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Abstract

Background

Smartphone usage is now integral to human behavior. Recent studies associate extensive

usage with a range of debilitating effects. We sought to determine whether excessive usage

is accompanied by measurable neural, cognitive and behavioral changes.

Method

Subjects lacking previous experience with smartphones (n = 35) were compared to a matched

group of heavy smartphone users (n = 16) on numerous behavioral and electrophysiological

measures recorded using electroencephalogram (EEG) combined with transcranial magnetic

stimulation (TMS) over the right prefrontal cortex (rPFC). In a second longitudinal intervention,

a randomly selected sample of the original non-users received smartphones for 3 months while

the others served as controls. All measurements were repeated following this intervention.

Results

Heavy users showed increased impulsivity, hyperactivity and negative social concern. We

also found reduced early TMS evoked potentials in the rPFC of this group, which correlated

with severity of self-reported inattention problems. Heavy users also obtained lower accu-

racy rates than nonusers in a numerical processing. Critically, the second part of the experi-

ment revealed that both the numerical processing and social cognition domains are causally

linked to smartphone usage.

Conclusion

Heavy usage was found to be associated with impaired attention, reduced numerical pro-

cessing capacity, changes in social cognition, and reduced right prefrontal cortex (rPFC)

excitability. Memory impairments were not detected. Novel usage over short period induced

a significant reduction in numerical processing capacity and changes in social cognition.

PLOS ONE | https://doi.org/10.1371/journal.pone.0180094 July 5, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Hadar A, Hadas I, Lazarovits A, Alyagon

U, Eliraz D, Zangen A (2017) Answering the missed

call: Initial exploration of cognitive and

electrophysiological changes associated with

smartphone use and abuse. PLoS ONE 12(7):

e0180094. https://doi.org/10.1371/journal.

pone.0180094

Editor: Aviv M. Weinstein, Ariel University, ISRAEL

Received: May 25, 2017

Accepted: June 5, 2017

Published: July 5, 2017

Copyright: © 2017 Hadar et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. In addition, we have uploaded all original data

files to an online depository- https://zenodo.org/

record/810695.

Funding: The author received specific funding for

this work from the Israeli Ministry of Science under

the Prat and Eshkol scholarships. The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

https://doi.org/10.1371/journal.pone.0180094
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180094&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180094&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180094&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180094&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180094&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180094&domain=pdf&date_stamp=2017-07-05
https://doi.org/10.1371/journal.pone.0180094
https://doi.org/10.1371/journal.pone.0180094
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/record/810695
https://zenodo.org/record/810695


Introduction

Many human functions are now supported and mediated by smartphone devices. It has been

argued that usage comes with a price: it has been associated with an increasing accident rate,

sleep disorders, undesirable mental health outcomes and persistent changes in behavior and

personality [1,2]. Indeed, the potential negative impact of smartphone on human behavior has

not completely escaped the eyes of policy makers. For instance, authorities began imposing

heavy penalties on drivers and even on pedestrians using smartphones [3–5].

Given the sheer frequency and duration of daily smartphone usage it is conceivable that

changes in cognition, behavior and psychological states may be observed in users. Such

changes have been found in intensive users who present an exaggerated and debilitating usage

[6,7]. Recent studies showed an association between such usage and impulsive behaviors [8],

pathological dependence [9], low emotional stability and self-esteem [10], chronic stress [11],

depression [12,13], and sleep disturbances [2,11]. A larger study of 5051 adolescences, found

that heavy users were significantly more likely to attempt suicide as compared with normal

users [12]. However, these recent studies offer primarily questionnaires-based correlative data

and thus little can be inferred in terms of causal changes to cognition and behavior.

Some researchers conceptualized behavioral changes associated with smartphones and sim-

ilar technologies as a behavioral addiction [14–16]. Kown et al. (2013) generated and validated

the Smartphone Addiction Scale (SAS), based on previous internet addiction diagnostics, and

several similar scales have been developed [17]. However, despite the upsurge in diagnostic

instruments, to date there is no evidence demonstrating that smartphones alter objectively

measured behavior [18]. In order to bridge this gap in the literature this multifaceted study

sought to explore smartphone associated changes on 3 planes: 1) self-reported and objective

records of behavioral tendencies, 2) behavioral task performance, and 3) recording of a rele-

vant neural circuitry.

