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Abstract

Targeted inhibition of the oncogenic BCR-ABL1 fusion protein using the ABL1 tyrosine

kinase inhibitor imatinib has become standard therapy for chronic myelogenous leukemia

(CML), with most patients reaching total and durable remission. However, a significant frac-

tion of patients develop resistance, commonly due to mutated ABL1 kinase domains. This

motivated development of second-generation drugs with broadened or altered protein

kinase selectivity profiles, including dasatinib and nilotinib. Imatinib-resistant patients under-

going treatment with second-line drugs typically develop resistance to them, but dynamic

and clonal properties of this response differ. Shared, however, is the observation of clonal

competition, reflected in patterns of successive dominance of individual clones. We present

three deterministic mathematical models to study the origins of clinically observed dynam-

ics. Each model is a system of coupled first-order differential equations, considering popula-

tions of three mutated active stem cell strains and three associated pools of differentiated

cells; two models allow for activation of quiescent stem cells. Each approach is distin-

guished by the way proliferation rates of the primary stem cell reservoir are modulated. Pre-

vious studies have concentrated on simulating the response of wild-type leukemic cells to

imatinib administration; our focus is on modelling the time dependence of imatinib-resistant

clones upon subsequent exposure to dasatinib or nilotinib. Performance of the three compu-

tational schemes to reproduce selected CML patient profiles is assessed. While some sim-

ple cases can be approximated by a basic design that does not invoke quiescence, others

are more complex and require involvement of non-cycling stem cells for reproduction. We

implement a new feedback mechanism for regulation of coupling between cycling and non-

cycling stem cell reservoirs that depends on total cell populations. A bifurcation landscape

analysis is also performed for solutions to the basic ansatz. Computational models

PLOS ONE | https://doi.org/10.1371/journal.pone.0179700 July 5, 2017 1 / 45

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Woywod C, Gruber FX, Engh RA, Flå T

(2017) Dynamical models of mutated chronic

myelogenous leukemia cells for a post-imatinib

treatment scenario: Response to dasatinib or

nilotinib therapy. PLoS ONE 12(7): e0179700.

https://doi.org/10.1371/journal.pone.0179700

Editor: Natalia L. Komarova, University of California

Irvine, UNITED STATES

Received: January 18, 2016

Accepted: June 2, 2017

Published: July 5, 2017

Copyright: © 2017 Woywod et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by Research

Council of Norway (Grant Nr 179568/V30), URL:

http://www.forskningsradet.no/en/Home_page/

1177315753906, Received Funding: CW, Role:

Funding position; TromsøResearch Foundation

(supported by Trond Mohn, Grant Nr. A32542),

URL: http://www.tfstiftelse.no, Received funding:

CW, Role: Funding position; and Kreftforeningen

(Grant Nr. PK01-2009-0541), URL: http://

https://doi.org/10.1371/journal.pone.0179700
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179700&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179700&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179700&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179700&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179700&domain=pdf&date_stamp=2017-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179700&domain=pdf&date_stamp=2017-07-05
https://doi.org/10.1371/journal.pone.0179700
http://creativecommons.org/licenses/by/4.0/
http://www.forskningsradet.no/en/Home_page/1177315753906
http://www.forskningsradet.no/en/Home_page/1177315753906
http://www.tfstiftelse.no
http://kreftforeningen.no


reproducing patient data illustrate potential dynamic mechanisms that may guide optimiza-

tion of therapy of drug resistant CML.

Introduction

With the discovery of tyrosine kinase inhibitor (TKI) drugs, a diagnosis of early stage chronic

myelogenous leukemia (CML) became associated with a prognosis of normal life expectancy

[1]. The success of the TKI drugs for CML may be attributed to the fact that nearly all CML

cancers are caused by a single molecular lesion, creating a uniquely homogeneous cancer drug

target, along with the relative genetic stability of the early stage oncogenic hematopoetic mye-

loid cells. Untreated CML advances to the accelerated phase and finally blast crisis, with

increased genetic instability, total tumor burden, and characteristics of acute leukemia. Despite

the success of TKI drugs in early stage CML, late diagnosis—and progression of the disease in

some patients despite treatment—may involve resistance to TKI therapy. Current drug discov-

ery efforts aim to identify new TKI inhibitors that can replace drugs rendered ineffective by

resistance mutations, and to forestall or even prevent TKI drug resistance. These efforts are

aided by increasing understanding of the molecular processes that underlie the dynamics of

clinical resistance, which in turn should ultimately enable predictive modelling of optimized

disease therapy.

Despite great progress in collecting disease relevant data [2], the origins and complexities of

leukemias within the hematopoietic cell hierarchy are not well understood [3]. In the case of

CML [4], the reciprocal t(9;22)(q34;q11) translocation that creates the “Philadelphia chromo-

some” and its BCR-ABL1 fusion protein occurs in hematopoietic stem cells [5]. The fusion

removes the regulatory domains from the ABL1 kinase domain, rendering it constitutively

active, although it retains the ability to adopt both active and inactive conformations, related

to folding geometries of the so-called “DFG” segment that forms part of the ATP binding site.

The first of the successful TKI drugs against CML, imatinib, inhibits the BCR-ABL1 tyrosine

kinase by occupying the ATP-binding site, locking the protein in an inactive conformation,

switching off a variety of the downstream signalling events [6]. Imatinib both inhibits prolifer-

ation and increases apoptosis of actively proliferating wild-type Ph+(Philadelphia chromo-

some-positive) progenitor cells, but the effect on cycling and non-cycling CML stem cells is a

focus of current research [7].

Despite the successes of TKI therapy of CML, a significant fraction of patients develop resis-

tance to treatment. In approximately half of these cases, resistance arises from mutations of the

ABL1 kinase domain. This was first observed for imatinib therapy, whereby the resistant can-

cer in some cases possessed multiple and competing resistant clones. The observation of imati-
nib resistance led to the development of alternative TKI drugs against CML; dasatinib,

nilotinib, and ponatinib have been approved for clinical use [8]. While these have not replaced

imatinib for first-line therapy, they can be used for imatinib-resistant CML, but may also be

rendered ineffective by Ph+ cell mutation [9]. A key issue with respect to permanent eradica-

tion of Ph+ cells (and thereby to cure CML) is the accessibility and effect of TKI therapy on

Ph+ stem cells [10–16]. Recent bone marrow studies have shown the sensitivity of residual

wild-type and mutant Ph+ cancer stem cells during imatinib and dasatinib treatment, indicat-

ing that in particular dasatinib therapy can rapidly eliminate leukemic stem cells in vivo [17].

Four mechanisms have been proposed to explain the continued presence of cycling wild-

type Ph+ stem cells despite treatment: (i) Proliferating stem cells are suppressed by imatinib
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but quiescent cells are not. (ii) Imatinib is eliminated from the cytoplasm of proliferating CML

stem cells. (iii) Cycling stem cells have a higher production rate of the BCR-ABL1 protein com-

pared to progeny cells. (iv) The immune system responds to progeny cells, but not to Ph+ stem

cells.

Clinical data and knowledge of CML disease mechanisms have supported a variety of efforts

to model CML and resistance dynamics, ultimately with the aim of optimizing therapy. Essen-

tial features of the evolution of both normal and leukemic cells are well understood. However,

differential effects of TKI inhibitors are less well understood, in particular at the stem cell level;

models illustrate and may help clarify the effects of different therapies on stem cell prolifera-

tion, differentiation, and apoptosis rates [18]. Several approaches have been used to model the

persistence of the wild-type leukemia stem cells during imatinib therapy, most significantly

differing with respect to the treatment of quiescence.

Before discussing the different computational concepts, a remark on nomenclature: In Refs.

[19–21], stem cell growth environments (bone marrow niches supporting either cycling or

non-cycling stem cells) are also referred to as “signalling contexts”, while Refs. [22, 23] use the

term “compartments”. For clarity, we define the expression “compartment” to mean the indi-

vidual layers of the differentiation hierarchy of the haematopoietic system as proposed e.g. in

Refs. [15, 24]. Accordingly, the stem cell compartment is composed of two growth environ-

ments: active and quiescent.

Michor et al. first described a model that features both normal and leukemic versions of

cycling stem cells, progenitors, differentiated and terminally differentiated cells [15]. The

model distinguished quiescent from proliferating stem cells, but did not include sensitivity of

the stem cell compartment to imatinib treatment. The biphasic decay of BCR-ABL1 transcripts

measured in blood following imatinib treatment was thereby interpreted as a rapid initial

decay of differentiated leukemic cells succeeded by a slower decay of leukemic progenitors.

Roeder et al. [20] use a stochastic approach (“agent based model” (ABM) [21]) that consid-

ers stem cells to switch between activated and quiescent states, assuming that imatinib affects

only the activated stem cells. This model attributes the clinically observed biphasic decline of

BCR-ABL1 transcript levels to the faster effect on activated stem cells and the slower repopula-

tion from the quiescent pool.

Because switching between active and quiescent states implies some form of signalling via

stem cell niche interactions, this view allows for competition between mutant Ph+ stem cell

clones that may possess varying responses to the niche environment. If the clones are differen-

tially sensitive to TKIs, therapy may alter the overall composition of the stem cell pool such

that clones best suited to niche competition under treatment come to dominate. Thus, com-

plete modelling of the clinical effects of TKI therapy must take into account multiple interde-

pendent factors: enzymatic activities of BCR-ABL1 variants, relative substrate selectivities,

proliferation vs. differentiation vs. quiescence transition rates, and effects of non-ABL1 tyro-

sine kinase inhibition, to name a few [18].

Subsequent studies have refined or extended these early approaches. Komarova and

Wodarz [25] introduced a stochastic model that explicitly includes populations of both cycling

and non-cycling stem cells in order to explain biphasic decay of wild-type CML cell popula-

tions upon treatment with imatinib. Levy et al. added immune system response terms [26, 27].

Michor et al. included the quiescent state of stem cells explicitly in a deterministic model [28].

Roeder et al. [19] and Doumic-Jauffret et al. [22] approximated the earlier stochastic model

with a faster deterministic partial differential equation (PDE) model.

Unlike these investigations, which are primarily devoted to the study of imatinib therapy,

the focus of the present modelling study is on the time development of CML cells in the regime

of exposure to dasatinib or nilotinib, after suspension of imatinib therapy due to resistance.

Modelling of resistant CML mutants
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In Ref. [29], the dynamical model described in Ref. [28] is applied to simulate the response

of wild-type CML cells to treatment with dasatinib, nilotinib and high-dose imatinib. The

dynamics of resistant CML mutants is not considered in Ref. [29]. Ref. [30] presents a stochas-

tic model for the evolution of CML mutations resistant to TKIs before therapy is initialized.

We describe three versions of a deterministic approach to the description of the dynamics

of CML stem and differentiated cells. The models differ with respect to the role of the niche

environment on stem cell proliferation via activation of quiescent stem cells. The simulations

of the time evolution of three strains of each type of stem and differentiated cancer cells are

compared to recently acquired clinical data.

Materials and methods

(2.1) General

We build on existing models [15, 28, 31–34], and introduce negative feedback signals to study

the clonal competition phenomena as seen in clinical data described above. Our goal is to inves-

tigate the dynamics of the populations of drug resistant clones as observed in CML patients who

were treated by dasatinib or nilotinib after their disease became resistant to imatinib [35–42].

Certain patterns are especially noteworthy, such as the rapid emergence of one resistant clone,

to be overtaken by another over the course of treatment, or relapse phenomena. Table 1 pro-

vides an overview of typical curve progressions observed in the time evolutions of differentiated

cell populations of individual imatinib-resistant clones as reported in Ref. [41].

The time-dependent populations of BCR-ABL1 stem and differentiated cell mutants i are

given by xsi(t) and xdi(t), respectively; the total sets of stem and differentiated cell populations

Table 1. Schematic classification of the time evolution of individual CML clones as observed in the

fourteen patient profiles compiled in Fig 2 of Ref. [41]. The clonal time courses can be divided into ‘clas-

ses’ based on their common abstracted characteristics. The resulting eight classes of time courses are

ordered according to increasing complexity.

