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Abstract

The development of ectothermic embryos is strongly affected by incubation temperature,

and thermal imprinting of body growth and muscle phenotype has been reported in various

teleost fishes. The complex epigenetic regulation of muscle development in vertebrates

involves DNA methylation of the myogenin promoter. Body growth is a heritable and highly

variable trait among fish populations that allows for local adaptations, but also for selective

breeding. Here we studied the epigenetic effects of embryonic temperature and genetic

background on body growth, muscle cellularity and myogenin expression in farmed Atlan-

tic salmon (Salmo salar). Eggs from salmon families with either high or low estimated

breeding values for body growth, referred to as Fast and Slow genotypes, were incubated

at 8˚C or 4˚C until the embryonic ‘eyed-stage’ followed by rearing at the production tem-

perature of 8˚C. Rearing temperature strongly affected the growth rates, and the 8˚C fish

were about twice as heavy as the 4˚C fish in the order Fast8>Slow8>Fast4>Slow4 prior to

seawater transfer. Fast8 was the largest fish also at harvest despite strong growth com-

pensation in the low temperature groups. Larval myogenin expression was approximately

4–6 fold higher in the Fast8 group than in the other groups and was associated with rela-

tive low DNA methylation levels, but was positively correlated with the expression levels of

the DNA methyltransferase genes dnmt1, dnmt3a and dnmt3b. Juvenile Fast8 fish dis-

played thicker white muscle fibres than Fast4 fish, while Slow 8 and Slow 4 showed no dif-

ference in muscle cellularity. The impact of genetic background on the thermal imprinting

of body growth and muscle development in Atlantic salmon suggests that epigenetic varia-

tion might play a significant role in the local adaptation to fluctuating temperatures over

short evolutionary time.
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Introduction

Ambient temperature controls and limits virtually all biochemical and physiological processes

and behavioural activities in poikilothermic organisms. While heat stress during organogene-

sis may be teratogenic also to poikilothermic embryos, they show phenotypic plasticity to

moderate changes in incubation temperature that strongly affect embryonic development and

may have persistent effects on various phenotypic traits. Ducklings reared at relative low tem-

perature showed slow growth and reduced thermoregulatory capacity after hatching [1], while

embryonic temperature influenced growth rate and temperature choice in juvenile snapping

turtles (Chelydra serpentine) [2] and swimming performance in wood frog tadpoles (Rana syl-
vatica) [3]. In zebrafish (Danio rerio), early temperature strongly affected metabolic enzymes

in the skeletal muscle, swimming performance and thermal acclimation capacity of the adult

fish [4,5]. In most teleosts, both hypertrophic and hyperplastic muscle growth continue after

hatching [6–8], and the muscle phenotype at later stages has been shown to be programmed

by embryonic temperature in various species [9–14]. The lasting effects of embryonic tempera-

ture on muscle have been demonstrated to involve temperature-dependent changes in the

number of muscle precursor cells, which are responsible for postembryonic growth in teleosts

[11,15,16].

Skeletal muscle development in vertebrates is regulated by the concerted action of the

four myogenic regulatory factors (MRFs) MyoD, myf5, myogenin and MRF4. Mice knock-

out studies revealed that MyoD and myf5 are required to specify myoblasts, while myogenin

and MRF4 act later to mediate differentiation of myoblasts into and fusion of myotubes [17–

21]. Thermal effects on the embryonic expression of MyoD and myogenin have been reported

in various teleosts, including Atlantic salmon and rainbow trout (Oncorhynchus mykiss) [22–

24]. The upregulated myogenin expression and increased muscle development at elevated

temperatures in Senegalese sole (Solea senegalensis) were associated with decreased methyla-

tion of the myogenin promoter and decreased expression of the DNA methyltransferases

dnmt1 and dnmt3b [25]. Expression of myogenin was consistently downregulated at low tem-

peratures in turkey embryos and in mouse skeletal muscle cells in vitro [26,27]. Further,

demethylation of the mouse myogenin promoter activated the gene expression in somites

during skeletal muscle differentiation [28,29], and inhibition of DNA methylation in mesen-

chymal and dental pulp stem cells up-regulated myogenin expression and induced myogen-

esis [30,31]. The complex epigenetic network regulating muscle development also involves

histone modifications and myogenic microRNAs controlling the expression of key myogenic

factors [32–36].

