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Abstract

Foxtail millet (Setaria italica), a very important grain crop in China, has become a new model

plant for cereal crops and biofuel grasses. Although its reference genome sequence was

released recently, quantitative trait loci (QTLs) controlling complex agronomic traits remains

limited. The development of massively parallel genotyping methods and next-generation

sequencing technologies provides an excellent opportunity for developing single-nucleotide

polymorphisms (SNPs) for linkage map construction and QTL analysis of complex quantita-

tive traits. In this study, a high-throughput and cost-effective RAD-seq approach was

employed to generate a high-density genetic map for foxtail millet. A total of 2,668,587 SNP

loci were detected according to the reference genome sequence; meanwhile, 9,968 SNP

markers were used to genotype 124 F2 progenies derived from the cross between Hon-

gmiaozhangu and Changnong35; a high-density genetic map spanning 1648.8 cM, with an

average distance of 0.17 cM between adjacent markers was constructed; 11 major QTLs for

eight agronomic traits were identified; five co-dominant DNA markers were developed.

These findings will be of value for the identification of candidate genes and marker-assisted

selection in foxtail millet.

Introduction

Foxtail millet (Setaria italica) is one of the oldest cereals in the world, and is thought to have

been domesticated from the wild species green foxtail, more than 8,000 years ago in northern

China [1]. Foxtail millet has many excellent characteristics, among which C4 photosynthesis,

which is the primary mode of carbon capture for some of the world’s most important food,

feed, and fuel crops, such as maize, sorghum, sugarcane and switchgrass [2]. In addition, fox-

tail millet is known for its nutritional value: its grains have high protein, folic acid, vitamin E,

carotenoids, and selenium [3–5]. In recent years, foxtail millet has become a valuable model

PLOS ONE | https://doi.org/10.1371/journal.pone.0179717 June 23, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Wang J, Wang Z, Du X, Yang H, Han F,

Han Y, et al. (2017) A high-density genetic map

and QTL analysis of agronomic traits in foxtail

millet [Setaria italica (L.) P. Beauv.] using RAD-seq.

PLoS ONE 12(6): e0179717. https://doi.org/

10.1371/journal.pone.0179717

Editor: Manoj Prasad, National Institute of Plant

Genome Research, INDIA

Received: February 8, 2017

Accepted: June 2, 2017

Published: June 23, 2017

Copyright: © 2017 Wang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This research was supported by the

Science and Technology Independent Innovation

Ability Upgrading Project of Shanxi Province

Academy of Agricultural Sciences (2015ZZCX-09,

2016ZZCX-09), Shanxi Province Youth Fund

(2015021143), the Agricultural Science and

Technology Innovation Research Project of Shanxi

Academy of Agricultural Sciences (ZDSYS1504),

https://doi.org/10.1371/journal.pone.0179717
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179717&domain=pdf&date_stamp=2017-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179717&domain=pdf&date_stamp=2017-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179717&domain=pdf&date_stamp=2017-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179717&domain=pdf&date_stamp=2017-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179717&domain=pdf&date_stamp=2017-06-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179717&domain=pdf&date_stamp=2017-06-23
https://doi.org/10.1371/journal.pone.0179717
https://doi.org/10.1371/journal.pone.0179717
http://creativecommons.org/licenses/by/4.0/


for investigating plant architecture, drought tolerance, and C4 photosynthesis of grain and

bioenergy crops because of its small genome size, self-fertilization, and short growth cycle [6–

8]. Therefore, it is essential to assess its agronomic traits by developing a genetic linkage map

and identifying genes or quantitative trait loci (QTLs).

Genome mapping of foxtail millet using molecular markers started in the 1990s, and a

map including 160 restriction fragment length polymorphism (RFLP) markers was con-

structed in an intervarietal cross [9]. Later, Jia et al. [10, 11] developed 30 expressed

sequence tag (EST)-derived simple sequence repeats (SSR) in foxtail millet, and constructed

an integrated map with 81 SSR markers and 20 RFLP markers. By exploiting EST sequences,

Gupta et al. [12] reported 98 potential intron length polymorphic (ILP) markers. However,

these are low-throughput molecular markers that limit the efficiency and accuracy of QTL

mapping.