Description of clone development CML clone Patient profile(s)

1-phasic decay M351T D13, N16, N25, N34,

N35

Y253H D7, D11

1-phasic growth E255K N35

E255V N34

F311I N25

T315I D11

2-phasic decay F317L N34, N35

2-phasic growth V299L_1 D14

V299L_2 D14

3-phasic decay Y253H D14, D15

Decay!minimum! growth F359V N40

T315I D7

Growth!maximum! decay E255V D8, N16

F317L D7, D11, D13, D14

T315I D15, N5, N22

Y253H N40

Growth!maximum (local / global)! decay!minimum (local /

global)! growth

E255K D8, N33

T315I N35

Y253F N33

https://doi.org/10.1371/journal.pone.0179700.t001
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are represented by vectors xs(t) and xd(t) (i.e. xk(t)≔ (xk1(t), xk2(t), . . .), k 2 {s, d}). In the mod-

els we consider here, stem cell populations increase via symmetric division, while differenti-

ated cell populations increase via asymmetric division of the parent stem cells. Following

Ref. [31], we incorporate terms into the model to account for negative feedback control of

these two growth mechanisms. Thereby, the (mutant specific) symmetric and asymmetric divi-

sion rate constants αi and ai, respectively, are multiplied by population dependent feedback or

growth functions zi(xs(t)) and p(xd(t)) to represent signals or niche competition factors that

limit growth and differentiation, respectively. We assume that the total populations of stem

cells limit symmetric division via niche competition and possibly signalling, and that the total

populations of differentiated cells limit asymmetric division via signalling.

Alternatively, a stem cell may divide symmetrically to yield two progenitor daughter cells

[43]. This process, which implies death of the stem cell, will not be considered in the present

study. For a discussion of the probabilities for differentiation pathways see e.g. Ref. [44].

We allow for clone-clone specific effects in stem cell niche competition, defining an array ω
≔ {ωij} that represents the effect of clone j on clone i via a clone-specific threshhold θsi such

that negative feedback is switched on via an exponential factor when the weighted total distri-

bution of competition effective mutants surpasses the threshhold (i.e. as ∑j ωij xsj> θsi).
For differentiated cells, we assume the simpler case whereby negative feedback is generated

by signals representing the total population, without clone specificity. The cell populations also

decay with rate constants δi and di for stem and differentiated cells, respectively.

Although the growth functions zi(xs(t)) and p(xd(t)) of stem and differentiated cells, respec-

tively, are more accurately described by sigmoidal functions of the corresponding signals ∑j ωij

xsj and ∑j xdj [28, 32–34], we will for convenience approximate the rapid variations of both

functions in the vicinity of the thresholds θki (k = s, d) by exponential functions. This choice of

growth functions to switch off proliferation and differentiation in response to population levels

is taken to follow existing literature [15, 31]. We also note that the molecular mechanisms for

the feedbacks are not known, and, because the BCR-ABL1+ cells have escaped normal regula-

tion, it is not clear that a steep switching mechanism should be assumed. The term “threshold”

for θki is therefore used in the sense of the so-called “e-folding threshold” [45] in the present

study since an unique level, such as the inflection point of a sigmoidal curve, cannot be distin-

guished for exponential functions.

Thus, the basic differential equations for stem cell proliferation become:

dxsiðtÞ
dt
¼ ziðxsðtÞÞaixsiðtÞ � dixsiðtÞ ð1aÞ

ziðxsðtÞÞ≔ exp �
X

j

oijxsjðtÞ=ysi

 !

ð1bÞ

while those for differentiated cells are:

dxdiðtÞ
dt

¼ pðxdðtÞÞ aixsiðtÞ � dixdiðtÞ ð2aÞ

pðxdðtÞÞ≔ exp �
X

j

xdjðtÞ=yd

 !

ð2bÞ
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Other specific phenomena may be built into this basic model, and some modifications cre-

ate the three models we analyse here. Mutation rates may be introduced, with corresponding

effects on the relative populations.

We follow Ref. [23] and consider mutations only at the stem cell level. The rate term ri! j

describing the probability of mutations from clone xsi(t) into xsj(t) per division of a cell of

clone xsi(t) is formulated according to:

ri!j≔ njziðxsðtÞÞaixsiðtÞ; ð3Þ

where νj represents the mutation rate constant (see also definition of models A (Sec. 2.3), B

(Sec. 2.4) and C (Sec. 2.5)).

More importantly, the stem cell pool may be distinguished into two growth environments

to differentiate between quiescent (inactive, non-cycling) and proliferating (active, cycling)

stem cells [15, 19–23, 25–28]. This becomes essential for reproducing aspects of patient data,

in particular bi- or multiphasic decay patterns as well as recurrences of CML cell populations

(see models B and C, results and discussion).

For the solution of the initial value problems we employ the ode45 integrator (based on a

Runge-Kutta (4, 5) algorithm [46]) as implemented in the MATLAB package [47] for the solu-

tion of non-stiff ordinary differential equations [48]. We tested also MATLABs ode15s integra-

tor (for stiff differential equations) and found results to be consistent with those obtained

using ode45.

(2.2) Empirical choices for model parameters

(2.2.1) Test simulations (qualitative) and patient simulations (quantitative). The stem

and differentiated cell mutants xsi(t) and xdi(t) represent the variants observed in patients that

had acquired resistance mutations under imatinib treatment [35–41]; a major goal of this work

is to investigate the underlying causes of their observed variations after initiation of new ther-

apy. The patient data are not sufficient in number or quality to fit all parameters statistically.

In the simulations of stem and differentiated cell dynamics performed for this study, we there-

fore differentiate between two types: (i) Test simulations that investigate the qualitative ability

of the three models defined in Secs. 2.3, 2.4 and 2.5 to reproduce general patterns observed in

the clinical cell population data presented in Refs. [40, 41]. In these simulations we follow the

literature for additional information to compensate for the underdetermination of the model.

(ii) Patient simulations of two selected clinical cases. The patient data profiles will generally be

denoted PP# in this manuscript, referring to the numbering in Ref. [41]. We focus on PP14

and PP15, parameterizing models B and C to fit the experimental results. Tables 2 and 3 sum-

marize the parameters used in the test and patient simulations of this study, respectively.

(2.2.2) Properties of clinical reference cohort. In selecting PP14 and PP15, we were

interested in CML cell population evolutions which exhibit bi- or multiphasic decay patterns

under second-line dasatinib or nilotinib administration because this type of response has been

identified as a hallmark of the involvement of quiescent stem cells in the context of first-line

treatment with imatinib [19, 25, 27, 28, 49].

Inspection of the PPs of Ref. [41] reveals that the reactions of the differentiated cell popula-

tions of clone Y253H to dasatinib therapy as recorded in PP14 and PP15 prove to be particu-

larly suitable data samples for the desired multiphasic decay patterns. In addition, PP14 and

PP15 are also representative of the total cohort of fourteen PPs in the sense that one (PP15) or

three (PP14) additional imatinib-resistant strains with low cell populations at the beginning of

second-line TKI application are emerging in the course of treatment.

Modelling of resistant CML mutants
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A total of 59 resistant mutant clones have been identified from the imatinib-resistant

patient data, 48 of which could be monitored during post-imatinib treatment [38, 40, 41] with

dasatinib or nilotinib. The 10 amino acid substitutions corresponding to the nucleotide muta-

tions (G250E, Y253(F,H), E255(K,V), V299L, T315I, F317L, M351T, F359V) alter the proper-

ties of the ABL1 kinase domain both with respect to drug binding and kinase activity, and so

alter the best fit parameters for use in modelling the dynamics of the individual clones. For

patients at this stage of drug resistant disease, the stem cells are overwhelmingly BCR-ABL1+,

and the mutant forms are either detectable (as resistant mutations), pre-exist at low levels or

may originate during second-line treatment. Model A (Secs. 2.3, 3.2) examines the kinetic

requirements for the appearance of new mutants. Fourteen patients show dynamic properties

of 1-4 resistant clones (cf. Figs 2a, 2b and 2c of Ref. [41]) over a 12-15 months treatment period

with either nilotinib or dasatinib.

A classification of characteristic features of the time developments of the differentiated cell

populations of CML clones as reported for the PPs of Ref. [41] is attempted in Table 1. The

general patterns of dynamics that are of particular interest to reproduce with the models

include the initial appearance of resistant clones, the apparent clonal competition (especially

the rapid appearance of one clone initially with subsequent replacement by a second clone),

bi- or multiphasic decline, and temporary stabilization or partial recovery of individual clones.

(2.2.3) Details of parameterization. If possible, we wish to draw conclusions with respect

to persistence and sensitivities to drug administration, and to clonal competition, as a function

of state of activity or differentiation. We implement our models usually to allow for three

Table 2. Compilation of coefficients that are common to the test simulations described in Secs. 3.2.1, 3.3 and 3.4.1. The universal biological parame-

ters are defined as follows (i = 1, 2, 3): δi and di are the net death rates of stem cells and differentiated cells, respectively, the prefactors (basic rates of stem

cell division) of the stem cell growth functions ζi(xs(t)) are labelled as αi, the symbol for the prefactors of the differentiated cell growth functions p(xd(t)) (corre-

sponding to differentiation rate constants) is ai, and the rate constants for mutations of the primary resistant stem cell clone xs1(t) into the descendant stem cell

lines xs2(t) and xs3(t) are identified by ν2 and ν3, respectively. The rate constants for activation of quiescent stem cells and for deactivation of cycling stem cells

are denoted by νq1 and νc1, respectively. Only indirectly linked to biological properties are the universal technical parameters: the threshold for the differenti-

ated cell growth function p(xd(t)) is denoted as θd, the thresholds for the stem cell growth functions ζi(xs(t)) are θsi and the coefficients that quantify the competi-

tion for a stem cell niche between clone j (j = 1, 2, 3) and other clones l areωjl. Patient dependent parameters are also given: only one set each of initial

populations xsk(0) and xdk(0) (k = 1, 2, 3) has been employed in all simulations.

Description Symbol Value Variations

Net stem and differentiated cell decay rate constants [per day] δi, di 1.0 δ2 = δ3 = 8.0 × 10−1

Symmetric division (stem cell birth rate constant) [per day] αi 1.0

Asymmetric division (differentiated cell generation rate constant) [per day] ai 106

Differentiated cell population threshold [per ml blood] θd 1010

Stem cell population threshold θsi 100.0 θs2 = 10,100,500

Clonal competition sensitivity weights ωij 1.0 ω21 = ω32 = 5.0 × 10−1

Initial populations, dominant clone [stem cells: arbitrary units / differentiated cells: per ml blood] xs1(0), xd1(0) 100.0, 7.0 × 107

Initial populations, secondary clone [stem cells: arbitrary units / differentiated cells: per ml blood] xs2(0), xd2(0) 5.0, 0.0

Initial populations, tertiary clone [stem cells: arbitrary units / differentiated cells: per ml blood] xs3(0), xd3(0) 1.0, 0.0

Rate constants for mutation per cell division [per day] ν2, ν3 0.0, 0.0

Models B or C

Rate constant of quiescent cell activation [per day] νq1 1.0 × 10−1 1.0 × 10−2

Rate constant of conversion to quiescence [per day] νc1 1.0 1.0 × 10−1, 5.0 × 10−1

Initial populations, quiescent stem cells [arbitrary units] xq1(0) 100.0 10.0

Stem cell population threshold to initiate quiescence (model C) [per ml blood] θq1 1.5 × 107

https://doi.org/10.1371/journal.pone.0179700.t002
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Table 3. Collection of the coefficients that were employed in the simulations (cf. Sec. 3.4.2) of patient profiles PP14 (Figs 10 and 11) and PP15 (Figs

12–14). For an explanation of the coefficient symbols see the caption of Table 2. This table provides four complete sets of coefficients for a parameterization

of Model C. These sets correspond to the simulations presented in Figs 10–13. The graphs shown in Fig 14 represent an exception since this figure has been

prepared on the basis of a reduced model C, i.e., the equation system has been truncated from a three-clone to a two-clone model by eliminating Subeqs 8e

and 8f from Eq (8). Fig 14 consequently does not include graphs for functions xs3(t) and xd3(t). Only coefficients related to xs1(t), xs2(t), xd1(t) and xd2(t) are

therefore defined in the column for Fig 14.

