expression of Tnsalp, which hydrolyses PPi to Pi, was

increased (0.07±0.02, n = 9 vs. WT 0.02±0.004, n = 10, p = 0.0043) (Fig 1D and 1E). Thus, the

source of urine PPi in Npt2a-/- mice remains unclear and may be extrarenal, localized to a
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specific tubular segment inside the kidneys, or regulation may occur on the post-translational

level.

To further evaluate the role of PPi in renal mineral deposit formation in the setting of renal

phosphate wasting we next reduced endogenous PPi production using the hypomorphic

murine Enpp1asj allele [37] or administered sodium pyrophosphate by intraperitoneal injection

as previously described [41] to increase PPi.

Presence of the hypomorphic Enpp1asj allele blunts urine PPi excretion

and worsens renal mineralization in Npt2a-/- mice

Enpp1asj/asj mice develop renal mineralization on a “stone-forming” high phosphorus, low

magnesium diet, while they develop no renal mineralization on regular chow [17, 42].

Fig 1. Urine PPi concentration and renal gene expression in Npt2a-/- mice. Urine pyrophosphate concentration (U-PPi, A) following an overnight fast

and renal gene expression as indicated on the y-axis for ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1, B), progressive ankylosis (Ank,

C), ectonucleoside triphosphate diphosphohydrolase 5 (Entpd5, D), tissue nonspecific alkaline phosphatase (Tnsalp, E) in mice fed regular chow for 10

weeks. The data represent mean±SEM of 4–19 mice, p-values shown above the lines of comparisons were calculated by one-way ANOVA using Tukey’s

adjustment for multiple comparisons (A) and Student’s t-test (B-E).

https://doi.org/10.1371/journal.pone.0180098.g001
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Presence of two hypomorphic asj alleles of Enpp1 blunted the increase of the urine PPi concen-

tration of double-mutant mice when compared to Npt2a-/- mice on regular chow, albeit non-

significantly (67±21, n = 4 vs. Npt2a-/- 1257±272 micromole/l, n = 19, p = 0.084, Fig 1A). Simi-

larly, urine PPi excretion corrected for urine creatinine was decreased in double mutant mice

(0.43±0.084 micromole/mg, n = 4 vs. Npt2a-/- 3.0±0.53 micromole/mg, n = 19, p = 0.044, panel

A in S1 Fig). One or two hypomorphic asj alleles of Enpp1 furthermore increased the calcified

area of double-mutant mice when compared to Npt2a-/- mice on regular chow in a gene dose-

dependent fashion (0.3±0.07, n = 8 in Enpp1asj/+/Npt2a-/-, p = ns vs. 0.26±0.04% in Npt2a-/-

and 0.69±0.15% in Enpp1asj/asj/Npt2a-/-, p<0.0001 vs. Npt2a-/-) while no mineral deposits were

found in Enpp1asj/asj mice on regular chow (Fig 2A). Since increased calcified area in double

mutants was due to an increase in number of calcifications, no difference was observed for

mineralization size between Npt2a-/-, Enpp1asj/+/Npt2a-/-, and Enpp1asj/asj/Npt2a-/- mice (Fig

2B). Renal calcified area inversely correlated with spot urine PPi concentration (slope =

-5.226e-005 ± 2.391e-005, R2 = 0.126, p = 0.036) (Fig 3A). No significant correlation was found

for calcification area (Fig 3B) or when area and size were correlated with urine PPi corrected

for urine creatinine (Panels C and D in S1 Fig).

Intraperitoneal sodium PPi injection decreases renal mineral deposits in

Npt2a-/- mice

Intraperitoneal injection of sodium pyrophosphate was previously shown to reduce arterial

calcification in an uremic mouse model [41]. We used the dose of 160 micromole/Kg/day pub-

lished by these authors and two weeks old Npt2a-/- pups for this experiment, because renal cal-

cification is more pronounced when compared to older mice (Fig 4A and 4C). Size and body

weight (BW) of mice in the treatment group were indistinguishable from vehicle and the ani-

mals appeared to be thriving well. Following sacrifice at four weeks of age we observed a reduc-

tion of renal mineral deposits by 33% in the treatment group (0.4±0.04, n = 9 vs. vehicle 0.7

±0.06%, n = 12, p = 0.01) (Fig 4C and 4D) while mineralization size again was unaffected (Fig

4E). Plasma PPi levels at sacrifice were increased, albeit non-significantly (3.9±0.8, n = 9 vs.

vehicle 2.0±0.4 micromole/l, n = 5, p = ns) (Fig 4F). Likewise, the U-PPi concentration was

increased (244.9±33.2, n = 14 vs. vehicle 149.4 ± 28.8 micromole/l, n = 14, p = 0.039) (Fig 4G

and panel B in S1 Fig).