The assembled reference genome of foxtail millet was released in 2012 by two indepen-

dent groups [13, 14]. The availability of the foxtail millet genome sequence to the public pro-

vides an important resource for crop genetics and breeding. On the basis of the reference

genome, a large number of markers (SSRs, EST-SSRs, SNPs, InDels, SVs, and TEs) have

been developed and utilized [15–21]. For example, Pandey et al. [19] scanned the whole

genome sequence of foxtail millet and identified a total of 28,342 microsatellite repeat motifs

(SSRs); these markers showed a high percentage (~90%) of cross-genera transferability

across millets, including green foxtail, cereals and bioenergy grasses. In previous studies,

some traits were analyzed in foxtail millet. Doust et al. [22] identified 25 QTLs for vegetative

branching. Meanwhile, Wang et al. [23] detected five QTLs related to plant height, panicle

length, panicle weight, and grain weight. Sato et al. [24] analyzed and mapped the stb1 gene,

which is responsible for the trait of “spikelet-tipped bristles”. Mauro-Herrera et al. [25] ana-

lyzed the differences in flowering time under varying environmental conditions and identi-

fied 18 QTLs. Qie et al. [26] detected 18 QTLs for germination and early seeding drought

tolerance. Fang et al. [16] described 29 QTLs responsible for 11 agronomic and yield traits.

Moreover, SiDWARF2, SiYGL1, and SiAGO1b were fine mapped and cloned using dwarf

mutant, AGO1 mutant, and yellow-green leaf mutant by map-based cloning [27–29].

Recently, multiple essential agronomic and quality traits have been studied by identifying

QTLs or genes using NGS technologies in foxtail millet. Jia et al. [30] sequenced 916 foxtail

millet varieties and identified 512 loci associated with 47 agronomic traits using genome-

wide association studies (GWAS). Bai et al. [15] re-sequenced the foxtail millet landrace

‘Shi-Li-Xiang’ (SLX) and finely mapped a waxy gene using newly developed DNA markers.

Masumot et al. [31] carried out QTL-seq and rapidly mapped the NEKODE1 gene responsi-

ble for tip-branched panicle.

Indeed, most agronomic traits are determined by QTLs [32–34]. It is important to rapidly

identify each locus or the major locus of QTLs for efficient crop breeding by marker-assisted

selection (MAS). However, whole-genome deep re-sequencing remains cost-prohibitive for

sequencing and genotyping of large populations, and is generally unnecessary. Restriction site-

associated DNA sequencing (RAD-seq) reduces genome complexity by sequencing only the

DNA fragments with restriction sites regardless of length, and is considered a useful tool for

SNP discovery and genetic mapping [35–37].

In this study, a high-throughput and cost-effective RAD-seq approach was employed to

generate a high-density genetic map for foxtail millet. The characteristics of this genetic map

were analyzed and discussed in detail below. Moreover, 11 major QTLs were identified for

eight distinct agronomic traits.

A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq
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Materials and methods

Plant materials

Two foxtail millet cultivars, Hongmiaozhangu (P1) and Changnong35 (P2) were selected as

female and male parents, respectively, for the mapping population. Hongmiaozhangu is char-

acterized by low plant height, multiple tillers, and a small panicle. Changnong35 is character-

ized by high plant height, no tillering, and large panicle. The mapping parents were crossed at

the Millet Research Institute (Changzhi, Shanxi) in 2013, and three real F1 hybrids were

obtained. F2 seeds were obtained from a self-pollinated F1 individual in 2014. In 2015, the

parents and 124 F2 plants obtained from one F1 individual were planted, and plant height (PH,

cm), main panicle length (MPL, cm), main panicle diameter (MPD, cm), first main internode

diameter (FMID, cm), second main internode diameter (SMID, cm), and third main inter-

node diameter (TMID, cm) were assessed in the mature stage. Main panicle weight per plant

(MPWP, g) and main grain weight per plant (MGWP, g) were measured after harvest. Data

were analyzed using SPSS 17. Genomic DNA was extracted from young leaf tissues of parental

and 124 F2 plants using a Plant DNA Kit (OMEGA, USA, D3485-02).