Description Symbol Fig 10 Fig 11 Fig 12 Fig 13 Fig 14

Net stem cell decay rate constants [per day] δ1 9.5 × 10−1 9.5 × 10−1 1.0 1.0 9.6 × 10−1

δ2 1.0 1.0 1.0 1.0 1.0

δ3 1.0 1.0 1.0 1.0 -

Stem cell symmetric division rate constants [per day] α1 1.0 1.0 1.0 1.0 1.0

α2 1.05 1.05 1.018 1.018 1.01

α3 1.05 1.05 1.06 1.06 -

Stem cell population thresholds θs1 2.0 × 10−7 2.0 × 10−7 3.03 × 10−8 3.0 × 10−8 1.0 × 10−8

θs2 2.0 × 10−6 2.0 × 10−6 9.68 × 10−7 1.0 × 10−6 1.6 × 10−6

θs3 4.0 × 10−7 4.0 × 10−7 3.33 × 10−7 3.5 × 10−7 -

Clonal competition sensitivity weights ω11 1.0 1.0 1.0 1.0 1.0

ω12 1.1 × 10−1 1.1 × 10−1 -3.0 × 10−2 -3.0 × 10−2 2.0 × 10−1

ω13 6.56 × 10−1 6.6 × 10−1 1.12 × 10−1 1.0 × 10−1 -

ω21 -1.0 -1.0 0.0 0.0 -2.5 × 10−2

ω22 1.0 1.0 1.0 1.0 1.0

ω23 6.3 6.3 2.097 2.0 -

ω31 0.0 0.0 0.0 0.0 -

ω32 0.0 0.0 0.0 0.0 -

ω33 1.0 1.0 1.0 1.0 -

Mutation rate constants [per day] ν2 0.0 0.0 0.0 0.0 0.0

ν3 0.0 2.0 × 10−9 0.0 3.0 × 10−10 0.0

Stem cell population threshold to initiate quiescence [BCR-ABL1 / GUS] θq1 5.0 5.0 N/A N/A 0.51

Rate constant of quiescent cell activation [per day] νq1 8.0 × 10−1 8.0 × 10−1 2.5 × 10−1 2.5 × 10−1 4.0 × 10−1

Rate constant of conversion to quiescence [per day] νc1 4.75 × 10−2 4.75 × 10−2 0.0 0.0 4.8

Net differentiated cell decay rate constants [per day] d1 1.0 1.0 1.0 1.0 0.9

d2 1.0 1.0 1.0 1.0 1.2

d3 1.0 1.0 1.0 1.0 -

Differentiated cell generation rate constants [per day] a1 2.0 × 109 2.0 × 109 1.0 × 108 1.0 × 108 1.2 × 108

a2 1.0 × 108 1.0 × 108 1.0 × 108 1.0 × 108 1.0 × 108

a3 1.0 × 108 1.0 × 108 1.0 × 108 1.0 × 108 -

Differentiated cell population thresholds [BCR-ABL1 / GUS] θd1 1.0 × 101 1.0 × 101 1.0 × 103 1.0 × 103 1.0 × 103

θd2 1.0 × 102 1.0 × 102 1.0 × 102 1.0 × 102 1.0 × 102

θd3 1.0 × 102 1.0 × 102 1.0 × 102 1.0 × 102 -

Stem cells: initial populations [arbitrary units] xs1(0) 4.95 × 10−7 4.95 × 10−7 1.73 × 10−7 1.73 × 10−7 1.73 × 10−7

xs2(0) 8.0 × 10−11 8.0 × 10−11 4.50 × 10−10 4.50 × 10−10 2.0 × 10−9

xs3(0) 3.0 × 10−15 0.0 1.0 × 10−16 0.0 -

Differentiated cells: initial populations [BCR-ABL1 / GUS] xd1(0) 4.95 × 101 4.95 × 101 1.73 × 101 1.73 × 101 1.73 × 101

xd2(0) 8.0 × 10−3 8.0 × 10−3 4.5 × 10−2 4.5 × 10−2 4.5 × 10−2

xd3(0) 0.0 0.0 0.0 0.0 -

Quiescent stem cells: initial population [arbitrary units] xq1(0) 4.95 × 10−7 4.95 × 10−7 1.73 × 10−7 1.73 × 10−7 1.0 × 10−5

https://doi.org/10.1371/journal.pone.0179700.t003
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different variants of xsi(t) and xdi(t), only model C is reduced to a two clone system for one spe-

cific patient simulation (cf. Sec. 3.4.2). Corresponding to the patient data, we generally select

one resistant clone to represent the predominant BCR-ABL1 activity at time zero, that is, at

the time of initiation of dasatinib or nilotinib therapy (which has replaced imatinib therapy

due to the appearance of resistance).

Following Ref. [23], we differentiate between universal parameters of cancer dynamics,

which can be assumed to be identical across patients for a certain CML mutant / drug combi-

nation, and patient dependent initial populations. The nature of the universal parameters can

further be discriminated between biological, like cell decay rate constants δi and di, and techni-

cal, i.e., population thresholds θd, θsi as well as clonal competition weights ωij. Biological and

technical parameters can be directly and indirectly linked to individual cellular processes,

respectively.

The universal parameters provided in Tables 2 and 3 have been determined in different

ways. In Table 2, we follow the similar deterministic models of Refs. [15, 23, 28, 31], and vary

relevant starting values in order to qualitatively reproduce certain observed features such as

biphasic decline, or delayed appearance followed by rapid growth [40, 41].

To reproduce the data provided by PP14 and PP15 of Ref. [41] and to obtain the parameters

collected in Table 3, we applied a systematic multi-parameter least-squares fitting procedure to

the qualitative simulation parameters as initial values and fit the model functions to the differ-

entiated cell CML clone population data of both patients individually. The also available clini-

cal information on the total leukemic burden at the grid points has not been considered in the

fitting process.

The effective cell decay rate constants δi and di derive from a combination of drug treat-

ment and environmental stresses as well as apoptosis. The ωij matrix elements encode clone

specific autoregulation via the diagonal ω11, ω22 and ω33 entries, while the off-diagonal ωij

parameters represent clonal competition.

The asymmetrical choice of ω21 = ω32 = 0.5 in the test simulations (cf. Table 2) effectively

weakens the competitive effect of clone 2 on clone 1, and of clone 3 on clone 2. This is chosen

in order to ensure the possibility of an asymptotic existence of all three stem cell clones, of

exclusively xs2(t) or xs3(t) and of both xs2(t) and xs3(t). The asymptotic dominance of only xs3(t)
follows a preceding phase of growth and extinction of xs2(t). Disappearance of xs2(t) is, how-

ever, not induced by competition with xs3(t) (cf. Sec. 3.2.1).

(2.3) Model A: Population dynamics considering three stem cell clone

variants

This implementation allows for three resistant mutant subtypes, as would be needed for exam-

ple for PP7 with Y253H, T315I and F317L as dominant clone subtypes. Following the descrip-

tion of the models in general (see above), functions (xs1(t), xd1(t), xs2(t), xd2(t), xs3(t), xd3(t))
refer to the respective populations of stem and differentiated cells. The stem cells xsi differenti-

ate to produce the blood cells xdi. The weights quantifying clone-clone specific competition

between the different stem cell clones are given by the off-diagonal elements of the 3x3 array

ω≔ {ωij}. Here, supplementary to the basic model (Eqs (1) and (2)), we allow for one clone

(the initially dominant resistant clone) to mutate (“quasi-symmetric” division) to the second

and third clone. In this study, nonzero mutation rates will be taken into account only in the

patient simulations (cf. Table 3), not in the test simulations (cf. Table 2).
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The following coupled system of six first order nonlinear differential equations represents

the dynamics of the six cell populations and defines model A:

dxs1ðtÞ
dt

¼ ð1 � n2 � n3Þz1ðxsðtÞÞa1xs1ðtÞ � d1xs1ðtÞ ; ð4aÞ

dxd1ðtÞ
dt

¼ pðxdðtÞÞa1xs1ðtÞ � d1xd1ðtÞ ; ð4bÞ

dxs2ðtÞ
dt

¼ n2a1z1ðxsðtÞÞxs1ðtÞ þ z2ðxsðtÞÞa2xs2ðtÞ � d2xs2ðtÞ ; ð4cÞ

dxd2ðtÞ
dt

¼ pðxdðtÞÞa2xs2ðtÞ � d2xd2ðtÞ ; ð4dÞ

dxs3ðtÞ
dt

¼ n3a1z1ðxsðtÞÞxs1ðtÞ þ z3ðxsðtÞÞa3xs3ðtÞ � d3xs3ðtÞ ; ð4eÞ

dxd3ðtÞ
dt

¼ pðxdðtÞÞa3xs3ðtÞ � d3xd3ðtÞ ; ð4fÞ

where the parameters δi and di are the net decay rate constants of stem and differentiated cells,

respectively; αi and ai are the symmetric and asymmetric division rate constants, modulated

by the population dependent growth or negative feedback switch functions zi(xs(t)) and p
(xd(t)), respectively; and the rate constants for mutation of clone 1 to clones 2 and 3 during

“quasi-symmetric” division are ν2 and ν3, respectively. The negative feedback function for the

generation of differentiated cells switches off asymmetric division exponentially as the total xdi
population exceeds threshold θd:

pðxdðtÞÞ≔ exp �

P3

i¼1
xdiðtÞ

yd

� �

; ð5Þ

The corresponding functions for stem cell symmetric division are:

z1ðxsðtÞÞ ≔ exp �
o11xs1ðtÞ þ o12xs2ðtÞ þ o13xs3ðtÞ

ys1

� �

; ð6aÞ

z2ðxsðtÞÞ ≔ exp �
o21xs1ðtÞ þ o22xs2ðtÞ þ o23xs3ðtÞ

ys2

� �

; ð6bÞ

z3ðxsðtÞÞ ≔ exp �
o31xs1ðtÞ þ o32xs2ðtÞ þ o33xs3ðtÞ

ys3

� �

: ð6cÞ

Here, each clone may respond differently to the populations of each of the subclone types,

reflecting the likelihood that clonal competition involves signalling that differs between the

ABL1 variants, and symmetric division is switched off as the weighted sum of xsi populations

exceeds the threshold θsi. The effect on the proliferation of stem cells is inhibitory if the ωij con-

stants take positive values, and is enhancing for negative values.

A graphical representation of model A can be found as a special case (no quiescence) of

Fig 1. Although this model includes terms for mutation of one clone type into another, clinical

and experimental data indicate that rate constants for mutations per cell division are very
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Fig 1. Schematic overview of key characteristics of the computational models developed in Secs. 2.3, 2.4, and 2.5. All

models feature a stem and a differentiated cell compartment. The differentiated cell compartment integrates the three layers of
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small. The mutation rate constants obtained from the patient simulations performed for this

study (cf. Table 3) are in a similar range as the ones reported in Ref. [23].