Studies linking genetic variation and epigenetic regulation have mainly been conducted in

plants, yeast and Drosophila, but the inheritance of epigenetic alleles have also been reported

in mice displaying different coat colour phenotypes, in niche-adapted Darwin finches, and in

association with various human diseases [37–40]. Intriguingly, differences in adaptive pheno-

typic responses, including body size, to climate changes enabled by epigenetics were recently

reported in two populations of winter skate (Leucoraja ocellata) [41]. Migratory salmonids

have a tendency to spawn in their homing rivers differing in seasonal and regional thermal

conditions, and evidence of local genetic adaptation in muscle cellularity and body growth

have been reported in wild populations [11,42,43]. Substantial heritability in body growth

exists in Atlantic salmon, and significant enhancements in growth rate and hence reduction in

production time have been achieved in farmed Atlantic salmon through 11 generations of

selective breeding since 1972 [44]. Here we examine the impact of genetic background and

embryonic temperature on the epigenetic regulation of body growth and white muscle pheno-

type in farmed Atlantic salmon.
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Material and methods

Experimental set up

Families with fast and slow on-growth within the natural variation were selected from Aqua-

Gen’s breeding nucleus year class 2011 (11th generation with a heritability h2 of 0.3) by estimat-

ing breeding values (EBV) based on weight registrations at tagging, smolt weight, and harvest

weight of the year class. Eight families with a mean EBV of 1.6 standard deviations (SD) higher

than average and eight families with 1.6 SD lower than average were chosen and referred to as

Fast and Slow genotypes, respectively. The families were created from eight different dams and

fourteen different sires. The eight dams used to produce fast on-growth families originated

from five families and the sires from seven families, while the eight dams used to produce slow

on-growth families originated from three families and the sires from seven families. From

October 2013, 600 fertilized eggs from each family were incubated at 4˚C (3.9 ± 0.2˚C) or 8˚C

(7.6 ± 0.5˚C) until the eyed stage (360 day degrees, d˚ = number of days x temperature) that

resulted in four experimental groups referred to as Fast4, Fast8, Slow4 and Slow8. Low-quality

embryos were removed after physical shocking at 316 d˚ according to AquaGen’s standard

protocol, and one of the Slow families was excluded due to high mortality at this stage. Dead

and pin-eyed embryos were removed at the eyed stage, and the incubation temperature of the

Fast4 and Slow4 groups was gradually increased to the standard production temperature of

8˚C over three days. All groups were kept at this temperature until start feeding at which stage

the temperature was further increased to 12.2 ± 1.1˚C. Juveniles at the parr stage were RFID

(radio frequency ID) tagged for individual identification at body weight of ~25 g (Fast8,

Slow8) or ~8 g (Fast4, Slow4). From August 2014, a maximum of 200 individuals from each

experimental group were kept for further on-growth at ambient temperatures varying from

2˚C to 14˚C in a flow-through system until sea transfer in April 2015 (Fig 1). For all groups to

be transferred into seawater at similar total d˚ (calculated from fertilization to sea transfer), we

increased the temperature in the Fast4 and Slow4 groups from ~2 to ~7˚C for a period of 9

weeks prior to sea transfer (Fig 1, S1 Table). All groups were kept together in one sea cage

(about 3000–4000 m3) until harvest in April 2016. Fish were fed by appetite with EWOS feed

from start feeding until harvest.