The first was addressed by using series of questionnaires assessing traits and behavioral ten-

dencies that characterize problematic use of mobile phones and internet (11,12,16). Specifi-

cally, psychosocial disorders, depressive symptoms, and loss of impulse control emerged from

the literature as dominant in such users [19–21]. For instance, internet usage has been shown

to increase impulsivity in heavy users, and similar results were obtained in computer gaming

addiction [21]. We thus predicted that heavy smartphone users will present with abnormal

scores of social cognitions, depression, and ADHD measures. To account for the versatile

nature of self-report data we also monitored actual smartphone usage using a smartphone soft-

ware. We sought to assess whether objectively measured usage will be proportionally linked to

severity of reported symptoms.

The second was addressed by employing tasks assessing impulsivity, attention in informa-

tion processing and memory. The selection of these domains stemmed from the current

knowledge in the fields on internet addiction disorder (IAD). The most consistent behavioural

finding in these disorders is poor inhibitory control suggesting greater impulsivity [22,23].

Equally important, several studies suggested an association of attention grabbing stimuli with

memory and attention deficits [24–26]. In addition, numerous studies implicated digital

addictions (internet and gaming) in more generalized executive control dysfunctions [27,28].

Executive control processes such as working memory performance and decision making were

reported to be particularly reduced in the presence of digital devices. We thus selected a classic

response inhibition task [29], a speeded and difficult numerical information processing task,

and a recognition task. We speculated that given the overarching dependence of smartphone

users on the devices for simple calculations and as a memory aid, they may exhibit impaired

capacity for technologically unassisted information processing and retention of information.

Neural and cognitive costs of smartphone usage
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The third plane, relevant neural activity, was addressed by measuring right prefrontal cortex

(rPFC) excitability previously implicated in impulse inhibition [30]. Internet and gaming

addiction, currently defined as impulse control disorder [24], have both been associated with

abnormal prefrontal activity at rest [24]. In a recent review by Weinstein and colleagues the

neural mechanisms underlying internet and gaming addiction have been suggested to closely

resemble the neuropathology of substance addiction [31]. Reduced gray and white matter vol-

ume have been repeatedly found in the prefrontal cortex, the orbitofrontal cortex and the sup-

plementary motor area of subjects with internet and gaming addiction; changes that correlated

with the duration of the disorder [24] [31]. We thus measured right prefrontal activity to estab-

lish whether sensitive neuronal changes occur in association with heavy smartphone usage.

For this purpose, we measured several indices of rPFC excitability. First, early transcranial

magnetic stimulation (TMS) evoked potential (TEP) was used to compare glutamatergic-

related [32] cortical excitability at rest. Second, long interval cortical inhibiton (LICI) was used

to evaluate a correlate of gama-aminobutyric acid (GABAb)- mediated activity of inhibitory

interneurons [33,34].

Finally, we sought to determine whether smartphone usage can autonomously cause such

changes. For this purpose we employed an additional longitudinal randomized controlled

design in which a sample of nonusers received a smartphone while a matched control sample

remained with their original mobile phone (Fig 1); a design that serves two aims. First, it allows

identification of cognitive, behavioral and neuronal alterations in heavy smartphone users, by

comparing the results of the two populations (heavy- vs. non-users). Second, it allows to deter-

mine whether usage produces measurable behavioral and neural changes.