Mutation rate constants may be small but the patient profiles presented in Refs. [38, 40, 41]

demonstrate the relevance of transformations from the wild-type cancer into the imatinib-

resistant stem cell clones xs1(t), xs2(t) and xs3(t) that occured during or prior to imatinib treat-

ment. The preceding resistance mutations are the basis for the choice of nonzero initial popu-

lations xs1(0), xd1(0), xs2(0) and xs3(0) in all test simulations (cf. Table 2). Similarly, xs1(0),

xd1(0), xs2(0) and xd2(0) are generally assumed to be nonzero in the patient simulations, how-

ever, nonzero values of xs3(0) are adopted only in two out of the four calculations involving all

three resistant clones. The two cases with xs3(0) = 0 correspond to situations with nonzero

mutation rate constants ν3 (cf. Table 3).

(2.4) Model B: Modification of Model A to include a quiescent stem cell

pool with spontaneous transformation into the cycling state

A simple ansatz to include the effect of a quiescent stem cell population xq1(t) is to assume a

contribution to the xs1(t) population with a proportional rate constant νq1. This assumes that

the quiescent stem cell population is spontaneous, insensitive to any signals for a transforma-

tion to a cycling state, and results in the depletion of the quiescent pool, so the flexibility of this

model is limited. This extended model for the CML population dynamics becomes a system of

seven coupled nonlinear differential equations; five unmodified from the general model A

described by system Eq (4), a modification of the equation for
dxs1ðtÞ

dt (Eq (4a)), and an additional

equation for
dxq1ðtÞ

dt :

dxs1ðtÞ
dt

¼ ð1 � n2 � n3Þz1ðxsðtÞÞa1xs1ðtÞ � d1xs1ðtÞ þ nq1xq1ðtÞ ;

..

.
ð7aÞ

dxq1ðtÞ
dt

¼ � nq1xq1ðtÞ : ð7gÞ

This model is represented as a special case in Fig 1 whereby cycling cells do not become

quiescent.

(2.5) Model C: Modification of Model B to transform cycling stem cells

into quiescence as a function of the total differentiated cell population

Here, we suggest that there is a feedback signal to shift stem cells into a quiescent state if the

total population of differentiated cells is larger than a target threshold value, and modify model

progenitor, differentiated and terminally differentiated cells. In both compartments, normal and wild-type CML cell populations are

treated as stable in time over the simulation period, which corresponds to administration of dasatinib or nilotinib, and are not

included in the dynamical models. Competition for resources is restricted to three imatinib-resistant clones of cycling stem cells

(xs1(t), xs2(t), xs3(t)) and differentiated cells (xd1(t), xd2(t), xd3(t)). The rates of symmetric and asymmetric stem cell division are

controlled by the growth functions ζi(xs(t)) defined in Eq (6). Only mutations of the initially dominant clone xs1(t) into xs2(t) and xs3(t)

are taken into account, the relevant rate constants are ν2 and ν3, respectively. The individual models are distinguished by the way

in which stem cells of type mutation 1 are interconverting between the growth environments “quiescent” (xq1(t)) and “cycling”

(xs1(t)), the characteristic rate constants are νq1 and νc1. Quiescent stem cells reservoirs for mutations 2 and 3 are not included in

the model.

https://doi.org/10.1371/journal.pone.0179700.g001
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B to allow for bidirectional exchange between the xs1(t) and xq1(t) cell pools. To do this, Eqs

(7a) and (7g) of model B are replaced by Eqs (8a) and (8g), respectively, using a Heaviside step

function to trigger partial conversion to quiescence when
P3

j¼1
xdjðtÞ > yq1:

dxs1ðtÞ
dt

¼ 1 � n1 � n2ð Þz1ðxsðtÞÞxs1ðtÞ � d1 þ nc1H
P3

j¼1
xdjðtÞ

yq1

� 1

 !" #

xs1ðtÞ þ nq1xq1ðtÞ ;

..

.

ð8aÞ

dxq1ðtÞ
dt

¼ nc1H
P3

j¼1
xdjðtÞ

yq1

� 1

 !

xs1ðtÞ � nq1xq1ðtÞ : ð8gÞ

Model C represents the complete scheme shown in Fig 1. The system Eq (8) has been

employed in the test simulations described in Sec. 3.4. However, numerical difficulties linked

to the Heaviside function have been encountered when employing Eq (8) for the patient simu-

lations outlined in Sec. 3.4. In the patient simulations, the Heaviside function H(x) appearing

in Eqs (8a) and (8g) is therefore replaced by the sigmoidal function σ(x) defined as:

sðxÞ ¼
1

1þ exp ð� c1ðx � c2ÞÞ
; ð9Þ

where c1 and c2 are parameters. With the definitions c1 ≔ 100 and c2 ≔ 0, the function σ(x)

represents a close approximation to H(x).

Results

(3.1) Details of the simulations

With the three models described above, we vary key parameters (cf. Tables 2 and 3) and exam-

ine their effects on clone dynamics, compare with clinical data, and consider potential conclu-

sions regarding stem cell properties. In the general simulations, the models are parameterized

such that the differentiated cell decay rate constants di are identical (1.0) for all three clones,

but the stem cell decay rate constants are nonuniform: the relevant parameter δ1 for the ini-

tially (imatinib-resistant) dominant clone (1.0) is higher than that for the clones (δ2 = δ3 = 0.8)

that come to replace it under new therapy (treatment with dasatinib or nilotinib). The initial

cycling stem cell populations xsi(0) assume a large value for the dominant clone (100.0) com-

pared to the secondary (5.0) or tertiary (1.0) clones, values that reflect differential sensitivities

to imatinib. Further, clonal competition is parameterized such that the secondary clone is rela-

tively insensitive to the dominant clone, and similarly, the tertiary clone is relatively insensitive

to the secondary clone. This is not symmetric: the primary clone is fully sensitive to competi-

tion with the secondary clone, as is the secondary clone to the tertiary clone.

The parameter variations test differential sensitivities to clonal competition, initial popula-

tions, and exchange rates between quiescent and cycling stem cell populations (models B and

C). Mutation rates are also examined in the patient simulations with model C. Key patterns of

clone dynamics in patient data to be reproduced include especially the rapid but sometimes bi-

or multiphasic clearance of the initial imatinib-resistant clone, and the sequential appearance

of two apparently competing dasatinib- or nilotinib-resistant clones (cf. Table 1).

Rapid clearance of the initial clone may be achieved with a lower decay rate for the second-

ary and tertiary resistant differentiated cell clones, while a quiescent stem cell pool provides a

mechanism to explain biphasic or more complex clearance patterns seen in patients.
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Differential sensitivity to clonal competition, coupled with initial population values, can

explain the pattern of sequential appearance of new resistant clones.

All models are tested for sensitivity to clonal competition by varying θs2 (sensitivity of clone

2 to the total stem cell population) from 10% to 500% of the θsi values for the other two clones.

The three models differ with respect to effects of a quiescent stem cell state of clone 1: Model A

has none, model B has a quiescent pool with a first order irreversible depletion rate, and model

C allows for an equilibrium between quiescent and cycling states, controlled by feedback sig-

nalling of the total differentiated cell population.

Little information is available on the ratio between cycling and non-cycling growth envi-

ronments of hematopoietic stem cells. This ratio seems likely to differ between normal and

variants of leukemic stem cells. In the computational study Ref. [28], the effect of the addition

of Granulocyte-Colony Stimulating Factor (G-CSF) to imatinib has been simulated, assuming

different cycling-to-non-cycling ratios of wild-type CML stem cells. A comparison of the

results with observations of the clinical study Ref. [50], which is based on a small patient

cohort, suggests that the majority of wild-type CML stem cells is cycling.

In the test simulations, the ratio xs1(0) / xq1(0) between the starting populations of active

and quiescent stem cells of the initially dominant clone has been defined as either 1.0 or 10.0

(cf. Table 2). For the five patient simulations discussed in Sec. 3.4.2, values of 1.0 or 0.0173

have been adopted for the ratio xs1(0) / xq1(0) (cf. Table 3).

Excepting short phases of rapid variation during responses to initial conditions at very early

times (cf. Fig 2), the modelled differentiated cell populations are in a state of quasi-static equi-

librium with the cancer stem cells, due to the relatively slow time scale of stem cell prolifera-

tion. This view holds when equilibration occurs rapidly compared to the other rates, and for

our model, we obtain the quasi-static relationships between the stem and differentiated cell

populations by approximating the time derivatives as zero, giving:

xdiðtÞ � exp �

P3

j¼1
xdjðtÞ

yd

 !
ai

di
xsiðtÞ; ð10Þ

where, as described in Sec. 2.1, the exponential factor represents the switching function that

downregulates differentiation as a function of the total population of differentiated cells, ai is

the constant determining the rate at which stem cell differentiation via asymmetric division

occurs [31], and di is the decay rate constant for the differentiated cell population xdi(t). This

relationship shows the proportionality that approximates the relative populations of stem and

differentiated cells at total differentiated cell populations far below the threshold for switching

off asymmetric division, and how this proportionality is reduced when the total populations

surpass the threshold. Thus, in the analysis of results below, the behavior of the stem cell popu-

lations may be inferred from the behavior of the differentiated cells very soon after the time

origin. This assumption of a direct proportionality between the populations of stem and differ-

entiated cells of individual CML clones is corroborated by clinical observations [17].

(3.2) Model A: Three mutated stem cell clones with no quiescence

(3.2.1) Mechanistic interpretation (Figs 2 and 3). Parameter variation for model A gen-

erates scenarios for the replacement of the initially dominant clone by either secondary or ter-

tiary clones, depending in part on sensitivity to clonal competition. Fig 3 shows the evolution

of the individual differentiated cell lines xd1(t), xd2(t), xd3(t), and of the total population y(t),
over a 500d time interval for three values (10.0, 100.0, 500.0) of the threshold stem cell popula-

tion θs2 that slows asymmetric division of clone 2 (compared to 100.0 for θs1 and θs3). The

other model parameters are given in Table 2.
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Because of an imbalance between the starting populations of stem and differentiated cells

imposed by the definitions compiled in Table 2, all test simulations are characterized by a

short initial equilibration phase. For model A (Fig 3), the population of the initially dominant

strain xd1(t) increases by ca. 8% to reach quasi-static equilibrium and a maximum after 2d. As

a result of the choice of nonzero and zero initial populations of stem (xs2(0), xs3(0)) and differ-

entiated cells (xd2(0), xd3(0)), respectively, the two differentiated cell functions jump from zero

to *1.0 × 105 (xd2(t)) and *1.0 × 104 (xd3(t)) initially, and stabilize to levels consistent with

Eq (10). Fig 2 shows this for the case θs2 ≔ 10.0 on the interval [0d,30d].

Following equilibration, an initially rapid exponential decline of xd1(t) proceeds for 30d-

50d, followed by a regime of slower decay as other strains acquire significant populations. This

biphasic decline pattern is independent of the value of θs2 (Fig 3).

Fig 2. Test simulation of the competition dynamics of three imatinib-resistant stem cell clones (a) and of the associated differentiated cell

populations (b) employing model A (Eq (4)). The focus is on the initial phase of dasatinib treatment, in which an equilibrium between the populations of

stem and differentiated cells is established. In panel (b), the time axis corresponds to the interval [0d,30d] of panel Fig 3(a). Accordingly, the threshold

setting is θs2 = 10.0. The other parameters employed for the simulation are compiled in Table 2. Color scheme: xs1 / xd1 (blue), xs2 / xd2 (red), xs3 / xd3

(green). The ordinate units of panels (a) and (b) are arbitrary and number of cells / ml blood, respectively.

https://doi.org/10.1371/journal.pone.0179700.g002
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For θs2 ≔ 10.0 (Fig 3a), the test value with the greatest sensitivity of clone 2 to the total dif-

ferentiated cell population y(t), the small differentiated cell population xd2(t) appears and dis-

appears quickly, as equilibration is followed by the inhibitory effects of the population xs1(t) on

xs2(t) alone, via z2(xs(t)). The rate of exponential decline of xd1(t) slows as the total stem cell

population drops, diminishing the feedback signal to block symmetric division. After 120d,

xd3(t) surpasses xd1(t), reaching a stable value as the only surviving differentiated cell type after

ca. 250d. The later appearance of xd3(t) compared to xd2(t) is an effect of the smaller initial pop-

ulation xs3(0) of the parent stem cell strain. In contrast to clone 2, which is highly sensitive to

clonal competition, clones 1 and 3 share equal sensitivity to each other. Thus, in the absence of

a significant xs2 population, clone 3 outcompetes clone 1 due to its greater resistance to the

new drug regime (as modelled by the lower decay rate, δ1 > δ3).