Histological evaluation showed large interstitial mineral deposits that displaced the sur-

rounding renal tubules. In addition, we observed small intraluminal mineral deposits in corti-

cal and medullary tubular segments of the kidneys of Npt2a-/- and double-mutant mice (Fig

4A). Transmission electron images showed concentric spheres of similar morphology in

Npt2a-/- and double-knockout mice (Fig 4B) as previously described for Npt2a-/- mice by us

[13, 43] and others [33, 34]. No mineralization was observed in renal vasculature or in the

renal pelvis of our mice.

Discussion

Oral phosphate supplements are currently thought to be the primary intervention to reduce

risk for renal mineralization in human carriers of NPT2a and NPT2c mutations. However,

there is concern that oral phosphate therapy might contribute to the formation of renal miner-

alization despite reduced 1,25(OH)2D levels and reduced urinary calcium excretion under cer-

tain conditions, for example in patients with X-linked hypophosphatemia (XLH) treated with

oral phosphate supplements given multiple times throughout the day [44, 45] and in otherwise

healthy individuals following treatment with phosphate enema [46].
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Fig 2. The hypomorphic Enpp1asj allele worsens renal mineralization area seen in Npt2a-/- mice on

regular chow. Histomorphometric analysis of renal mineralization (%calcified area = 100*mineralization

area/tissue area, A; calcification size = mineralization area/number of calcifications, um2, B) in 10 um sections

of kidneys from mice fed regular chow for 10 weeks. The data represent individual animals (closed circles)

with the means±SEM, p-values shown above the lines of comparisons were calculated by one-way ANOVA

Pyrophosphate reduces calcification in kidneys of Npt2a-/- mice
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We recently reported that reduced urine levels of osteopontin (Opn), an extracellular matrix

factor affecting binding of phosphate to hydroxyapatite crystals, contribute to the development

of nephrocalcinosis in Npt2a-/- mice [12]. The present report describes that the urine PPi con-

centration may be an additional modifier of renal calcifications in this mouse model.

Reduced Enpp1 activity increased the % calcified area in double mutant mice when com-

pared to Npt2a-/- mice (Fig 4A), while the size of the calcium phosphate deposits was not

affected. Similarly, intraperitoneal sodium PPi treatment reduced % calcified area, while calci-

fication size was unchanged. Although further studies are required to define cause and effect,

these data suggest that PPi inhibits nucleation (Figs 2A and 4A), which is different from the

effect of Opn reported by us [12], that predominantly decreases mineralization size, consistent

with the known role of Opn in calcium phosphate crystal growth. Interventions that increase

both PPi and Opn would therefore be predicted to be additive.

Enpp1 expression is positively regulated by phosphate in osteoblast cultures [47], and there-

fore we expected that expression is likewise increased in Npt2a-/- mice to explain the increased

urine PPi levels. Instead, we found that Enpp1 expression is unchanged, possibly as a result of

reduced Pi sensing in the absence of Npt2a. Furthermore, Ank expression was decreased and

Tnsalp was increased, all predicted to reduce local PPi production. These findings suggest that

PPi may be generated outside of the kidneys contrary to previous reports [25, 26], and elevate

urine PPi despite unchanged or decreased local gene expression for Enpp1 and Ank, respec-

tively. Consistent with this hypothesis is our finding that global reduction of Enpp1 activity in

Enpp1asj/asj mutant mice decreased urine PPi levels and that intraperitoneal injection of

sodium pyrophosphate increased urine PPi levels (Fig 4G). Alternatively, PPi production may

be regulated locally by increased renal activities of Enpp1 and Ank on a post-transcriptional

level.

Interestingly, urine PPi in 10 weeks old Npt2a-/- mice is higher than in 4 weeks old wean-

lings (1257±272 micromole/l vs. 149.4 ± 28.8 micromole/l). This may be a developmental

change of urine PPi over the first 10 weeks of life and could be a contributing factor explaining

the initial observation in Npt2a-/- mice reported by the Tenenhouse lab [33], that renal calcifi-

cations peak with weaning age and subsequently decrease during adult life in these mice.

Tissue specific ablation of Enpp1 (and possibly Ank) could help determine in future studies

whether PPi is produced renally or extrarenally. Injection of recombinant Enpp1 may be able

to reduce the renal calcifications in Npt2a-/- mice [26, 29] and provide further evidence of the

causal relationship of this extracellular enzyme, urine PPi, and renal mineralization.