Methods

Participants

Fig 1 presents the timeline and allocation of the groups to the different study phases (note

color coding). Participants in the NU group were recruited using advertisements in university

campus and participants in the SU group were selected using a questionnaire [15, 35] as

detailed in Fig 1. Overall 60 participants were selected and 51 participated in the study between

June 2013- December 2014 (9 of the selected participants refused TMS measurements). Partic-

ipants were screened for safety contraindications for TMS, psychiatric diagnosis and learning

Fig 1. Timeline of recruitment, allocation and procedures. 35 participants (19 females; mean age 25±3.8 years [range: 21–32

years]) lacking any previous experience with or possession of a smartphone, but in possession of a standard mobile phone, were

allocated to the nonusers (NU) group. The second, heavy smartphone users (SU) group, was recruited using the smartphone addiction

scale (SAS) and the mobile phone involvement questionnaire (MPIQ) administered online to 2711 participants. Participants who

scored more than 2 standard deviations above the mean in both questionnaires were recruited via telephone interview to form the SU

group. This group consisted of 16 participants (9 females; mean age 24±2.5 years [range: 21–27 years]). A subset (n = 28 total; n = 25

with TMS) of the NU participants consented to a second phase. In the second phase 11 of the NU participants (7 females; mean age

24.7±2 years [range: 21–29]) were randomly selected to receive smartphone devices for a 3 months period (NUsp) while 14 others of

the NU participants (8 females; mean age 24.9±2.2 years [range 22–28]) served as matched controls (NUco), the remainder of the NU

sample and the SU group were released from the study immediately after the first phase. See S1 and S2 Tables for full demographics

of all groups.

https://doi.org/10.1371/journal.pone.0180094.g001
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impairments. Overall four groups were tested. Two groups were tested in the first phase; heavy

smartphone users (SU, n = 16) and nonusers (NU, n = 35). A subset (n = 28 total; n = 25 with

TMS) of the NU participants consented to a second phase. These were randomly selected to

either receive smartphone devices for a 3 months period (NUsp, n = 12, 1 refusing TMS) or

serve as controls (NUco, n = 16, 2 refusing TMS). The reminder of the sample and the SU

group was released from the study at this point.

The experimental procedures were approved by and in accordance with the local Helsinki

Committee of Ben Gurion University. All participants provided written informed consent

prior to the study. Participants received 150 NIS (45$) payment for each of the two experimen-

tal phases.

Behavioral measurements

Smartphone application. The application App Manager Pro 2 (ATM2 Ltd, 2013) was

installed on participants’ smartphones following the first study phase (i.e. for SU and NUsp

groups). App data was recorded for seven days of usage and downloaded for offline analysis.

The software recorded the duration and frequency of usage for each application on the phone.

Speeded numerical processing task. Subjects sat 50 cm in front of a 19-inch CRT moni-

tor. Each trial was briefly presented for a duration of 2 seconds. The task centrally presented a

rapidly changing series of arithmetic problems (e.g. 4–6+3 =?) each for 600 milliseconds in

white on a black screen. Next, the following question appeared ‘greater or smaller than 4?’ to

which participants were instructed to respond as quickly as possible by pressing the left or

right mouse button before the onset of the following stimulus.

Memory task. Subjects were presented with an array of eight simple geometric patterns

and were required to remember their orientation. Immediately following, a recognition test

was conducted. It presented four possible alternatives, each depicting one of the previously

shown patterns in a different orientation. Participants used the keyboard number pad to indi-

cate which of the four alternatives matches the previously presented pattern.

Stop signal task. A modified version of the visual stop signal task was presented on a lab

PC using Eprime (PST Inc., E-Prime 2.0). The task presented two visual cues (‘x’, ‘o’) to which

participants had to respond by pressing one of two corresponding buttons using either their

left or right index fingers. In 25% of trials a stop signal was shown (white square) immediately

after the visual cue to which subjects had to withhold their response. The stop signal delay

(SSD) from visual cue onset changed in a staircase dynamic-tracking manner, depending on

performance. A detailed description appears in Berger et al. (2013) [29].

Questionnaires. The Hebrew version of the following questionnaires were administered:

Beck Depression Inventory (BDI) (30), Conners’ Adult ADHD Rating Scales (CAARS) [36],

Revised Self-Monitoring Scale (RSMS) and the Concern for Appropriateness Scale (CAS) [37].

In addition to the ADHD questionnaire we assessed impulsivity using the monetary delay

discount task [38]. In this task participants were asked to decide between small immediate

monetary rewards to larger delayed rewards. Participants were told that one of their choices

will be monetized at a random selection.