Fig 3. Test simulations of the population dynamics of three imatinib-resistant differentiated cell clones and of the total number of differentiated

cells based on model A (Eq (4)). The panels (a), (b) and (c) correspond to the threshold settings θs2 = 10.0, 100.0 and 500.0, respectively. The other

parameters employed for the simulations are compiled in Table 2. Color scheme: xd1 (blue), xd2 (red), xd3 (green) and y (black). The ordinate unit is number

of cells / ml blood.

https://doi.org/10.1371/journal.pone.0179700.g003
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With θs2 ≔ 100.0 (Fig 3b), variations in the xsi sensitivity to total stem cell population arise

solely from the clone-clone specific interaction sensitivities parameterized by wij. In this case,

both clones 2 and 3 survive into the long term regime, with at least clone 3 and probably both

approaching a stable asymptote (see discussion below). The higher initial population xs2(0) as

compared to xs3(0) leads to transient dominance of clone 2, but the relative insensitivity of

clone 3 to competition from clone 2 via ω32 ≔ 0.5 leads to its predominance by about 250d.

These trends are much greater for θs2 ≔ 500.0 (Fig 3c); with low general sensitivity to clonal

competition for clone 2, it rapidly achieves dominance, and clone 3 never appears.

(3.2.2) Mathematical analysis. Fig 3 demonstrates the interesting phenomenon that three

different long-time scenarios are realized in the state space spanned by xd1(t), xd2(t) and xd3(t)
by varying θs2 from 10.0 to 500.0: (i) for θs2 ≔ 10.0, only the xd3(t) population converges to a

nonzero limit, (ii) for θs2 ≔ 100.0, both xd2(t) and xd3(t) maintain nonzero values after 500d,

although it is not obvious whether xd2(t) will eventually disappear or not, and (iii) for θs2 ≔
500.0, only xd2(t) survives asymptotically. This observation indicates that variation of θs2 may

determine the state of the system with respect to (at least) two bifurcation points, i.e., the loca-

tions in parameter space at which the asymptotic behaviors change.

The global dynamics of systems similar to Eqs (4), (7) and (8) have been investigated in

Refs. [31, 33, 34]. Wodarz [31] analyzed a basic model for populations of healthy and CML

stem and differentiated cells, including a term for uncontrolled stem cell division. This 4D

equation system is most similar to model A since (i) both stem and differentiated cell compart-

ments are included and (ii) exponential growth functions are employed for both stem and dif-

ferentiated cell clones featuring negative feedback induced by total population of the

respective cell type. Wodarz’ basic model also allows for variation of symmetric interclonal

competition weights (through the “�” parameter) but differs structurally from Eq (4) in that a

term representing blast phase development is added to the subequation describing time evolu-

tion of the CML stem cell clone. The blast phase term is a function of the total population of

differentiated cells and therefore couples the differentiated and stem cell compartments. The

dynamics of differentiated cells depends of course on the stem cell populations in models A, B,

C and in all models of Ref. [31].

The systems of Refs. [33, 34] consider only the stem cell compartments, but are analogous

to models A and B of this work, because the dynamics governed by Eqs (4) and (7) is indepen-

dent of differentiated cell populations. This analogy does not apply to model C, because the

terms determining activation and deactivation of stem cell clone 1 (functions xs1(t), xq1(t)) in

Eqs (8a) and (8g) depend on the total population of differentiated cells.

Each of the three models defined in Refs. [33, 34] also differ in the choice of stem cell

growth functions, replacing the exponential growth functions zi(xs(t)) by sigmoidal functions

either (i) of Hill type (Ref. [33]) or (ii) formulated in terms of Tsallis q-exponential expressions

(Ref. [34]).

In Ref. [31], the steady state properties of the system of two competing stem cell clones

without a feedback signal from differentiated cell populations (blast phase term) have been

investigated (this 2D equation system is referred to as Wodarz’ reduced model in the follow-

ing). Two scenarios occur depending on variation of “�”: (i) If the intra- and interclonal com-

petition weights for both strains are equal, then only the clone with the largest “birth rate”

constant η survives. (ii) However, if � is adjusted such that intraclonal competition is greater

than interclonal competition, then three long term solutions are possible: survival of either

clone alone, or coexistence of both stem cell populations. Accordingly, two bifurcation points

can be identified in that parameter space.

Scenario (ii) is reminiscent of the pattern represented by Fig 3, assuming proportionality

between stem and differentiated cell populations and disregarding the rapidly vanishing xd1(t)
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/ xs1(t) populations. In fact, with the respective parameter definitions, the contest of three stem

cell clones formulated by model A is effectively scaled down on longer time scales to a 2D

problem involving xs2(t) and / or xs3(t) due to the conclusive elimination of xs1(t) beyond 200d

(linked to the disappearance of xd1(t), cf. Fig 3), independent of the value of θs2. Starting from

the 3D stem cell system represented by Eqs (4a), (4c) and (4e) and defining xs1(t) = 0.0, xd1(t) =

0.0, ν2 ≔ 0.0 and ν3 ≔ 0.0, we obtain the 2D equation system:

dxs2ðtÞ
dt

¼ exp �
o22xs2ðtÞ þ o23xs3ðtÞ

ys2

� �

a2 � d2

� �

xs2ðtÞ ; ð11aÞ

dxs3ðtÞ
dt

¼ exp �
o32xs2ðtÞ þ o33xs3ðtÞ

ys3

� �

a3 � d3

� �

xs3ðtÞ ; ð11bÞ

that corresponds to the reduced model of Ref. [31]. A comparison of both 2D equation systems

shows that � and β of Ref. [31] are equivalent to ωij and 1/θsi, respectively, if ωii≔ 1.0.

In this context, it is helpful to differentiate two qualities that may both depend on the value

of a parameter: (i) determination of the number of equilibria and (ii) connection of different

equilibria via bifurcation points.

With the parameter definitions of Ref. [31], � combines both qualities. Setting �≔ 1.0

implies the existence of two single-state equilibria, which equilibrium is realized depends on

the choice of other parameters (this property of � corresponds to option (i)). A value �<1.0

entails three mutually exclusive equilibria, and the three equilibria can be connected by tuning

� while the remaining parameters are kept frozen (this property of � corresponds to both

options (i) and (ii)).

Inspection of Eq (6) reveals that interclonal competition in the stem cell system described

by Eqs (4a), (4c) and (4e) can be maximized only by choosing the ωii and ωij parameters uni-

formly for each zi(xs(t)). θs2 is thus not a parameter that can determine the number of existing

equilibria (corresponding to option (i)). However, under certain conditions (see below) scan-

ning θs2, with otherwise invariant parameterization, switches between three equilibria (corre-

sponding to option (ii)) which can be stable or unstable.

This result is consistent with the analysis of the reduced 2D stem cell system presented in

Ref. [31], i.e., variation of the degree of competition between two stem cell clones via the

parameter � (Ref. [31]) or θs2 (this work) produces three equilibria, two of single-state and one

of mixed-state character.

A thorough analysis of the global dynamics of 2D stem cell systems analogous to the

reduced model of Ref. [31] and to Eq (11), including different choices of growth functions, can

be found in Refs. [33, 34]. The dynamics of the 2D models is shown to be completely induced

by the equilibria since no admissible values of the parameters for periodic orbits exist [33]. In

particular, for both Hill-type [33] and Tsallis-based [34] growth functions, the existence of

four isolated equilibria, the origin as well as two of single-state and one of mixed-state type,

has been demonstrated, in agreement with the results obtained in Ref. [31] and in the present

study. This correspondence reflects the notion that the asymptotic properties of the growth

functions determine the nature of the equilibria.

Following Refs. [33, 34], we will analyze the bifurcation scenario of the solutions of Eq (11)

in more detail. For convenient comparison we adopt the notation of Eq 2 of Ref. [34] and

Modelling of resistant CML mutants

PLOS ONE | https://doi.org/10.1371/journal.pone.0179700 July 5, 2017 18 / 45

https://doi.org/10.1371/journal.pone.0179700


rewrite Eq (11) in the form:

dx̂ðtÞ
dt

¼ ð exp ð� ðx̂ðtÞ þ ŵ1ŷðtÞÞÞ̂l1 � d̂1Þx̂ðtÞ ; ð12aÞ

dŷðtÞ
dt

¼ ð exp ð� ðŵ2x̂ðtÞ þ ŷðtÞÞÞ̂l2 � d̂2ÞŷðtÞ ; ð12bÞ

with the definitions x̂ðtÞ =
o22

ys2
xs2ðtÞ, ŷðtÞ =

o33

ys3
xs3ðtÞ, l̂1 ≔

ys2
o22

a2, l̂2 ≔
ys3
o33

a3, d̂1 ≔
ys2
o22

d2, d̂2 ≔
ys3
o33

d3, ŵ1 ≔
ys3o23

ys2o33
and ŵ2 ≔

ys2o32

ys3o22
.

The analysis of global dynamics of 2D, 3D and 4D equation systems describing competition

between stem cell clones regulated by functions f(u) presented in Ref. [34] is not restricted to

Tsallis-based growth factors but is generally valid for monotonically decreasing functions for-

mulated according to:

f ðuÞ ¼
1þ g0

1þ gðuÞ
: ð13Þ

With this convention, the growth functions corresponding to f(u) employed in Refs. [15, 31]

and in the present study are obtained by setting g0 ≔ 0.0 and g(u) = exp(u)—1.0. Inspection of

Eqs (12a) and (12b) reveals that u ¼ x̂ðtÞ þ ŵ1ŷðtÞ and u ¼ ŵ2x̂ðtÞ þ ŷðtÞ, respectively, since

g(u) must be monotonically increasing (i.e., ŵ1; ŵ2 � 0.0). The discussion of the stability of

equilibria of models of stem cell dynamics in Ref. [33] is exclusively considering the assign-

ment g(u) = um, i.e., Hill-type growth functions.

In the next step, selection or bifurcation parameters for stem cell clones x̂ðtÞ and ŷðtÞ are

specified as γx≔ l̂1 � d̂1

d̂1
and γy≔ l̂2 � d̂2

d̂2
, respectively. For an analysis of the bifurcation landscape

shaped by the solutions of Eq (12) we finally require the characteristic values x̂s≔ g � 1ðgxÞ and

ŷs≔ g � 1ðgyÞ of the x̂ðtÞ and ŷðtÞ populations (assuming γx, γy> −1.0).

We now have all the necessary tools available to investigate the asymptotic development of

the xd2(t) and xd3(t) population functions as obtained from the three test simulations based on

model A (Fig 3). For this purpose we will utilize the property that the functions xd2(t) (Eq (4d))

$xs2(t) (Eq (4c))$ x̂ðtÞ (Eq (12a)) and xd3(t) (Eq (4f))$xs3(t) (Eq (4e))$ ŷðtÞ (Eq (12b))

are to a good approximation directly proportional for t!1.

The relevant numerical values are collected in Table 2. The parameterization of model A

yields generally γx = γy = 0.25 and x̂s = ŷ s = 0.223. Variation of θs2 then leads to the following

scenarios: (i) θs2 ≔ 10.0! ŵ1ŷ s = 2.231, ŵ2x̂s = 0.011 (Fig 3(a)), (ii) θs2 ≔ 100.0! ŵ1ŷ s =

0.223, ŵ2x̂s = 0.111 (Fig 3(b)), and (iii) θs2 ≔ 500.0! ŵ1ŷ s = 0.045, ŵ2x̂s = 0.557 (Fig 3(c)).