Sampling

Body weight was measured in sub-samples at the start feeding, parr, and pre-smolt stages,

while individual weight was recorded in smolts before sea transfer and in adults at harvest. All

measurements were performed in fish anesthetized using metacain (Finquel vet., Scanvacc) in

accordance to the supplier’s instructions. Prior to any sampling, fish were euthanized using an

overdose of metacain. An overview of sampling dates and d˚ for each treatment group is pro-

vided in S1 Table. Muscle samples directly rostral of the dorsal fin were collected from start

feeding larvae and parr of ~6g body weight, and fixated in RNA-later (Ambion) and in 96%

ethanol. Samples in RNA-later were kept overnight at 4˚C followed by storage at -20˚C until

further analysis, while samples in ethanol were stored at -20˚C. For histology, a transversal sec-

tion directly rostral of the dorsal fin was obtained from parr, fixed in 4% paraformaldehyde

solution (PFA, Electron Microscopy Sciences), and were kept overnight at 4˚C. Thereafter,

samples were washed in phosphate buffered saline (PBS, Sigma-Aldrich) for 10 min, dehy-

drated in 50% ethanol (30 min) and 70% ethanol (2 x 1 hr), and stored at -20˚C until further

analysis.

Thermal growth coefficient (TGC; [45]) in freshwater and seawater was calculated by:

TGC ¼ ðBW1
1=3 � BW2

1=3Þ x 1000 x ST � 1

Epigenetic variation in muscle development between Atlantic salmon families raised at different temperatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0179918 June 29, 2017 3 / 15

https://doi.org/10.1371/journal.pone.0179918


In the freshwater phase, TGC was calculated on mean weight (g) per treatment group from

start feeding (BW2) to sea transfer (BW1), and d˚ using the temperature measured in tanks. In

seawater phase, individual body weight (g) at sea transfer (BW2) and at harvest (BW1) was

used, and d˚ using the temperature measured at 5m depth.

Standardized harvest weight (SHW) was used to standardize harvest weight independent of

different smolt start weight at sea transfer [46]. SHW has been developed to standardize field

trial weight data acquired in commercial Atlantic salmon farming where differences in pro-

duction regimes can lead to uneven growth differences [47]. The more commonly used spe-

cific growth rate (SGR) is usually biased towards small fish when used to compare fish of

uneven size. We used a smolt weight of 200 g, which was the lowest weight among the treated

groups at transfer, and TGC combined with the sum of d˚ between sea transfer and harvest:

SHW ¼ ð200 g1=3 þ ðTGC=ð1000 � 3353:5ÞÞ
3

Difference in SHW (ΔSHW) for 4˚C groups was calculated by:

DSHW ¼ SHWð4�CÞ � SHW ð8�CÞ:

DNA methylation analysis

Four families from each of the four treatment groups (n = 6 per family) were chosen for DNA

methylation analysis. Total genomic DNA was isolated and purified from muscle tissue at the

start feeding and parr stages using DNeasy Blood & Tissue Kit (Qiagen) according to the man-

ufacturer’s protocol and DNA ethanol precipitation method, respectively, due to the differ-

ences in sample size. DNA quantity and quality were measured using a 1000-ND Nanodrop

Fig 1. Temperature and day-degrees profiles. Temperature (˚C, striped line) and accumulated day-degrees (d˚, solid line) profiles

between fertilization and harvest for the low (4˚C, blue) and high (8˚C, red) embryonic temperature groups. All fish were kept at the same

temperature from the eyed-stage, except for the elevated temperature in the Fast4 and Slow4 groups prior to sea transfer. Details are

given in Material and Methods.

https://doi.org/10.1371/journal.pone.0179918.g001
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spectrophotometer (Nanodrop Technologies). DNA was bisulfite converted using the Epitect

Fast Bisulfite Conversion Kit (Qiagen) according to the manufacturer’s protocol.

Six specific pyrosequencing assays (PyroMark Custom Assay, Qiagen) covering fourteen

putative CpG sites identified in the Atlantic salmon myogenin promoter (NC_027321.1, S2

Fig) were designed using PyroMark Assay Design 2.0 (Qiagen) (S2 Table). Assay specific PCRs

were performed using the PyroMark PCR Kit (Qiagen) according to manufacturer’s protocol.