TMS-EEG protocol

Electroencephalogram (EEG) activity was recorded both during the Stop Signal task and during

TMS using a 64 electrodes Waveguard cap and a TMS compatible EEG amplifier referenced to

Cz electrode. Data were acquired using ASA™ version 4.7.3 (ANT neuro, Enschede, Nether-

lands). Impedance was kept below 10 kOhm. PO6 served as a ground electrode. Recording fre-

quency was set to 2048 Hz, and digitized with a 24-bit AD converter.

Neural and cognitive costs of smartphone usage
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Pulses were applied after EEG set up over the cap using a 70 mm figure-of-eight coil (exter-

nal casing diameter ~90 mm for each loop) connected to a MagstimRapid2 biphasic stimulator

(Magstim Co., Whitland, Carmarthenshire, U.K.). Pulses were delivered at 120% of RMT

above the rPFC (detailed in SI). The stimulation protocol consisted of a series of 5 single pulse

followed by a series of 5 paired pulses at 0.2Hz. Paired pulses were interleaved by 100 ms

between the conditioning pulse/stimulus (CS) and the test pulse (TS) to induce LICI [39]).

This series was repeated 10 times cumulating at 50 single and 50 paired pulses. A post- report

form was used to document any adverse effects of TMS [40].

Session procedure

Subjects completed the computerized tasks and questionnaires and then seated in the

TMS-EEG lab. Following EEG setup subjects performed the Stop Signal Task (see S1 File).

Then, RMT was determined and TMS coil was locked in position (see S1 File) and TMS was

administered.

NU subjects were asked whether they would like to continue to the second phase. Consenting

subjects were randomly selected to either receive a smartphones (Galaxy 2, Samsung) installed

with ATM2 or to remain with their simple phones. 90 days following this intervention the above

procedure was repeated for both exposure (NUsp) and control (NUco) groups (Fig 1).

Data processing

Electrophysiological data during TMS was processed offline using EEGlab toolbox for Matlab.

EEG data during Stop Signal task is not reported given the null behavioral results (see Results)

(detailed data preprocessing in S1 File).

Two measures based on TMS evoked potential (TEP) were calculated: The first measure,

named early TEP, represents the immediate activity evoked by the TMS. This measure was cal-

culated as the rectified average amplitude 15–40 ms [41,42] after a single pulse, of all electrode

positioned under the center of the TMS coil (FC4, FC6, F4, F6). The second TMS-based mea-

sure calculated was LICI taken from the same electrodes [33,39,43]. One obstacle in comparing

single and paired TEP is the artefact of the late activity evoked by the CS on the early evoked

response of the TS. In order to overcome this obstacle, we used the method offered by Daskala-

kis et al. [39], wherein for each subject the average cortical evoked potential elicited by a single

pulse was shifted by 100 ms and subtracted from the average cortical-evoked potentials elicited

by the TS of the paired pulse. LICI was then calculated as the ratio between the area under the

rectified curve (AUC) of the ERP following paired pulses with the AUC of the ERP following

single pulse, using the following equation (Eq 1) [39]:

LICI ¼ ½1 �
rectified AUC ðpairedÞ
rectified AUC ðsingleÞ

� � 100 Eq 1

The time window of this calculation was based on inspection of grand average and reported

timing for LICI activity in the literature [44].

Statistical analysis

Phase 1 data sets (SU vs. NU) were compared using t-tests. Phase 2 data (NUco and NUsp at

baseline and after intervention) was submitted to a 2X2 mixed design ANOVA crossing the

between subjects factor of Manipulation (Control vs Exposure) and the within subjects factor

of Time (Baseline vs 3 Months). All tests were two tailed run at alpha level of 0.05. Significance

levels were adjusted using a Bonferroni procedure in all instances of multiple comparisons
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(i.e., CAARS six subscales comparisons and correlation of app usage with the various sub-

scales) and Fisher Exact tests were employed for post-hoc analyses. In all measures, data

greater than 2 standard deviations from group mean was excluded (for detailed statistics see

figure legends, for full data see https://zenodo.org/record/810695).