Matching the criteria (i), (ii) and (iii) to the conditions labeling each of the 11 panels of Fig

4 of Ref. [34] reveals that parameter configurations (i) and (iii) correspond to the stable line

equilibria (0,ŷðtÞ)$ (0, xd3(t)) and (x̂ðtÞ, 0)$ (xd2(t), 0), respectively. While this outcome

just confirms the obvious asymptotic limits shown in Fig 3(a) and 3(c), case (ii) is more inter-

esting: the solution of Eq (12) converges again to a line equilibrium (0,ŷðtÞ)$ (0, xd3(t)), but

in contrast to the stable single-state systems obtained with settings (i) and (iii) the linearization

of equilibrium (ii) has a neutral component.

The corresponding panel of Fig 4 of Ref. [34] (at the bottom right) illustrates that conver-

gence trajectories starting from small values (x̂ð0Þ,ŷð0Þ)$(xd2(0), xd3(0)) as in Fig 3(b) pass

through a non-stationary point of inflection (x̂ðtiÞ,ŷðtiÞ) distinguished by a maximum of the

x̂ðtÞ population. Since this mixed transition state is linked to (xd2(ti), xd3(ti)), we can determine

ti = 158d by locating the maximum of function xd2(t) (cf. Fig 3(b)).
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According to the classification of equilibria provided in Theorem 1 of Ref. [34], a stable

mixed state equilibrium and a line of equilibria cannot be realized for the pair of functions

x̂ðtÞ $ xd2ðtÞ and x̂ðtÞ $ xd2ðtÞ with the parameterization of model A (cf. Table 2) by modu-

lating only θs2. In fact, stable mixed state equilibria could not be reached even if both θs2 and

θs3 were allowed to change.

However, variation within the limits 100.0<θs2< 200.0 complies with the constraints

ŷs > ŵ2x̂s > 0:0 & x̂ s > ŵ1ŷ s and is therefore consistent with unstable mixed state equilibria

(x̂ðtÞ,ŷðtÞ). This analysis proves that the parameterization corresponding to Fig 3(b) (θs2 ≔
100.0) represents a bifurcation point separating two asymptotic solutions of Eq (12), the line

equilibrium (0,ŷðtÞ) and the unstable face equilibrium (x̂ðtÞ,ŷðtÞ). Increasing θs2 to 200.0 leads

to the next bifurcation point dividing the regime of the unstable mixed state (x̂ðtÞ,ŷðtÞ) from

the stable single-state equilibrium (x̂ðtÞ, 0).

Information on the bifurcation landscape is of great value for an understanding of the

dynamics governed by an equation system since the sensitivity of the solutions to variations of

certain parameters reaches a maximum at such a branch point. With a parameterization of Eq

(12) corresponding to Table 2, tuning θs2 in to the values 100.0 and 200.0 will therefore yield

the strongest dependence of the solutions on this parameter.

Of interest in this context is also how the parameterization of Eq (12) imposed by Table 2

needs to be modified in order for the solutions to converge to stable mixed state equilibria

(x̂ðtÞ,ŷðtÞ). To provide a numerical example, the condition ŵ2x̂s > ŷ s > 0:0 & x̂s < ŵ1ŷs , in

combination with the requirement that the characteristic values x̂s and ŷs as well as the coeffi-

cients ω22 and ω33 should be conserved, defines the inequalities ω32> 4.484 and ω23> 0.223 for

any choice satisfying θs2 = θs3.

Inspection of Fig 4 of Ref. [34] shows that the characteristic values (x̂0
s ; ŷ

0
s ) at a particularly

critical bifurcation point are generally defined by the constraint

ŵ2x̂0
s ¼ ŷ0

s > 0:0 & x̂0
s ¼ ŵ1ŷ0

s . Depending on the orientation of any deviation from this focal

point in the multidimensional parameter space, one of multiple scenarios will ensue for the

asymptotic solutions of Eq (12).

With the parameter definitions of Eq (11), we obtain the following identity at the focal

bifurcation point: (x̂0
s ; ŷ

0
s ) =

ys3o2
23

o32

ys2o2
33

o22
;

o32o23

o22o33

� �
, i.e., the complete set of growth function parame-

ters determines x̂0
s and ŷ0

s or vice versa. Inserting, e.g., the coefficients θs2, θs3, ω22, ω33, ω23, ω32

employed for preparation of Fig 3(b) results in the characteristic values (x̂0
s ; ŷ

0
s ) = (0.5, 0.5).

This unstable equilibrium thus corresponds to a mixed state with equal populations of clones

x̂ðtÞ and ŷðtÞ.
However, full parameterization of Eq (11) requires in addition the rate constants α2, α3, δ2

and δ3 which determine the characteristic values x̂s and ŷ s. If we again refer to the set of coeffi-

cients defined for the simulation illustrated in Fig 3(b) then we calculate: x̂s = ŷ s = 0.223.

This comparison confirms that the parameters employed for computation of the functions

xd2(t) and xd3(t) shown in Fig 3(b) are consistent with a bifurcation point separating only two

scenarios, the single-state and the unstable mixed-state equilibrium (0,ŷðtÞ) and (x̂ðtÞ,ŷðtÞ),
respectively. A multivalent focal bifurcation point could for example be reached for the solu-

tions of Eq (11) via modification of the coefficients α2, α3, δ2 and δ3 to comply with the condi-

tion (x̂0
s ; ŷ

0
s )¼

! (0.5, 0.5) while keeping the growth function parameters as defined for

calculating the data plotted in Fig 3(b).

In the analysis we have so far concentrated on stem cell dynamics described by the reduced

2D version Eq (11) of the 3D system defined by Eqs (4a), (4c) and (4e), which corresponds to

model A without differentiated cell compartment and neglect of mutations.
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The lack of consideration of clone xs1(t) in Eq (11) is motivated by the numerical observa-

tion that with a parameterization according to Table 2, the xs1(t) population disappears asymp-

totically. Ref. [34] shows that it is actually a practical procedure for an investigation of global

dynamics to break down an n-dimensional equation system composed of subequations of ana-

log structure into blocks of lower dimensionality. Based on a comparison of a modular ‘series’

of 2D and 3D equation systems, Ref. [34] concludes that the dynamical properties of an n-

1-dimensional stem cell model are preserved in an extended n-dimensional system, i.e., equi-

libria and bifurcation structures of the n-1-dimensional subsystem are mapped on the faces of

an n-dimensional hypercube. The types of connected and isolated equilibria of the n-dimen-

sional model comply with those of the n-1-dimensional subsystem.

Of particular relevance is the bifurcation analysis of the 3D model C of Ref. [34] which can

be directly translated to stem cell dynamics described by Eqs (4a), (4c) and (4e) (for ν2 ≔ 0.0

and ν3 ≔ 0.0). Two additional equilibrium structures, a mixed-species equilibrium and a co-

dimension one surface of equilibria, have been identified for model C of Ref. [34] as compared

to the 2D model A. This means that a total of 13 equilibrium structures can be attributed to the

solutions of 3D equation systems like model C of Ref. [34] or of the system formed from Eqs

(4a), (4c) and (4e) (cf. Theorem 3 of Ref. [34]).

Refs. [33, 34] generally define 2D, 3D and 4D systems describing competition between nor-

mal and leukemic stem cell clones, partly including quiescent stem cell growth environments

in the analysis. Considered in terms of systems of this type, therapy aims to drive the long term

solutions towards single-state equilibria representing a stem cell niche entirely populated by

healthy cells. Refs. [33, 34] show that the property of bifurcation coefficients gi≔
ai � di

di
and

gj≔
aj � dj

dj
, defined for each function representing the cycling state of normal clone i and of leu-

kemic clone j, respectively, to facilitate the formulation of criteria for a differentiation between

various equilibria (cf. Fig 11.6 of Ref. [33] and Fig 4 of Ref. [34]) can be utilized to predict the

effect of drug administration. The parameters αj and δj are of key importance in this context as

they constitute the two main “levers” a therapy can adjust: cytotoxic approaches will mostly

increase δj, while targeted TKIs may predominantly reduce αj, depending on the details of dis-

ease mechanisms (the j indexes the specific CML clones). However, the systems described by

Eqs (4), (7) and (8) model the competition between different resistant CML strains j, and nor-

mal cells are not explicitly included in the dynamics. The only asymptotic solution of interest

from a therapeutic perspective is therefore the origin equilibrium. According to Refs. [33, 34],

satisfying the condition γj� 0.0 corresponds to elimination of each CML clone j.
(3.2.3) Comparison to clinical data. Comparison of the fourteen PPs of Ref. [41] shows

several similarities with the simulations shown in Fig 3, including the general pattern of rapid

decay of the initially dominant clone, transient dominance of one or more intermediate clones,

and final dominance of a single clone. For example, PP11 may be represented by associating

Y235H with xd1(t), F317L with xd2(t) and T315I with xd3(t). Similarly, PP7 also shows an initial

rapid decline of Y235H, appearance of F317I, and later appearance of T315I, although the

growth of T315I is slower than in PP11. The total population of differentiated cells, y(t), is pro-

portional to the total BCR-ABL1 / beta-glucuronidase (GUS) ratio, which for many patients

remains roughly constant, despite the variations of the individual clones. The simulations of

Fig 3 do not generally show this pattern, but instead begin with a steep decline also in the total

population. The difference may reflect a greater importance of clonal competition for popula-

tion dynamics under new therapy than in our simulations, which additionally disadvantages

clone 1 with a higher decay rate (equivalent to lowered symmetric division rate of xs1(t)) under

the new drug. An exception among the patient data is PP15, for which the dominant clone,

Y253H, rapidly falls off, nearly parallel to the decline in the total burden, to be replaced by
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T315I as the sole leukemic clone. Despite the variation in both qualitative and quantitative pat-

terns of the patient data, the ability of the simple model A to reproduce the general characteris-

tics by appropriate choices of clonal competition parameterization reinforces the view that the

mechanisms of clonal contest, and the way they are modulated by the presence of therapeutic

drug, are key to understanding patient data of clonal dynamics.

(3.3) Model B: Population dynamics including a linear source term

(quiescent stem cells) for the xs1(t) population (Figs 4–6)

This ansatz, outlined in Sec. 2.4, explicitly includes a quiescent stem cell growth environment

xq1(t) and assumes the pool is finite and decreasing with time at a rate proportional to the qui-

escent cell population (spontaneous activation).

Fig 4. Test simulations of the population dynamics of three imatinib-resistant differentiated cell clones and of the total number of differentiated

cells based on model B (Eq (7)) with parameters xq1(0) = 10.0 and νq1 = 0.1. The panels (a), (b) and (c) correspond to the threshold settings θs2 = 10.0,

100.0 and 500.0, respectively. The other parameters employed for the simulations are compiled in Table 2. Color scheme: xd1 (blue), xd2 (red), xd3 (green)

and y (black). The ordinate unit is number of cells / ml blood.

https://doi.org/10.1371/journal.pone.0179700.g004
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The simulations illustrated in Figs 4–6, like Fig 3, compare simulations for the values θs2 ≔
10.0, 100.0 and 500.0, and for three representative xq1(0), νq1 parameter combinations. Short

initial equilibration periods of the xd1(t), xd2(t) and xd3(t) populations are observed in all simu-

lations, similar to the scenario shown for model A in Fig 2(b). As in the case of Fig 3, the initial

surge of xd1(t) towards quasi-static equilibrium occurs too rapidly (within 3 days) for a proper

representation on the time scale of the figures.