RAD-seq of the parental lines and F2 population

We employed the RAD protocol described by Baird et al. [35]. The enzymes and restriction

fragment sizes were evaluated based on the reference genome sequence (https://www.ncbi.

nlm.nih.gov/genome/?term=foxtail+millet). TapI was selected for RAD library construction.

The library for Illumina sequencing was constructed from 200 ng of each DNA sample. All

library were sequenced using Illumina HiSeq X Ten at Shanghai Major Biological Medicine

Technology Co., Ltd.

SNP identification and genotyping

For SNP calling, the Burrows-Wheeler Aligner [38] was applied for sequence alignment

between the individual reads and the reference genome sequence, the Genome Analysis

ToolKit [39] was used to detect SNP loci, and SAMtools [40] was used to filter out SNP loci.

In this study, filtering of SNP loci was based on three criteria: (i) average sequence depth

is < 5-fold in parents and < 3-fold in the progeny; (ii) no polymorphism between the

parents; (iii) heterozygous in parents.

Development of new DNA markers

Primers were designed according to the flanking sequences (300 bp upstream and 300 bp

downstream of the selected SNPs). The primer sequences used for the new DNA markers are

listed in S4 Table. PCR was carried out in a 10 μL volume containing 40 ng genomic DNA,

1.0 μL 10× reaction buffer, 0.2 μL 10 mmol L–1 dNTPs, 1.0 μL primer, 1 U rTaq DNA polymer-

ase (TaKaRa, Dalian), and 5.7 μL ddH2O. The PCR was performed by initially denaturing the

template DNA at 94˚C for 5 min, followed by 35 cycles at 94˚C for 30 s, 58˚C for 30 s, and

72˚C for 30 s, and then terminated by a final extension for 10 min at 72˚C. PCR fragments

were separated on 8% non-denatured polyacrylamide gel electrophoresis (PAGE) and visual-

ized by silver staining [41].

Linkage map construction

The poorly performing markers were removed before map construction, which excessively

missed with more than 30% missing data in the F2 population. Markers with significant seg-

regation distortion (χ2 test, P < 0.05) were excluded from the subsequent linkage map

A high-density genetic map and QTL analysis of agronomic traits in foxtail millet [Setaria italica (L.) P. Beauv.] using RAD-seq
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construction. Construction of the linkage map was performed using MSTmap software [42].

The major parameters for loci partition were as follows: distance_function for Haldane;

p_value for 0.0000001; no_map_dist for 10; missing_threshold for 0.3; objective_function for

Maximum likelihood. A total of 10,016 SNP markers were considered for linkage map con-

struction. LOD = 10 was used to partition the SNP markers into linkage groups. Linkage

groups from the same chromosome were merged together, and SNP markers of the same

chromosome were again reordered with MSTmap.

QTL analysis

QTL analysis was conducted using CIM (composite interval mapping) of the R/qtl package

[43]. LOD thresholds for testing the significance of QTL peaks of each trait were calculated

using 1,000 permutations, with a confidence interval of at least 80%. The position and effect

of significant QTL was assessed for additive effects and percentage phenotypic variation

explained (PVE%) by fitting a model containing all QTL identified for a given trait in R/qtl.

The method of naming QTLs was as follows: q plus trait abbreviation and chromosome num-

ber; plus -1, -2, etc., when multiple QTLs for one trait were detected on the same chromosome.

Results and discussion

Phenotypic data of eight agronomic traits

Phenotypic data of the eight agronomic traits were analyzed (Table 1 and S1 Fig). A wide

range of variation was observed in the eight agronomic traits in the F2 population; the absolute

value of the skewness and kurtosis of most traits was less than 1, indicating that these traits had

approximately normal distribution. The correlation among the eight traits were calculated. In

previous study, Wang et al. [23] found significant associations of PH and MPL with PWP and

GWP, respectively. Fang et al. [16] suggested that MPL, MPD, PWP, and GWP are positively

correlated with one another. Similar results were reported by Wang et al. [44]. In the present

study, all eight traits showed positive correlations with one another, except PH which had

non-significant correlations with MPD, FMID, SMID, and TMID (Table 2), corroborating the

results of previous studies.