Results

Demographics

Socio-demographics characteristics of participants in phase 1 and 2 are shown in Fig 1, S1 and

S2 Tables. No significant differences were observed between groups.

Questionnaires

Attentional deficiencies, as shown in the CAARS questionnaire, were significantly higher in

SU than those reported in NU (Fig 2A). In the second phase, a non-significant increase in inat-

tention was observed after 3 months of smartphone exposure in the NUsp group, but not in

the NUco group (Fig 2B).

Higher social concern (CAS) was reported by the SU group as compared to NU group (Fig

2D). In the second phase, a significant Manipulation X Time interaction effect was found.

Post-hoc test confirmed that NUsp suffered a significant increase in CAS while NUco did not

show such pattern (Fig 2E).

No significant group differences were found in BDI and RSMS.

Smartphone usage data

As expected, app data showed that SU participants used their smartphones more frequently

than NUsp (SU 1068±104; NUsp 678±105; t(23) = 2.6, p = 0.016, d = 1.1). App Timer Mini 2

(ATM2) data was correlated to questionnaires showing significant group effects (i.e. CARRS

and CAS). A positive correlation was found between frequency of smartphone usage and inat-

tention (Fig 2C).

Behavioral tasks

For the delayed discounting task, K coefficients (42; 50) values were obtained and imple-

mented in the hyperbolic discounting function (Fig 3A). On average, the SU group had signifi-

cantly higher K coefficient value than that of the NU group and so the resulting discounting

curve demonstrated a markedly steeper discounting rate for the SU group. Such effect was not

observed in the second phase, indicating that 3 months of smartphone usage did not induce a

significant change in performance.

In the short-term non-verbal memory task, no significant differences were observed

between the groups (Fig 3B), and 3 months of smartphone use by novel users did not induce

any effects (Fig 3C).

In the speeded arithmetic task, heavy users were found to be significantly less accurate (Fig

3D), while response times (RT) did not vary (p = 0.4). This effect was corroborated by a signifi-

cant Manipulation X Time interaction effect found in the second phase: 3 months of smart-

phone use induced a significant reduction in accuracy in the arithmetic task (Fig 3E). No

significant RT effects were found.

Stop Signal task parameters were virtually identical across groups. Stop Signal RT (SU, 239

±32 ms; NU, 241±41 ms, t(47) = 0.2, p = 0.9), mean RT (SU, 583±75 ms; NU, 601±114 ms, t

(47) = 0.2, p = 0.9, t(47) = 0.6, p = 0.5) and Go Errors (SU, 9.1±6.2%; NU, 4.37±3.9%, t(47) = 1,
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p = 0.3) showed no significant effects. No significant effects were observed in the second

phase.

Electrophysiological measures

Early TEP (15–40 ms) induced by single TMS pulses over the rPFC of SU participants was sig-

nificantly lower than that of NU participants (Fig 4). However, this measure was not affected

by 3 months of smartphone usage in novel users. While ANOVA revealed no Exposure X

Time interaction effect, a mild (and non-significant) increase in average early TEP was

observed in both NUco and NUsp groups.

Early TEP data from the first phase was correlated with questionnaire data showing signifi-

cant effects (i.e. CAARS and CAS). A negative correlation was found between mean early TEP

Fig 2. Questionnaire results and their correlation with real usage frequency. Bar charts show mean ± SEM values.

(a) CAARS score from the first phase. Total ADHD index (t (49) = 2.8, p = 0.008, d = 0.8), impulsivity (t (49) = 2.5, p = 0.01;

pcorrected = 0.07, d = 0.75) and hyperactivity (t (49 = 2.9, p = 0.006, pcorrected = 0.035, d = 0.7) scores were significantly

higher in the SU group as compared to the NU group. ADHD symptoms (t (49) = 2.2, p = 0.03, pcorrected = 0.21, d = 0.61)

and hyperactivity symptoms (t (49) = 2.3, p = 0.02, pcorrected = 0.14, d = 0.68) also showed a non-significant trend in the

same direction (b) Changes in CAARS scores between end and start of intervention in the second study phase is shown.