With rate constant νq1 ≔ 0.1 and initial population xq1(0)≔ 10.0, model B shows no signifi-

cant change from model A (Fig 4). The decline of xd1(t) is slightly delayed, as is the appearance

of xd3(t). Expanding xq1(0) by a factor 10.0 to 100.0, thus increasing the resupply rate of xd1(t)
(via xs1(t)) tenfold, greatly retards the decline of xd1(t) and appearance of xd3(t) (Fig 5). Reduc-

ing νq1 tenfold to 0.01 while keeping xq1(0) ≔ 100.0 restores the initial resupply rate of xd1(t)
(via xs1(t)) to the ineffective rate of the νq1 ≔ 0.1, xq1(0) ≔ 10.0 combination (cf. Fig 4), but the

two changes together also greatly defer depletion of the quiescent cell reservoir xq1(t), such

that resupply continues much longer. In this case, the decay of xd1(t) is delayed to the extent

Fig 5. Results obtained with the same model as Fig 4, except that xq1(0) = 100.0.

https://doi.org/10.1371/journal.pone.0179700.g005
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that significant populations exist at the end of the simulations (500d) in both cases of θs2 ≔
10.0 (Fig 6(a)) and of θs2 ≔ 100.0 (Fig 6(b)). In fact, for xq1(0) ≔ 100.0, νq1 ≔ 0.01 is the value

that maximizes the lifetime, i.e., the period until the population disappears, of the xd1(t) cell

pool. For lower values, νq1 xq1(t) fails to resupply fast enough to compensate the competitive

reduction in asymmetric division induced by xd3(t), and for higher values, the xq1(t) reservoir

is depleted too quickly for effective prolongation of the lifetime. Although maximized, the pro-

longation cannot alter the asymptotic behavior, as xq1(t) will inevitably become depleted with

this model.

We note particularly good agreement between this model, with threshold θs2 ≔ 100.0

(Fig 6(b)), and PP14, considering the clones Y253H, F317L and V299L to be represented by

the functions xd1(t), xd2(t) and xd3(t), respectively.

Fig 6. Results obtained with the same model as Fig 4, except that xq1(0) = 100.0 and νq1 = 0.01.

https://doi.org/10.1371/journal.pone.0179700.g006
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(3.4) Model C: Introducing population dependent transformation of stem

cells from cycling to quiescence

(3.4.1) Mechanistic interpretation of test simulations (Figs 7–9). Model C introduces a

population dependent transformation of cycling stem cells to quiescence, or using the model

terminology, features a transfer of population from xs1(t) to xq1(t) with rate term νc1 xs1(t)
when the total population yðtÞ ¼

P3

j¼1
xdjðtÞ of differentiated cells surpasses threshold θq1. As

above, model calculations have been performed for the three values θs2 ≔ 10.0, 100.0 and

500.0, and evaluated with respect to variation of the rate of transfer to quiescence, with νc1 ≔
0.1, 0.5, and 1.0, respectively (Figs 7–9). The other quiescence dynamics parameters are fixed

at xq1(0) ≔ 100.0, νq1 ≔ 0.01 and θq1 ≔ 1.5 × 107. The simulations are thus most directly com-

parable to model B (the linear source term model) and parameters as shown in Fig 6. At nearly

Fig 7. Test simulations of the population dynamics of three imatinib-resistant differentiated cell clones and of the total number of differentiated

cells based on model C (Eq (8)) for parameters xq1(0) = 100.0, νq1 = 0.01, θq1 = 1.5 × 107 and νc1 = 0.1. The panels (a), (b) and (c) correspond to the

threshold settings θs2 = 10.0, 100.0 and 500.0, respectively. The other parameters employed for the simulations are compiled in Table 2. Color scheme: xd1

(blue), xd2 (red), xd3 (green) and y (black). The ordinate unit is number of cells / ml blood.

https://doi.org/10.1371/journal.pone.0179700.g007
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five times the threshold to initiate quiescence, the large initial population of differentiated cells

xd1(0) ≔ 7.0 × 107 ensures that xs1(t)! xq1(t) transformation takes place from the beginning

of the simulation.

The initial time evolution of the xd1(t), xd2(t) and xd3(t) clones is again characterized by

rapid equilibration (as with model A, Fig 2(b)). For the smallest value, νc1 ≔ 0.1, there is little

qualitative difference to the corresponding simulations of model B (comparing Figs 7 and 6).

At about 20d, the differentiated cell population falls to a level which switches off the

xs1(t)! xq1(t) quiescence conversion for all choices of θs2 (and most obviously for θs2 ≔ 10.0).

Until this time, xd1(t) falls more steeply with model C as the parental stem cell reservoir xs1(t)
is more rapidly depleted. A second qualitative difference is the occurrence of a plateau phase

that ends in a second steep population decline at approximately 200d for θs2 ≔ 10.0. This later

decline phase corresponds to reinitiation of the xs1(t)! xq1(t) quiescence conversion due to

the growing population of the second clone, xs2(t). Thus, detailed comparisons of the plots

show that the xs1(t)!xq1(t) quiescence transition results in a slightly more rapid decline in

xs1(t) populations early in the simulation, but prolongs lifetimes later.

Fig 8. Results obtained with the same model as Fig 7, except that νc1 = 0.50.

https://doi.org/10.1371/journal.pone.0179700.g008
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The five-fold larger rate of conversion to quiescence, νc1 ≔ 0.5, magnifies these properties

(Fig 8). Sharp features in the curves of Fig 8(a) (θs2 ≔ 10.0) and Fig 8(b) (θs2 ≔ 100.0) can be

seen as the total differentiated cell population y(t) drops below the θd threshold at around 30d,

then again at 200d or 50d, respectively, as growth of xs2(t) and/or xs3(t) reinitiates quiescence

conversion. The more rapid rate also shortens the time required for the populations of xs1(t)
and xq1(t) to reach equilibrium. In addition, the faster decay of xs1(t) reduces the clonal compe-

tition environment, allowing earlier growth of xs3(t) and consequently earlier appearance of

xd3(t). As in the case of νc1 ≔ 0.1, the total differentiated cell population y(t) never falls below

the threshold θd when clone 2 is insensitive to clonal competition (θs2 ≔ 500.0). But with νc1 ≔
0.5, the decline of xd1(t) is so rapid, reducing the clonal competition environment, that xd3(t)
appears transiently, something not seen for models A or B at θs2 ≔ 500.0.

Finally, for the largest value, νc1 = 1.0, all the new features observed for model C become

most pronounced (Fig 9): the initial depletion of xd1(t) is most rapid, features of halting and

reinitiating the quiescence transition for θs2 ≔ 10.0 and θs2 ≔ 100.0 are sharpest, and, for θs2

Fig 9. Results obtained with the same model as Fig 7, except that νc1 = 1.00.

https://doi.org/10.1371/journal.pone.0179700.g009
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≔ 500.0, xd3(t) appears transiently, here uniquely exceeding the population xd1(t). Persistence

and recovery of the xd1(t) population is a key feature for analysing patient data and considering

optimal therapeutic strategies, so we collect the effects of the various parameters on this feature

in Table 4.

The long term behavior of the solutions to the equations is also of importance, as it links

model parameters to persistence mechanisms for individual clones. For model A, variations in

the individual clone sensitivities to clonal competition determined whether there were one or

two long term persistent clones, and also the relative populations of those clones. These non-

zero asymptotic solutions to the equations reflect long term resistance under therapy. In con-

trast, the addition of quiescence to the model, and especially of signals to induce a

transformation to quiescence, created longer term persistence of clones sensitive to the drug at

low levels. This persistence is, however, not asymptotic, and long term therapy would ulti-

mately deplete the quiescent pool and eliminate the clone.

The effect of the inclusion of quiescent stem cell reservoirs in models describing stem cell

competition on the global dynamics of these equation systems has been investigated in

Ref. [33] (models B and C) and in Ref. [34] (model B). In contrast to model C (Eq (8)), linear

rate expressions have been employed to describe not only activation but also deactivation of

stem cells in the respective models of Ref. [33, 34]. However, the total leukemic burden gener-

ally exceeds the threshold θq1 asymptotically in the test simulations reported in this section,

which means that also the population dependent term representing deactivation of xs1(t) in

Eqs (8a) and (8g) becomes effectively linear in xs1(t) at the equilibria. The statement of

Ref. [34], that addition of a quiescent stem cell growth environment does not qualitatively

modify the deterministic bifurcation landscape of the corresponding schemes governing the

dynamics of cycling stem cells, is therefore also valid within the parameterization limits for

model C compiled in Table 2.

(3.4.2) Mechanistic interpretation of patient simulations (Figs 10–14). PP14 of

Ref. [41] provides BCR-ABL1 / GUS ratio datasets with six elements each for clones Y253H,

F317L and for the total leukemic burden on an equidistant grid covering a 15 months follow-

up treatment period with dasatinib. In addition, datasets with four elements each for the

delayed clones V299_1 and V299_2 are available on the same grid, but only from month six

on. No data of the BCR-ABL1 / GUS ratio for clones V299_1 and V299_2 at grid points [0, 3]

are included in PP14, probably because BCR-ABL1 transcript levels in blood samples were too

low in the initial dasatinib treatment phase. BCR-ABL1 / GUS ratio datasets with four elements

each for clones Y253H, T315I and for the total leukemic burden, with values at grid points [0,

3, 9, 12], represent PP15.

In the simulations shown in Figs 10–13, all parameters of model C (cf. Table 3) have been

varied using a least squares fitting algorithm based on the datasets PP14 and PP15 (not

Table 4. Analysis of the solutions of model C (Eq (8)): Overview of the dependence of the formation of

a xd1(t) recurrency on the individual parameters νc1, νq1, θq1, θs2 and xq1(0). The effects of tuning νc1 and

θs2 on the functions of Eq (8) are also documented in Figs 7–9.

Increase of νc1 Promotes development and decreases duration of xd1(t) recurrence.

Increase of νq1 Promotes development and does not affect duration of xd1(t) recurrence.

Leads to increase of asymptotic xd1(t) population.

Increase of θq1 Promotes development and increases duration of xd1(t) recurrence.

Increase of θs2 Reduces development and decreases duration of xd1(t) recurrence.

Increase of

xq1(0)

Increases duration of xd1(t) recurrence. Leads to increase of asymptotic xd1(t)

population.

https://doi.org/10.1371/journal.pone.0179700.t004

Modelling of resistant CML mutants

PLOS ONE | https://doi.org/10.1371/journal.pone.0179700 July 5, 2017 28 / 45

https://doi.org/10.1371/journal.pone.0179700.t004
https://doi.org/10.1371/journal.pone.0179700


including the observed total leukemic burden values). Fig 14 is, however, an exception, since

only parameters relating to clones Y253H and T315I, i.e., to functions xs1(t), xs2(t), xd1(t) and

xd2(t) of model C, have been included in the fitting procedure.

Fig 10 illustrates the result of a fit to the datasets of clones Y253H (xd1(t)), F317L (xd2(t))
and V299_2 (xd3(t)) of PP14 for model C. Clone V299_1 has been ignored in the fitting rou-

tine. The simulation assumes that mutations of the wild-type CML clone into the imatinib-

resistant clones Y253H, F317L and V299_2 are limited to the period of imatinib treatment by

defining nonzero initial stem cell populations xs1(0), xs2(0) and xs3(0). While xd1(0) and xd2(0)

Fig 10. Fit to PP14 using model C, mutations of stem cells are not taken into account (ν2 = 0.0, ν3 = 0.0). The experimental values for clones Y253H

(blue circles), F317L (red squares) and V299L_2 (green diamonds) are considered, clone V299L_1 is ignored by the fit. The evolution of stem and

differentiated cell populations is shown in panels (a) and (b), respectively. The teal curve in panel (a) corresponds to the quiescent population of stem cell

clone Y253H. In panel (b), the following identifications are made: xd1(t)(blue curve)$Y253H, xd2(t)(red curve)$F317L, xd3(t)(green curve)$V299L_2. The

black curve and triangles correspond to the fitted and experimental values of the total leukemic burden, respectively. The ordinate unit of panel (b) refers to

the differentiated cell BCR-ABL1 / GUS ratios of the respective clones. While panel (b) reproduces also clinical datasets, the ordinate of panel (a) specifies

the size of the stem cell populations in arbitrary units, the scale is determined by the parameters ai. The parameter set employed for this simulation is

compiled in Table 3.

https://doi.org/10.1371/journal.pone.0179700.g010
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can be taken directly from PP14, xd3(0) is not known experimentally but is assumed to be

below the detection limit and set to zero. Since also no clinical information on the initial popu-

lation of quiescent stem cells of clone Y253H is available, the value of xs1(0) has been adopted

also for xq1(0).