Singular PCR products were verified on a 1% agarose gel. Five of the fourteen CpG sites could

be analyzed using pyrosequencing, as only two of the six primer sets (S2 Table) provided a sin-

gular PCR product. The PyroMark Q24 (Qiagen) was used in combination with the PyroMark

24 Advanced CpG Reagents (Qiagen) and Streptavidin Sepharose High Performance beads

(GE Healthcare) to analyze the CpG methylation assays by pyrosequencing technology follow-

ing the manufacturer’s PyroMark Q24 Advanced protocol using 25uL sequencing primer

solution.

Gene expression analysis

Four families from each of the four treatment groups (n = 6–10 per family) were chosen for

gene expression analysis in fast muscle tissue at the start feeding and parr stages. Total RNA

was extracted and purified using the MagMax-96 Total RNA Isolation Kit (Applied Biosys-

tems) with the MagMax-96 Magnetic Particle Processor (Applied Biosystems) and AllPrep

DNA/RNA/miRNA Universal kit (Qiagen), respectively, following manufacturer’s instruc-

tions. Both methods were used due to differences in samples size. RNA extracted using the

MagMax-96 kit was followed by a clean-up using the Turbo DNase Treatment Kit (Applied

Biosciences). RNA quantity and quality were measured using a 1000-ND Nanodrop

spectrophotometer. cDNA was synthesized using the Vilo Superscript Kit (Invitrogen)

following the manufacturer’s instructions using 200ng of total RNA. The relative expression

levels of myogenin, the DNA methyltransferase genes dnmt1 (XM_014193376), dnmt3a
(XM_014136242.1), dnmt3b (XM_014146676.1) and the reference gene elongation factor 1α
(ef1α, [48]) were determined using quantitative real-time PCR (qPCR), and primers were

designed using Primer3 program (Applied Biosystems) (S1 Table). A two-fold standard dilu-

tion of muscle cDNA was set up for each primer set in order to determine the amplification

efficiency. The qPCR was run in duplicates using the 7900HT Fast Real-Time PCR system

(Applied Biosystems) with a total volume of 20μL containing 10μL Power SYBR Green PCR

Master Mix (Applied Biosystems), 0.6μL 10μM forward and reverse primers, 8μL diluted

cDNA. A cycling profile of 10 min at 95˚C, followed by 40 cycles of 95˚C for 15s, 60˚C for 60s.

Absence of genomic DNA was verified by running randomly chosen RNA samples. In order

to rule out non-specific contamination a no template control was included and a melting

curve analysis was performed to verify the measurement of a single specific product. SDS 2.3

software (Applied Biosystems) was used to collect all data that was thereafter analyzed using

RQ manager 1.2 (Applied Biosystems). Relative gene expression was calculated based on the

determined Ct values [49]. The treatment group with the lowest value was used as a calibrator

and set to one (1).

Muscle cellularity

Samples were dehydrated in ethanol series (2 times 96% for 1 hr and 2 times 100% for 1 hr),

followed by clearing in Histoclear (National Diagnostics) for 1 hr, Histoclear/paraffin (1:2;

Histowax, Histolab Products AB) and embedding in paraffin using a Citadel 2000 Tissue pro-

cessor (Thermo Scientific). Sections of 7 μm were cut using a microtome (Leica RM2255),

and were mounted on microscope slides. After rehydration, the samples were stained with
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haematoxylin-eosin (Shandon Instant Haematoxylin and Shandon Instant Eosin (alcoholic),

Thermo Scientific)). Maximum length and width of ~200–400 cells (n = 10–12 per group)

were measured in an area of 1 mm2 using ImageJ (https://imagej.nih.gov/ij). The fast muscle

cell diameter (μm) was estimated indirectly by regarding the cell as a circle [25] using the fol-

lowing formula: diameter = (maximum length � maximum width)1/2. The relative distribution

was expressed as: (number of cells at a certain diameter / the total number cells) � 100.