No significant differences between groups were observed (p>0.2 for all domains). (c) The scatterplot shows a marginally

significant positive correlation between the total frequency of app usage and CAARS inattention subscales of both SU and

NUsp participants (R (24) = 0.5, p = 0.013, pcorrected = 0.08). (d) SU obtained higher CAS (social concern) score than NU (t

(49) = -2, p = 0.052, d = 0.61). (e) A significant interaction effect of the manipulation on CAS scores was found (F (1,24) =

6.4, p = 0.018, η2
p = 0.21). Posthoc analysis revealed a significant increase (p = 0.034) from baseline in CAS score in the

NUsp group while NUco showed a mild non- significant decrease in CAS (p = 0.15). pcorrected term refers to instances of

multiple comparisons where the p value was Bonferroni corrected.

https://doi.org/10.1371/journal.pone.0180094.g002
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and ADHD total symptoms (as well as hyperactivity subscale), indicating a relation between

reduced rPFC excitability and attentional deficits and hyperactivity (Fig 4D and 4E).

LICI was established in all groups (S1 Fig). Put differently, grand-averaged TEP produced

by paired TMS pulse was significantly reduced as compared to single pulse alone in all groups

(mean LICI across groups 27.3±5.1%). This pattern confirmed that the stimulation protocol

successfully induced neuronal inhibition in the stimulated cortical area. However, no signifi-

cant group effects were found in both study phases (S1 Fig).

Discussion

The present study suggests that extensive usage of smartphone devices may be associated with

deficits in cognitive capacities, social attitudes and rPFC excitability. Moreover, 3 months of

smartphone usage by previously smartphone naïve subjects causes a significant reduction in

arithmetic accuracy and increased social concern. This is the first report of an attempt to sys-

tematically manipulate exposure to smartphones and measure consequent behavioral and neu-

ral changes.

Attention

The most consistent behavioral effect found in the current study, which was repeated in both

phases of the study, was a marginal decrease in numerical processing capacity. Heavy smart-

phone users were found to be significantly less accurate than their matched nonuser pairs on a

simple speeded arithmetic task. Furthermore, participants receiving smartphones suffered a

significant decrease in accuracy levels after 3 months of usage. The results obtained by the con-

trol group removes the possibility of an external confound. Moreover, the absence of RT differ-

ences reduce the likelihood of differential task strategies employed by the groups as they would

have led to apparent speed accuracy tradeoffs.

The numerical processing deficits reported here may be feasibility associated with several

cognitive and neural mechanisms [45]. First, impairments in working memory capacity might

have driven poor accuracy rates. However, given the relative low memory load required by the

task (adding up 3 single digit numbers) it seems less plausible that such deficits exist in a sam-

ple of highly functioning young adults [46]. Indeed, we found no memory impairments. Sec-

ond, differences in motivation could also explain this effect. Reduced motivation has been

previously reported in heavy internet and computer games users [24]. However, given that

other motivationally demanding tasks, such as the Stop Signal task, showed no groups differ-

ences, this explanation appears insufficient. Third, numerical representation and the ability to

store and manipulate such information, which has been previously suggested to involved dis-

tinct activity of the intraparietal sulcus [47], may be specifically impaired in smartphone users.

Speculatively, the overreliance upon the device for numerical calculation and the absence of

device-free arithmetic calculation might have rapidly eroded this mental capability, as the pop-

ular heuristic for neural plasticity suggests ‘use it or loss it’. Although we cannot rule out this

intuitive explanation we currently have no supportive data for it.

Fig 3. Bar charts show mean ± SEM values of main behavioural tasks. (a) Mean K coefficient values were significantly higher in SU than in

NU (t (49) = 2.14, p = 0.04, d = 0.5) and the resulting discounting curve demonstrated a markedly steeper discounting rate. This effect was not

observed in the second phase (F(1,23) = 0.7, p = 0.4). (b) Mean memory accuracy did not differ between SU and NU groups (t(45) = 0.6,

p = 0.5). (c) No significant effect on memory was observed (p = 0.6) (d) SU showed significantly poorer arithmetic accuracy as compared to NU (t