RAD-seq analysis and SNP identification in parental lines and F2

individuals

High-throughput genotyping by sequencing is an option for efficient marker-assisted breeding

[45]. Currently, there are many new methods using NGS for identifying genes or QTLs,

Table 1. Phenotypic data analyses of eight agronomic traits for 124 F2 individuals.

Trait P1 P2 Population

Mean Max Min Skewness Kurtosis

PH (cm) 154.0 176.8 185.5 214.0 113.5 -1.60 5.39

MPL (cm) 21.7 19.4 24.3 34.6 11.8 -0.23 1.07

MPD (cm) 1.8 3.1 1.8 5.3 3.2 0.23 -0.56

FMID (cm) 0.6 0.9 1.0 1.5 0.5 0.16 0.48

SMID (cm) 0.5 0.9 1.0 1.5 0.5 0.10 0.52

TMID (cm) 0.5 0.8 0.9 1.6 0.5 0.66 1.91

MPWP (g) 11.6 28.3 37.0 77.2 10.5 0.55 0.95

MGWP (g) 10.0 27.1 29.8 60.7 3.9 0.10 0.68

https://doi.org/10.1371/journal.pone.0179717.t001
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including GWAS [46], QTL-seq [47], MutMap [48], RAD-seq [35], and SLAF-seq [49], and

some have been applied to foxtail millet [15, 30, 31]. However, the utility of RAD-seq has yet

not been reported. RAD-seq sequences short DNA fragments with restriction sites digested by

restriction endonucleases, regardless of length. It has been applied for SNP identification and

linkage map construction in various organisms, including barley, snail, and ryegrass [50–53].

In the present study, a total of 830,740,674 reads were obtained for the parental lines and F2

population. After removal of low-quality reads, 760,378,099 high-quality reads were obtained,

representing 91.5% of all reads. The high-quality reads were subsequently mapped to the refer-

ence genomic sequence, with a mapping ratio of at least 82% (S1 Table).

A total of 2,668,587 SNP loci were detected, including 2,629,567 located on nine chromo-

somes and the remaining 39,020 found on scaffolds. Among the 2,629,567 SNP loci, 97.5%

(2,564,566) were filtered because of low sequence depth and lack of polymorphism between

parents. The remaining 65,001 SNP loci were further screened to remove markers unsuitable

for genetic map construction.

Among the 65,001 SNP markers, the numbers of markers on the chromosomes ranged

from 4,414 to 10,625; the markers covered at least 98.37% of the physical length of the genome

(Table 3). The marker density along each chromosome ranged from 104.82 to 261.63 markers

per Mb, averaging 164.64 markers per Mb. The highest marker density (261.63/Mb) was

found on chromosome 8, followed by chromosome 7 (213.19/Mb); the lowest marker density

(104.82/Mb) was found on chromosome 1.

Table 2. Correlation coefficients among agronomic traits in 124 F2 individuals.

Traits PH MPL MPD FMID SMID TMID MPWP

MPL 0.488**

MPD -0.088 0.355**

FMID 0.064 0.400** 0.548**

SMID 0.052 0.346** 0.516** 0.916**

TMID 0.011 0.310** 0.542** 0.848** 0.897**

MPWP 0.223* 0.462** 0.678** 0.610** 0.622** 0.623**

MGWP 0.238** 0.389** 0.595** 0.530** 0.543** 0.551** 0.973**

*, ** Correlation is significant at the probability levels of 0.05 and 0.01, respectively plant height (PH, cm), main panicle length (MPL, cm), main panicle

diameter (MPD, cm), first main internode diameter (FMID, cm), second main internode diameter (SMID, cm), third main internode diameter (FMID, cm),

Main panicle weight per plant (MPWP), main grain weight per plant (MGWP)

https://doi.org/10.1371/journal.pone.0179717.t002

Table 3. Number and coverage of SNP markers on the nine chromosomes.