Also, separate evaluation of interstitial and luminal mineralization and PPi levels and/or

activity of PPi generating enzymes may be of interest in future studies. Finally, determining

how urinary pH, anion gap, citrate, oxalate, magnesium, and the expression of uromodulin
(Tamm-Horsfall protein, THP) or Opn [48] modify PPi action may help better understanding

the pathogenesis of renal mineralization in Npt2a-/- mice.

In summary, we show here that urine PPi is increased in Npt2a-/- mice. Presence of one or

two hypomorphic Enpp1asj alleles decreases urine PPi and increases renal mineral deposits in

Npt2a-/- mice. Furthermore, the development of nephrocalcinosis and nephrolithiasis in these

mice can be reduced by intraperitoneal administration of sodium pyrophosphate. These stud-

ies suggest that PPi may be a thus far unrecognized factor modulating the development of

renal calcifications in Npt2a-/- mice which may be, if confirmed in humans, of diagnostic and

therapeutic relevance for phosphaturic disorders.

using Tukey’s adjustment for multiple comparisons, no significant differences were detected between groups

in panel B.

https://doi.org/10.1371/journal.pone.0180098.g002
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Fig 3. Urinary pyrophosphate concentration is inversely associated with renal mineralization size in a

combined bivariate linear regression analysis of all mice. All experimental WT and mutant mice from Fig

2 (n = 28) for which urine was available were evaluated using linear regression analysis to determine the

association of renal mineralization with the urine pyrophosphate concentration (U-PPi) (% calcified

area = 100*calcified area/total area A and calcification size = calcified area/number of mineralization B). Data

points represent values of individual animals. Results of the linear regression analysis are shown as solid line

with 95% confidence interval (stippled lines), R2 and p-values.

https://doi.org/10.1371/journal.pone.0180098.g003

Pyrophosphate reduces calcification in kidneys of Npt2a-/- mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0180098 July 13, 2017 9 / 14

https://doi.org/10.1371/journal.pone.0180098.g003
https://doi.org/10.1371/journal.pone.0180098


Supporting information

S1 Fig. U-PPi corrected by U-creatinine. Urine pyrophosphate excretion of mice fed regular

chow for 10 weeks (U-PPi/U-crea, A) and urine pyrophosphate excretion (U-PPi/U-crea) of

two weeks old Npt2a-/- pups treated with i.p. injections of vehicle or sodium pyrophosphate

(160 micromole/Kg/day) for two weeks (B), measured after overnight fast and 18–24 hrs. fol-

lowing the last treatment. Linear regression analysis to determine the association of renal

Fig 4. Intraperitoneal injection of Na-pyrophosphate reduces cortical and medulary renal mineralization in Npt2a-/- mice. Light micrographs of 10

um renal sections prepared from paraffin-embedded kidneys, obtained from mice with various genotypes fed regular chow for 10 weeks (A, upper panels:

von Kossa, methylene green staining, 4X, and A, lower panels: von Kossa, hematoxylin and eosin staining, 40X); Transmission electron micrographs

showing microspheres in double mutant mice on regular chow, inset with larger magnification shown to the right (B); Two weeks old Npt2a-/- pups treated

with i.p. injections of vehicle or sodium pyrophosphate (160 micromole/Kg/day) for two weeks (C); Histomorphometric analysis of renal mineralization (%

calcified area = 100*mineralization area/tissue area, (D); calcification size = mineralization area/number of calcifications, um2, (E), and plasma

pyrophosphate levels (F) and urine pyrophosphate (U-PPi) (G) of two weeks old Npt2a-/- pups treated with i.p. injections of vehicle or sodium pyrophosphate

(160 micromole/Kg/day) for two weeks, measured after overnight fast and 18–24 hrs. following the last treatment. The data represent individual animals

(closed circles) with the means±SEM, p-values shown above the lines of comparisons were calculated by Student’s t-test.

https://doi.org/10.1371/journal.pone.0180098.g004
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mineralization with the ratio of urine pyrophosphate/urine creatinine (U-PPi/U-crea) (% cal-

cified area = 100�calcified area/total area C and calcification size = calcified area/number of

mineralization D). The data represent individual animals (closed circles) or means±SEM, p-

values shown above the lines of comparisons were calculated by one-way ANOVA using

Tukey’s adjustment for multiple comparisons (A) and Student’s t-test (B-D).
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