Statistics

Data was tested for normal distribution using one-sample Kolmogorov-Smirnov statistic test.

A general linear regression (GLM) was conducted to compare main effects of type of on-

growth (fast, slow) and incubation temperature (4˚C, 8˚C) and the interaction between geno-

type and incubation temperature on body weight measured at the five developmental stages,

and for TGC and SHW. Significant differences between experimental groups were analyzed by

least square means (LS-means). As data for the expression and methylation levels was not nor-

mally distributed (K-S test p<0.05) a non-parametric Kruskall-Wallis test was performed fol-

lowing by Mann-WhitneyU test as posthoc test. Correlation analysis of the methylation sites

and the expression data was performed using a non-parametric Spearman test. A student t-test

was used to compare the average muscle fibre size between the groups. A two-sample Kolmo-

gorov-Smirnov test was used to analyze differences in muscle fibre distributions. Data are pre-

sented as mean ± standard error and considered significantly different when p<0.05.

Results

Growth

Embryonic incubation at the low temperature of 4˚C strongly delayed the developmental prog-

ress, but the 4˚C and 8˚C incubation groups reached the eyed stage and start feeding stage at

quite similar number of d˚ (Fig 1, S3 Table). At start feeding the Fast8 and Slow8 fish were sig-

nificantly heavier (0.19 g) than Fast4 and Slow4 (0.17 g), but the 4˚C groups were heavier than

the 8˚C groups at the parr stage that was reached after 2085 d˚ and 1985 d˚, respectively

(Table 1). The body weight prior to seawater transfer was strongly influenced by both genotype

and embryonic temperature, and the 8˚C smolts were about twice as heavy as the 4˚C smolts

in the order Fast8>Fast4>Slow8>Slow4 after 4597 d˚ and 4313 d˚, respectively. TGC in the

freshwater phase was significantly higher in the high temperature groups (Fast8: 1.6, Slow8:

1.5) than in the low temperature groups (Fast4: 1.2, Slow4: 1.2), but the opposite was found in

seawater (Fast8: 3.0 vs Fast4: 3.3, Slow8: 2.6 vs Slow4: 3.0) (Table 1). The catch-up growth of

the 4˚C fish in seawater reduced the weight difference between the 8˚C and 4˚C groups, and at

harvest the Fast8 fish was 8% heavier than the Fast4 fish, while Slow8 was only 4% heavier than

Slow4. SHW was significantly higher in both 4˚C groups compared to 8˚C groups that resulted

in an estimated difference ΔSHW of 858 ± 45 g and 1019 ± 77 g for Fast4 and Slow4, respec-

tively (Table 1).

DNA methylation of myogenin promoter

DNA methylation of the myogenin promoter was assessed in muscle tissue of start feeding lar-

vae and parr juveniles by pyrosequencing five CpG sites upstream of the translation start site.

At start feeding the Fast8 group showed significantly lower DNA methylation level at positions

-610 and -598 than in the other groups, and also at position -258 when compared with Fast4

and Slow4 (Fig 2a). In addition, Fast8 showed significantly lower methylation level than Fast4

at position -234, while the methylation at position -255 was lower in Slow4 and Slow8 than in

Epigenetic variation in muscle development between Atlantic salmon families raised at different temperatures
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Fast4. The DNA methylation of the five sites was significantly lower in parr than in start feed-

ing larvae (Fig 2b). The four treatment groups showed less variation at the parr stage, and only

position -234 showed a significantly lower level in the Fast4 compared with the Slow4 group

(p<0.05).

Gene expression patterns

The relative expression levels of myogenin and the DNA methyltransferases dnmt1, dnmt3a
and dnmt3b were determined in muscle tissue of start feeding larvae and parr using qPCR. At

the larval stage, the mRNA levels of myogenin was approximately 4- to 6-fold higher in the Fast

8 group than in the other groups (p<0.05), in which no significant differences were found (Fig

3a). Similarly, Fast8 larvae expressed the dnmt1, dnmt3a and dnmt3b genes at significant

higher levels than the other groups, except for the non-significant difference in dnmt3a mRNA

Table 1. Biometrics.