(42) = 2, p = 0.05, d = 0.6; 6 participants scored zero on accuracy indicating less than 3 accurate and timely trials and were discarded from the

analysis). (e) A significant Manipulation X Time interaction effect was found [F (1,22) = 5.3, p = 0.03, η2
p = 0.19)]. Posthoc analysis highlighted a

significant (NUsp group; p = 0.025) decline from baseline in accuracy levels of smartphone users while such pattern was not found in the control

group (NUco group; n.s).

https://doi.org/10.1371/journal.pone.0180094.g003
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We thus suggest a forth account that emphasizes the role of reduced attentional capacity in

driving the deficits in arithmetic capacity. Earlier studies conducted on heavy smartphone

users reported difficulties in sustaining attention and reduced sleep quality and attentional

deficiencies are consistently reported in IAD 11,2 [48]. Indeed, merely 3 months of usage

induced a trend for increased inattention (Fig 2B) and it positively correlated with frequency

of smartphone usage (Fig 2D). We therefore suggest that a major psychological mechanism

behind these smartphone-induced changes is diminished capacity to sustain attention.

Social cognition

Our measure of social concern also showed consistent changes in both study phases. Negative

preoccupation with social representations measured by CAS was higher in SU than in NU.

Most critically, those NU participants who later received smartphones suffered a significant

increase in social concern. No such changes were observed in the RSMS scores, which mea-

sures the degree of psychologically healthy active and flexible social approach. This dissocia-

tion suggests that usage fosters the development of a particular anxiety about self-presentation

but does not necessarily hinders other positive social attitudes.

High CAS score reflects increased fear of social threats leading to high conformity and anxi-

ety regarding social acceptance and approval. It has been associated with a greater tendency to

hostility and aggression [37]. Unfortunately, we were unable to analyze the type of smartphone

activity due to excessive usage of the smartphone’s internet browser which masks which web-

sites/functions are accessed. Hence we can only speculate that this change in social cognition

results from the constant engagement with social media platforms, text messages and calls.

Indeed under circumstances of extensive usage the device might effectively serve as a social

monitoring agent to which the user need to provide continuous feedback within a framework

of agreed and acceptable social behavior [49]. Furthermore, by providing immediate informa-

tional rewards and clear signs of social acceptance/rejection, the device encourages a state of

constant preoccupation with self-presentation. Nonetheless, we acknowledge the young age of

our sample (Fig 1) and aware that this effect may be less pronounced in older population.

Impulsivity

Both subjective introspective and objective behavioral measure demonstrated that SU were

more impulsive than NU participants. Heavy users scored significantly higher on scales of

impulsivity and users were found significantly more likely to discount the value of money

rewards in the presence of delay. The high K coefficient values obtained in the delay discount-

ing task reflect impulsive decision making and biased perception of the reward value due to an

increased urge for immediate gratification [38]. However, unlike the alterations found in

numerical processing or social cognition, 3 months of smartphone usage did not induce signif-

icant changes in impulsivity. This pattern of results is consistent with a previous report on

internet and gaming addiction where a single session of internet usage resulted in increased

Fig 4. Electrophysiological responses to single TMS pulses in the rPFC. (a) Grand average rectified ERP plots of early

TEP taken from all electrodes under the stimulation coil (FC4, F4, FC6, F6) in the Smartphone users (SU) and nonusers (NU)

groups. On the top right, bar charts represent mean ± SEM mean area under curve (AUC) of average early TEP taken from (t

(45) = 2.4, p = 0.03, d = 0.6). For a longer time window see S1 Fig. (b) Two dimensional topographical plots of EEG recorded

activity at 20 ms, 25 ms and 30 ms after pulse onset for SU and NU groups. (c) Three-dimensional topographical plot of group

TEP difference (Δ plot) representing the difference in average voltage between SU and NU participants over the time-period

15–40 ms. (d) Early TEP was showed significant negative correlation with hyperactivity subscale as measured in the CAARS

questionnaire (R (45) = -0.49, p = 0.006, Bonferroni corrected) (e) The magnitude of the early TEP was negatively correlated

with total ADHD symptoms phase 1 (R (45) = -0.39, p = 0.013).

https://doi.org/10.1371/journal.pone.0180094.g004
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impulsivity in individuals with high but not low levels of self-reported problematic internet

behaviours [21]. We cannot estimate, however, whether our screening procedure selected

heavy users which were initially impulsive, or whether it selected a group of heavy users which

turned impulsive due the intensive usage. Furthermore, we found no evidence for deficits in

behavioral inhibition as measured in the Stop Signal task. Hence, our finding is less conclusive

with regard to the effect of smartphone usage on delay discounting and impulsivity.