Chr. Marker Cover length (Mb) Chr. Length (Mb) Coverage (%) Density (marker/Mb)

1 4414 42.11 42.15 99.92 104.82

2 7592 49.14 49.20 99.87 154.51

3 8017 50.65 50.65 100.00 158.28

4 5323 40.38 40.41 99.93 131.82

5 6274 47.08 47.25 99.63 133.27

6 6048 35.97 36.01 99.87 168.15

7 7542 35.38 35.96 98.37 213.19

8 10625 40.61 40.69 99.81 261.63

9 9166 58.72 58.97 99.57 156.10

Total 65001 400.03 401.30 99.66 164.64

https://doi.org/10.1371/journal.pone.0179717.t003
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In this study, we genotyped the parental lines using different letters and determined the seg-

regation patterns of the mapping population. The genotypes of the SNP loci were encoded

according to the paternal and maternal genotypes instead of the reference sequence. One locus

with a homozygous SNP in the paternal and maternal genotypes would be encoded as aa × bb;

if a certain SNP was heterozygous for one or two parents, the genotypes of the markers for the

two parents were encoded as, for example, cc × ab or ef × eg. In total, we successfully coded

65,001 polymorphic SNP loci. Furthermore, these SNPs were classified into six segregation

patterns (ab × cc, cc × ab, ef × eg, nn × np, lm × ll, and aa × bb). Finally, according to the two

parent genotypes, 39,299 markers, which fell into the aa × bb segregation pattern, were used in

linkage analysis (Fig 1).

High-density genetic linkage map with SNPs

Genetic linkage maps play a major role in clarifying the genetic control of important traits. In

particular, high-density molecular markers can be used to quickly map agronomic traits and

to identify candidate genes within a region of interest [54]. In this study, after removing

incomplete (26,906), significant segregation distortion (24,706), and non-aa × bb (3.373) SNP

markers, 10,016 SNP markers were retained for genetic map construction. Finally, a high-den-

sity genetic map was constructed containing a total of 9,968 SNP markers. The markers were

grouped into nine linkage groups and ordered (Fig 2 and S2 Table). The total genetic distance

of the generated map was 1648.8 cM, with an average distance of 0.17 cM between adjacent

markers. The largest linkage group was Chr. 8 with 2541 SNP markers and a length of 199.9

cM; the smallest was Chr. 6 with 841 SNP markers and a length of 144.3 cM. Two large gaps

(>20 cM) were identified on Chr. 1 (34.23 cM) and Chr. 4 (23.21 cM), respectively. The high-

est missing data was found on Chr. 6 with 8.42%; the lowest missing data (6.52%) was found

on Chr. 7 (Table 4).

SNP markers are efficient for high-density genetic map construction since they allow high-

throughput assessment, compared to RFLP and SSR markers. Currently, the most saturated

intervarietal map was constructed by Fang et al. [16]. Compared with this map, the number of

mapped loci (1035 SSR makers vs. 9968 SNP markers), marker density (26.25 marker/Mb vs.

164.64 marker/Mb), average distance between adjacent markers (1.27 cM vs. 0.17 cM) and

total map length (1318.8 cM vs 1648.8 cM) were significantly increased in the newly con-

structed SNP maker genetic map. The marker number (9,968 SNPs) in this map was also

Fig 1. Number of markers for each segregation pattern.

https://doi.org/10.1371/journal.pone.0179717.g001
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higher than that of the two consensus maps constructed by Zhang et al. [14] (118 SNPs) and

Bennetzen et al. [13] (992 SNPs). The current map provides not only a large number of SNP

markers for foxtail millet, but also useful data for QTL analysis, gene fine mapping, and molec-

ular breeding.

Fig 2. Genetic linkage map and QTLs controlling agronomic traits.

https://doi.org/10.1371/journal.pone.0179717.g002

Table 4. Characteristics of the high-density genetic map.

Linkage group No. of markers Distance (cM) Average distance between markers (cM) Largest gap Missing data (%)

Chr. 1 369 186.0 0.50 34.23 7.80%

Chr. 2 1373 197.3 0.14 8.00 8.36%

Chr. 3 1553 197.5 0.13 16.80 7.58%

Chr. 4 597 177.2 0.30 23.21 7.16%

Chr. 5 605 199.2 0.33 16.65 6.69%

Chr. 6 841 144.3 0.17 18.95 8.42%

Chr. 7 1212 155.8 0.13 7.77 6.52%

Chr. 8 2541 199.9 0.08 7.41 7.24%

Chr. 9 877 191.6 0.22 17.70 7.96%

Total 9968 1648.8 0.17 34.23 8.42%

https://doi.org/10.1371/journal.pone.0179717.t004
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The collinearity of each chromosome with the reference genome was also analyzed (Fig 3).