Fast 8 Fast 4 Slow 8 Slow 4

Start-feed 0.19±0.005a (96) 0.17±0.004b (96) 0.19±0.005a (82) 0.17±0.005b (84)

Parr 5.9±0.2bc (79) 7.0±0.2a (80) 5.5±0.2c (70) 6.5±0.2ab (70)

Pre-smolt 247.6±5.7b (81) 233.9±5.8b (80) 239.4±6.9b (56) 195.3±6.9a (56)

Smolt 446±2d (1275) 227±2b (1339) 417±3c (613) 200±2a (950)

TGC FW 1.6±0.02b (8) 1.2±0.02a (8) 1.5±0.02c (7) 1.2±0.02a (7)

Harvest 5458±36c (905) 5049±33b (1061) 4234±55a (382) 4084±38a (800)

TGC SW 3.0±0.0b (899) 3.3±0.0a (1057) 2.6±0.0c (382) 3.0±0.0b (800)

SHW 4032±30b (899) 4875±28a (1057) 3105±46c (380) 4123±32b (798)

ΔSHW 858±45a (8) 1019±77a (7)

Body weight (g) and growth estimates from start-feeding until harvest of Fast and Slow genotypes reared at 4˚C or 8˚C until the eyed stage given as

mean ± SE (number of individuals).

Weight estimates are based on sub-samples of each family from start-feeding to pre-smolt, and on individual weight registrations from smolt until harvest.

Thermal growth coefficient (TGC) and standardized harvest weight (SHW) are estimated from individual weight registrations, while ΔSHW is estimated from

mean SHW in each family.

Different letters indicate significant differences between groups (p<0.05).

https://doi.org/10.1371/journal.pone.0179918.t001

Fig 2. DNA methylation of myogenin promoter. DNA methylation (%) of five CpG sites in the promoter region of the myogenin gene

measured in start feeding larvae (a) and in parr (b) reared at 4˚C or 8˚C until the eyed stage. Fast and Slow denote the genetic

background of the fish. Numbers 1–5 correspond to the CpG sites at position -610, -598, -258, -255 and -234, respectively. Different

letters indicate significant differences between groups (p<0.05).

https://doi.org/10.1371/journal.pone.0179918.g002
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levels between Fast8 and Fast4 (Fig 3b–3d). The four genes examined were expressed at higher

levels at the parr stage than in the start-feeding larvae, except for the Fast8 parr displaying ele-

vated levels of only dnmt1 (p<0.05; Fig 3a–3d). The Slow4 parr expressed myogenin, dnmt1
and dnmt3b at significantly higher levels than Fast 8 and Slow 8, while the dnmt3a expression

was significantly higher in Fast8 compared Slow8.

Independent of stage, growth rate and rearing temperature, positive correlations were

found between the expression of myogenin and dnmt1 (ρ = 0.839; p<0.001), myogenin and

dnmt3a (ρ = 0.762; p<0.001), myogenin and dnmt3b (ρ = 0.770; p<0.001) (S4 Table). Negative

correlations were found between the methylation levels of the five studied sites and the expres-

sion of myogenin, dnmt1, dnmt3a and dnmt3b.

Muscle cellularity

The average diameter of white muscle fibres was significantly larger in Fast8 compared to the

other three groups at the parr stage, and also larger in Fast4 compared with Slow4 (p<0.05)

(Fig 4a). The distribution of muscle fibre diameters (Fig 4b) showed that Fast8 possessed rela-

tively more muscle fibres with a larger diameter than the other treatment groups (p<0.05;

right-hand tail). Fast4 showed a distribution more towards the right-hand tail only compared

to Slow4 (p<0.05).