Early TMS evoked potential

Heavy Smartphone users were also found to have reduced early TEP in rPFC reflecting

reduced resting state glutamatergic excitability [50]. The momentary change in EEG recorded

activity caused by TMS is considered to reflect depolarization of neuronal populations under-

neath the stimulating coil. TEP is thus associated with resting state excitability of the stimu-

lated brain region, as was previously reported in Alzheimer disease and sleep deprivation

[51,52]. This pattern of reduced rPFC excitability in SU resonates well with previous structural

and functional imaging studies which found hypoactivity particularly in these brain regions in

ADHD patients [53] and in internet and gaming addiction [31]. Abnormalities in rPFC activ-

ity have been previously suggested to reflect deficits in a wide range of cognitive capacities [54]

such as decision making processes, emotional regulation, executive functioning, working

memory, impulsivity and behavioral inhibition. More specifically, the observed correlations

with hyperactivity and inattention measures suggest that reduced prefrontal excitability is

associated with reduced behavioral inhibition in heavy smartphone users. This association is

corroborated by the abovementioned internet addiction and ADHD [53] literature linking

right prefrontal hypoactivity with inattention and impulsivity.

The absence of a stable reliable LICI effect and the relative small sample size renders any

inferences regarding the effect of usage on neural inhibition premature.

General limitations

There are several important limitations to this preliminary report which should be addressed

in any future attempts to characterize the effects of standard smartphone usage. First, the sam-

ple size in the second experimental phase is small and the effect sizes are small-moderate. This

limitation stems from the difficulty in recruiting non-smartphone users who were willing to

undergo TMS treatment and a longitudinal intervention. This type of control design in adults

is currently implausible due to the difficulty in recruitment. Nonetheless, to better encapsulate

the behavioral effects of short exposure larger sample size studies are still necessary. Second,

the study lacks conclusive evidence regarding the neurobiological changes accounting for the

behavioral effects observed. Such rapid deterioration in cognitive functions in healthy partici-

pants is likely to be mirrored in specific neuronal abnormalities which were not captured here.

Conceivably, longer exposure to the device may result in more apparent associations between

behavioral and neural phenomenon. However, unfortunately the majority of our control

group has independently upgraded their phone following the study thus no further controlled

testing could be performed on this sample. Finally, we could not track actual usage patterns of

’old’ mobile phones in nonusers. Hence we cannot rule out the possibility that some were in

fact heavy users of ’old’ phones. However, we feel confident to assume that on average the

usage of such phones was within normal limits and smaller than that of smartphone users.

Conclusion

For a device that dictates such a large volume of daily functions, the smartphone has gained lit-

tle research attention to date and so its effects on cognition remain largely undiscovered. This
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pioneering attempt to reveal some of the cognitive and neurobiological costs of smartphone

usage found that smartphone usage rapidly impairs arithmetic numerical processing capacity

and increases negative social cognitions, while short-term non-verbal memory function is not

significantly affected. Heavy smartphone users also expressed increased impulsivity, impaired

attentional functions which correlated with reduced prefrontal neuronal excitability and lastly

abnormal inter hemispheric signal propagation. Finally, the frequency of usage in these heavy

users predicts the extent of inattention problem they experience.

We suggest that the capacity of the device to capture and harbor attention and gratify

immediate rewards induces long lasting effects on a wide range of cognitive abilities. Techno-

logical advancements inevitably transform our cognition and neuronal architecture. This

rapid process occurs largely without much scientific documentation. This study is a small step

in shedding light on these changes while they become fully cemented in our cognition.
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