The average ratios of genetic-to-physical distance in low- and high-recombination chromo-

somes were 3.3 cM/Mb (Chr. 9) and 4.98 cM/Mb (Chr. 8), respectively (S3 Table). The 9,968

SNP markers in the genetic map covered 393.53 Mb of the physical length, spanning approxi-

mately 76.4% of the foxtail millet genome (*515 Mb).

In this study, high levels of collinearity for each chromosome were revealed compared with

the reference genome. A relatively low collinearity was observed between Chr. 8 and the refer-

ence genome. Non-collinearity could result from multiple factors, including intra- and inter-

chromosomal locus duplication, genome rearrangement, transposon-mediated marker trans-

position, discrepancy in recombination rate among different genomic regions, small mapping

population size, compromised marker ordering in the consensus map, missing data, and geno-

typing errors [55–57].

QTLs for agronomic traits

Agronomic traits play an important role in the breeding of crops. The more QTLs of agro-

nomic traits that are identified, the more they promote breeding by MAS. Recently, Chinese

scientists have reported the successful development of new elite varieties in rice by pyramid-

ing major genes that significantly contribute to grain quality and yield from three parents

over 5 years, and demonstrated that rational design is a powerful strategy for meeting the

challenges of future crop breeding [58]. In foxtail millet, QTLs controlling agronomic traits

have been detected in previous studies [16, 22, 23, 30]. Wang et al. [23] and Fang et al. [16]

reported QTLs for PH, MPL, MPD, PWP, and GWP, using F2 populations and SSR markers.

Jia et al. [30] assessed a natural population of foxtail millet and SNP markers under five dif-

ferent environmental conditions, and identified 512 loci associated with 47 agronomic traits.

In the present study, with the exception of MGWP, a total of 11 QTLs were identified for

eight agronomic traits using the F2 population and SNP markers (Table 5, Fig 2). The 11

QTLs were mapped to Chr. 1, Chr. 2, Chr. 5, Chr. 7, Chr. 8, and Chr. 9.

MPL had three QTLs, the most prominent of which was designated qMPL8.1, that

explained 12.1% of the phenotypic variance. Sixty-five SNP markers covered this interval. The

other two QTLs (qMPL1.1 and qMPL1.2) were detected on Chr. 1 with LOD scores of 3.48

and 3.57, and explained 23.3% of the phenotypic variance. Of these, qMPL1.1 and qMPL1.2
have also been detected in the haplotype and SSR maps [16, 30]. Two QTLs were detected for

FMID, with the largest effect displayed by qFMID9.1, which explained 15.5% of the phenotypic

variance. Forty-seven SNP markers were identified within the chromosomal region of

qFMID9.1. Two QTLs were detected for TMID, with the largest effect displayed by qTMID2.1,

which explained 11.0% of the phenotypic variance. A total of twenty-two SNP markers were

found within the chromosomal region of qTMID2.1. The other QTL, qTMID5.1 with 10.8% of

the phenotypic variance was also detected in the haplotype map [30].

PH, MPD, and MPWP had only one QTL each, with LOD scores of 3.36, 3.85, and 3.92,

and explained 11.1%, 12.6%, and 12.9% of the phenotypic variance, respectively. qFMID5.1
and qTMID5.1 shared the same chromosomal region, with LOD scores of 3.67 and 3.26, and

explained 12.1% and 10.8% of the phenotypic variance, respectively.

With the exception of qMPL1.1 and qTMID5.1, the remaining nine QTLs were identified

for the first time, indicating that differences in QTL number and position might be attributed

to different mapping populations (genotypes, population sizes, etc.), type and number of

markers (i.e., RFLPs, SSRs, and SNPs), and environmental effects.

The additive effects of qPH1.1, qMPL1.1, qMPL1.2, qMPL8.1, qFMID9.1, qSMID9.1, and

qTMID2.1 were derived mainly from the female parent (Hongmiaozhangu), whereas those of
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Fig 3. Genetic distance vs. physical distance for 9,968 SNPs in foxtail millet.

https://doi.org/10.1371/journal.pone.0179717.g003
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qMPD7.1, qFMID5.1, qTMID5.1, and qMPWP9.1 stemmed mainly from the male parent

(Changnong35).