Discussion

This study demonstrated substantial effects of genetic background and embryonic temperature

on muscle phenotype and body growth in farmed Atlantic salmon. While the temperature

effects on body growth differed between the freshwater and seawater phases, fish from families

Fig 3. Gene expression of myogenin and DNA methyltransferases. Relative expression of myogenin and the DNA

methyltransferases dnmt1, dnmt3a and dnmt3b in start feeding larvae and in parr from families with Fast and Slow genotypes after

incubation at 4˚C or 8˚C until the eyed stage. Asterisks represent the calibrator group with the lowest expression value set to 1 for the

gene expression analysis. Different letters indicate significant differences between groups and stages (p<0.05).

https://doi.org/10.1371/journal.pone.0179918.g003
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of the Fast genotype were significantly heavier from the smolt stage until harvest than those

with the Slow genotype. Independent of genotype, the high temperature fish were a two-fold

heavier prior to seawater transfer than the low temperature fish, while the latter Fast4 and

Slow4 fish grew significantly faster than Fast8 and Slow8 fish under the same conditions in sea-

water. The potential of compensatory growth experienced by the 4˚C group was shown by

using SHW as a model to standardize weight differences at sea transfer. The compensatory

growth observed was probably resulting from different embryonic temperatures, although we

cannot exclude possible effects of the temperature adjustments before seawater transfer and

Fig 4. White muscle cellularity in Atlantic salmon parr. a) Average fibre diameter (μm), and b) size distribution (%) of fibre diameter

in parr from families with Fast and Slow genotypes after incubation at 4˚C or 8˚C until the eyed-stage. Different letters present significant

differences (p<0.05) between groups.

https://doi.org/10.1371/journal.pone.0179918.g004
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the timing of smoltification. Consistently, Atlantic salmon incubated at the low embryonic

temperatures of 2˚C or 5˚C showed significant growth compensation after seawater transfer

when compared to high temperature fish (8˚C or 10˚C) [14]. In comparison, salmon raised at

embryonic temperature of 10˚C prior to a decrease to 5˚C grew faster than fish raised at 5˚C

during early stages, but the 5˚C fish displayed higher foraging activity and a more sustained

period of muscle growth [13]. Additionally, embryonic incubation at low temperature pro-

moted hyperplasia in the white muscle of salmon larvae and juveniles [13,14,50], in agreement

with the smaller fibre diameters in the Fast4 and Slow4 fish compared to Fast8 in the presents

study. Intriguingly, Slow 8 and Slow4 showed no difference in muscle fibre thickness, suggest-

ing that only the Fast genotype responded to elevated rearing temperature with hypertrophic

growth. While large fibre size in fish skeletal muscle seems to be metabolically advantageous

by reducing the cost of maintaining the membrane potential [51,52], a fast-growing strain of

rainbow trout exhibited significantly smaller fibre diameter than a slow-growing strain from

hatching to 24 cm body length that allowed for prolonged and greater muscle growth in the

adult fish [53]. Consistently, pearlfish incubated at high embryonic temperature of 16˚C

showed reduced cell proliferation, but increased differentiation that gave rise to larger hatch-

lings, while their limited reserves of muscle precursor cells finally led to smaller adults than

those incubated at 13 or 8.5˚C [16].

Thermal imprinting of muscle cellularity involves modification of the proliferation and dif-

ferentiation of the muscle precursor cells being regulated by conserved myogenic transcription

factors [11,15,16]. Myogenin plays a crucial role in the differentiation of muscle precursor

cells, and the ontogenic expression of myogenin in rainbow trout peaked in swim-up fry [54].