Newly developed DNA markers

In order to utilize the SNPs identified between Hongmiaozhangu and Changnong35, five

SNPs were randomly selected in the intervals of identified QTLs. Based on the flanking

sequences of selected SNPs, we designed primers and amplified the target sequences by PCR

using genomic DNA of the two parents and their progenies. Finally, five co-dominant DNA

markers were developed (Fig 4 and S4 Table). These markers will be useful for gene cloning

and molecular breeding of foxtail millet.

Mapping population

The construction of F2 populations is general straightforward, and F2 populations provide

abundant information suitable for gene or QTL mapping and genetic analysis for many quali-

tative and quantitative traits. To date, there have been many attempts to use F2 populations

directly for QTL analysis in crops. For example, QTLs were obtained that were associated

Table 5. QTLs controlling agronomic traits in the Hongmiaozhangu ×Changnong35 F2 population.

Trait QTL Chr. P LOD-threshold LOD Position (cM) Marker number PVE (%) Additive effect

PH (cm) qPH1.1 1 0.2 3.10 3.36 184.84 19 11.1 6.03

MPL (cm) qMPL1.1 1 0.1 3.47 3.48 102.48 11 11.5 1.44

qMPL1.2 1 0.1 3.47 3.57 105.15 5 11.8 1.36

qMPL8.1 8 0.2 3.11 3.66 20.39 65 12.1 1.63

MPD (cm) qMPD7.1 7 0.1 3.60 3.85 81.12 16 12.6 -0.15

FMID (cm) qFMID9.1 9 0.05 3.98 4.80 110.86 47 15.5 0.10

qFMID5.1 5 0.1 3.59 3.67 49.33 1 12.1 -0.09

SMID (cm) qSMID9.1 9 0.05 3.97 4.11 113.15 3 13.5 0.09

TMID (cm) qTMID2.1 2 0.2 3.19 3.30 64.86 22 11.0 0.08

qTMID5.1 5 0.2 3.19 3.26 49.33 1 10.8 -0.09

MPWP (g) qMPWP9.1 9 0.1 3.64 3.92 187.83 10 12.9 -2.48

https://doi.org/10.1371/journal.pone.0179717.t005

Fig 4. The amplification of newly developed DNA markers in the parents and F2 individuals.

https://doi.org/10.1371/journal.pone.0179717.g004
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with: crown rust susceptibility in ryegrass; drought-induced flag leaf senescence in wheat; awn,

incomplete panicle exertion, and total spikelet number in rice; and aluminum-toxicity toler-

ance in soybean [32, 59–61]. In this study, the two parental lines have contrasting values across

a wide range of agronomic traits, i.e. PH (154.0 and 176.8), MPD (1.8 and 3.1) (Table 1),

which are essential for QTL identification. Finally, 11 major QTLs (PVE% > 10) were identi-

fied for eight agronomic traits. However, QTLs are sensitive to different environmental factors,

such as years, regions, and to sometimes even materials [30, 62]. Therefore, different QTLs

were more likely to be obtained in various studies. In particular, in the F2 population, it is

important to verify the identified QTLs because of the lack of repeats. In future experiments,

we will construct an recombinant inbred line (RIL) population to repeatedly verify the QTLs

identified in the present study.

Conclusions

Using a high-throughput and cost-effective RAD-seq approach, we developed a total of 9,968

SNPs to construct a high-density genetic linkage map for foxtail millet, spanning 1648.8 cM,

with an average distance of 0.17 cM between adjacent markers. In total, 11 major QTLs were

identified for eight agronomic traits, and nine QTLs (qPH1.1, qMPL1.2, qMPL8.1, qFMID9.1,

qSMID9.1, qTMID2.1, qFMID5.1, qMPD7.1, and qMPWP9.1) were newly identified. Moreover,

five co-dominant markers were developed based on the SNPs between the two parents in the

region of the identified QTLs. Our results lay an important foundation for candidate gene

identification and MAS breeding of foxtail millet.

Accession number

Raw sequence data obtained in this study have been deposited in the NCBI Sequence Read

Archive (SRA) with accession number SRP102319.
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