Correspondingly, the Fast8 fish displayed high myogenin expression at start-feeding, while the

gene expression seemed to be delayed in the other treatment groups. Accordingly, low embry-

onic temperature delayed and prolonged expression of MyoD, myogenin and MyHC in rain-

bow trout that resulted in the recruitment of considerably more fibers compared to high

temperature fish [22]. The elevated myogenin expression in the Fast8 fish coincided with the

less methylated promoter region when compared to the other groups, in agreement with the

inverse correlation between the myogenin expression and methylation levels in Senegalese sole

at metamorphosis [25]. However, the expression of salmon myogenin was positively correlated

with the gene expression of the DNA methyltransferases, in contrast to the negative correlation

between the expression of myogenin and the levels of dnmt1 and dnmt3b in Senegalese sole

[25]. The function of Dnmt1 is maintenance of DNA methylation levels after cell division,

while Dnmt3a and 3b are directly involved in de novo methylation [55,56]. The conflicting

results could be explained by the simultaneous processes of methylation of a variety of genes,

and thereby the effects on individual genes may become less clear. The epigenetic regulation of

myogenesis is further complicated by the involvement of histone modifications and micro-

RNAs [34,57], and histone methylation of three pax7 genes was suggested to regulate myogenin
expression in rainbow trout [35].

The thermal plasticity of muscle development and somatic growth in fish is thought to play

a crucial role in the local adaptation to prevailing water temperature conditions, and evidence

for genetic differences between populations has been provided in several species [11,12,58,59].

Eggs from two salmon populations spawning in a lowland or highland tributary of the Scottish

River Dee System responded differently to the two temperature regimes when incubated

together [11], while strong temperature and family effects on muscle cellularity were demon-

strated in farmed families of Atlantic salmon originating from the Scottish River Shin [58].

The genetic gain for growth rate in Atlantic salmon has been estimated at 10–15% per genera-

tion [44], but no single SNP with a significant effect on growth has been identified across year-

classes ([60], Moen et al. unpubl). The polygenic nature of this trait, together with the complex
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epigenetic mechanisms regulating skeletal muscle growth, makes it difficult to identify the

mechanisms underlying the epigenetic variation found in Atlantic salmon.

Conclusions

This study demonstrates strong interactions between thermal phenotypic plasticity and geno-

typic diversity affecting body growth and muscle cellularity in Atlantic salmon. Epigenetic var-

iation in skeletal muscle growth is for the first time documented by presenting differences in

DNA methylation and expression of myogenin in farmed Atlantic salmon families with either

high or low breeding values for on-growth. The persistent effects of embryonic temperature

on body growth and muscle cellularity were consistently shown to differ between two geno-

types. Thermal plasticity and epigenetic variation in body growth are probably prerequisites

for the local adaptation of salmon populations to fluctuating environmental conditions, and

may potentially make them more resilient to global warming.
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evolution of muscle fibre number in post-glacial populations of Arctic charr Salvelinus alpinus. J Exp

Biol. 2004; 207: 4343–4360. https://doi.org/10.1242/jeb.01292 PMID: 15557021

60. Tsai HY, Hamilton A, Guy DR, Tinch AE, Bishop SC, Houston RD. The genetic architecture of growth

and fillet traits in farmed Atlantic salmon (Salmo salar). BMC Genetics. 2015; 16:51. https://doi.org/10.

1186/s12863-015-0215-y PMID: 25985885

Epigenetic variation in muscle development between Atlantic salmon families raised at different temperatures

PLOS ONE | https://doi.org/10.1371/journal.pone.0179918 June 29, 2017 15 / 15

https://doi.org/10.1101/gad.947102
https://doi.org/10.1101/gad.947102
http://www.ncbi.nlm.nih.gov/pubmed/11782440
https://doi.org/10.1038/nrg2341
http://www.ncbi.nlm.nih.gov/pubmed/18463664
https://doi.org/10.1186/s12864-015-1503-7
http://www.ncbi.nlm.nih.gov/pubmed/25881242
https://doi.org/10.1242/jeb.01292
http://www.ncbi.nlm.nih.gov/pubmed/15557021
https://doi.org/10.1186/s12863-015-0215-y
https://doi.org/10.1186/s12863-015-0215-y
http://www.ncbi.nlm.nih.gov/pubmed/25985885
https://doi.org/10.1371/journal.pone.0179918