Panels (a) and (b) of Fig 10 show that each clone pair of stem and differentiated cell popula-

tions remains proportional (cf. Eq (10)). In contrast to the test simulations, no rapid initial

equilibration with xs1(t) is observed, and instead, xsi(t) / xdi(t) (i = 1, 2, 3) proportionality is

present from the beginning. The xs1(t) / xd1(t) cell pools are characterized by rapid decay

within the first ca. 20d in response to dasatinib application. The early depletion phase is fol-

lowed by a stabilization of xs1(t) / xd1(t) up to ca. 90d, subsequent exponential decay until ca.

150d, although not as rapid as in phase 1, a second stabilization period until ca. 300d, which is

less pronounced than the first one, and finally again exponential decay towards the 450d mark

at an only slightly reduced rate as compared to phase 2.

Fig 11. Description is the same as for Fig 10, except that mutations xs1(t)!xs3(t) are included in the simulation (ν36¼0, cf. Table 3).

https://doi.org/10.1371/journal.pone.0179700.g011
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Inspection of Fig 10(b) shows that y(t) = ∑j xdj(t)> θq1 in the initial 350d period, which

implies that activation and deactivation of stem cells occur in quasi-static equilibrium. How-

ever, because xs1(0) = xq1(0), the large ratio νq1 / νc1 = 16.84 leads to an equilibration of the qui-

escent and cycling stem cells within ca. 10d. As a result, the xq1(t) pool drains quicker than

xs1(t) in this starting phase until the balance of the activation and deactivation rates is reached,

a state distinguished by the parallel development of the xs1(t) and xq1(t) populations towards

the 350d mark. A critical limit is encountered just beyond 350d: ∑j xdj(t) falls below the

Fig 12. Fit to PP15 using model C, including the experimental values for clones Y253H (blue circles) and T315I (red squares). Mutations of stem

cells are not taken into account (ν2 = 0.0, ν3 = 0.0). The evolution of stem and differentiated cell populations is shown in panels (a) and (b), respectively. The

teal curve in panel (a) corresponds to the quiescent population of stem cell clone Y253H. In panel (b), the following identifications are made: xd1(t)(blue

curve)$Y253H, xd2(t)(red curve)$T315I, xd3(t)(green curve)$X. The black curve and triangles correspond to the fitted and experimental values of the

total leukemic burden, respectively. The ordinate unit of panel (b) refers to the differentiated cell BCR-ABL1 / GUS ratios of the respective clones. While

panel (b) reproduces also clinical datasets, the ordinate of panel (a) specifies the size of the stem cell populations in arbitrary units, the scale is determined

by the parameters ai. The parameter set employed for this simulation is compiled in Table 3. This simulation investigates the role of a hypothetical third

clone X that is not explicitly identified by experiment. The dashed-dotted green line represents stem and differentiated cell populations of this hypothetical

third clone.

https://doi.org/10.1371/journal.pone.0179700.g012
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threshold θq1 = 5.0 and xs1(t)-deactivation is switched off from this point on. Consequently,

the xs1(t)-xq1(t) balance is destroyed and the xq1(t) population drops exponentially within ca.

10d. The rapid disappearance of the quiescent growth environment does not have a significant

effect on xs1(t), however, since the value xq1(350) is already quite low.

The growth of the xs2(t) and xd2(t) populations until ca. 100d can be divided into a very fast

(until ca. 10d) and a slightly slower exponential phase. The xs2(t) / xd2(t) cell pools subse-

quently consolidate and dominate the leukemic burden until ca. 300d are reached.

Beyond 300d, competition from strain xs3(t) becomes evident, with parallel exponential

decay of xs2(t) and xd2(t) afterwards. Clone xs3(t) / xd3(t) is characterized by an extended expo-

nential growth period starting from a very low stem cell level and continuing for ca. 300d

Fig 13. Description is the same as for Fig 12, except that mutations xs1(t)!xs3(t) are included in the simulation (ν36¼0, cf. Table 3).

https://doi.org/10.1371/journal.pone.0179700.g013
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before transition into an asymptotic saturation phase. The xs3(t) / xd3(t) populations supplant

xs2(t) / xd2(t) as the dominant clone by 390d.

Fig 10(b) shows that the fitted curves xd1(t), xd2(t) and xd3(t) represent a good approxima-

tion to the clinical datasets for clones Y253H, F317L and V299_2, respectively.

The coefficients of determination R2 for xd1(t), xd2(t) and xd3(t) are provided in Table 5.

The fact that the experimental total leukemic burden (black triangles) exceeds y(t) (black

curve) substantially except for the values at 270d is consistent with PP14 and may reflect

unidentified BCR-ABL1 clone(s), e.g., contributions from the wild-type CML strain. In the

Fig 14. Fit to PP15 using model C (with populations xs3(t) and xd3(t) set to 0.0), including the experimental values for clones Y253H (blue circles)

and T315I (red squares). Mutations of stem cells are not taken into account (ν2 = 0.0, ν3 = 0.0). The evolution of stem and differentiated cell populations is

shown in panels (a) and (b), respectively. The teal curve in panel (a) corresponds to the quiescent population of stem cell clone Y253H. In panel (b), the

following identifications are made: xd1(t)(blue curve)$Y253H, xd2(t)(red curve)$T315I. The black curve and triangles correspond to the fitted and

experimental values of the total leukemic burden, respectively. The ordinate unit of panel (b) refers to the differentiated cell BCR-ABL1 / GUS ratios of the

respective clones. While panel (b) reproduces also clinical datasets, the ordinate of panel (a) specifies the size of the stem cell populations in arbitrary

units, the scale is determined by the parameters ai. The parameter set employed for this simulation is compiled in Table 3.

https://doi.org/10.1371/journal.pone.0179700.g014

Modelling of resistant CML mutants

PLOS ONE | https://doi.org/10.1371/journal.pone.0179700 July 5, 2017 33 / 45

https://doi.org/10.1371/journal.pone.0179700.g014
https://doi.org/10.1371/journal.pone.0179700


case of the grid points 360d and 450d, however, a part of the relatively large deviation between

experimental and theoretical total leukemic burden can be attributed to omission of clone

V299_1 from the simulation as the observed population of this clone is substantial at 360d and

450d (cf. PP14).

The simulations displayed in Figs 10 and 11 look very similar and the pertinent parameteri-

zations of model C differ only with respect to ν3 and xs3(0) (cf. Table 3). According to PP14,

strain V299_2 appears only after six months of treatment with dasatinib. While the scenario

investigated by employing the parameter set of Fig 10 assumes that a small population xs3(0) of

V299_2 stem cells has developed during previous imatinib administration, a very small rate

constant ν3 is driving xs1(t)!xs3(t) mutations in the simulation shown in Fig 11.

With respect to the accuracy of the xd1(t), xd2(t) and xd3(t) fits, the R2 coefficients of Table 5

prove that the quality of the fit approximations of Fig 11(b) is only slightly lower as compared

to the fits of Fig 10(b). Figs 10 and 11 differ mainly in the course of the xs3(t) population within

the [0d, 5d] interval. The otherwise good agreement between both simulations demonstrates

that it is not possible, based on the sparse clinical data set, to decide whether a nonzero initial

population of V299_2 stem cells at the beginning of dasatinib medication or a low

Y253H!V299_2 mutation rate during dasatinib therapy or possibly both factors together are

responsible for the delayed appearance of clone V299_2 in PP14. Obviously, it would be of

great interest to obtain experimental information on the population of V299_2 stem cells

shortly before the dasatinib application period.

PP15 has a profile comprising only two competing CML strains, Y253H and T315I. Fig 14

shows model C as fit to PP15 data, whereby xs1(t) / xd1(t) and xs2(t) / xd2(t) represent Y253H

and T315I, respectively. In this case, model C is reduced from a 7D to a 5D model by setting

xs3(t) and xd3(t) to zero. Mutations are supposed to be absent (ν2 ≔ 0, ν3 ≔ 0). The clones

Y253H and T315I originated during the preceding phase of imatinib treatment and the start-

ing populations xd1(0) and xd2(0), respectively, are provided by PP15.

For the initially dominant clone Y253H, the small ratio νq1 / νc1 = 0.083 favors deactivation

of xs1(t) over activation of xq1(t), but since the starting size xq1(0) of the quiescent stem cell res-

ervoir strongly exceeds that of the active stem cell pool (xs1(0), cf. Table 3), an extremely rapid

(within the interval [0d, 1d]) surge of the xs1(t) population is obtained before balance with

xq1(t) is established (Fig 14(a)). The sudden increase of the active stem cell branch is passed on,

with a slight time delay, to the dependent differentiated cells xd1(t) (Fig 14(b)).

This combination of an early spike followed by exponential decay of the xd1(t) reservoir is

reminiscent of the pattern appearing also in the test simulations (cf. Fig 2(b)). However, the

source of this phenomenon in the test simulations is the definition of slightly off-balance initial

Table 5. Assessment of the quality of the fit of the theoretical population function xdi for clone i to a clinical differentiated CML cell population data

set (~xdi1 ;
~xdi2 ; � � �). The fitting method is described in Sec. 2.2.3. This table provides the coefficient of determination R2 for each individual fit curve xdi(t) shown

in panel (b) of Figs 10–14. Note that the black curves representing the theoretical total leukemic burden y(t) in each figure have not been included in the fitting

procedure but have been obtained by simply adding the calculated populations of the differentiated cell clones xdi(t) at each time step. Therefore, no R2 coeffi-

cients are given for the total leukemic burden curves. R2 is defined as
P

kðxdik � xdiÞ
2
=ð

~xdik � xdiÞ
2
, where xdi is the mean of the observed values

~xdik and the

summation index k refers to the time values tk at which the
~xdik have been determined. The closer the value of R2 is to 1.0, the better is the fit approximation.

Clone (color) Fig 10(b) Fig 11(b) Fig 12(b) Fig 13(b) Fig 14(b)

blue 0.9766 0.9768 0.9998 0.9998 0.9710

red 1.0565 1.0583 1.0330 1.0255 1.1894

green 0.8602 0.8576 - - -

https://doi.org/10.1371/journal.pone.0179700.t005
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population values xs1(0) and xd1(0), i.e., the xs1(t) pool undergoes immediate reduction without

a weak and short-lived preceding population growth.

The rapidly shaped maximum of the xd1(t) curve seen in Fig 14(b) is, on the other hand, not

primarily related to a xs1(t)–xd1(t) equilibration process but rather represents the reaction to

the even swifter emergence of a vertex at the level of cycling stem cells (Fig 14(a)). The nearly

instantaneous switch from a steeply rising to a decreasing xs1(t) population in turn reflects an

equilibration phase induced by very differently sized initial values xs1(0) and xq1(0). Such a

large xq1(0) / xs1(0) ratio is required to ensure a proper timing of the transition to an acceler-

ated decay phase of the xd1(t) population at ca. 320d, which correlates with the onset of the y
(t)<θq1 regime at 235d (see below). Since xq1(0) is not directly known from experiment, the

xq1(0) / xs1(0) ratio has been adjusted to meet this criterion.

Fig 14(a) shows that after rapid alignment, the xs1(t) and xq1(t) populations remain in a bal-

ance for 235d, before the size of the xq1(t) pool decreases progressively and more rapidly than

the xs1(t) reservoir until ca. 350d. The cycling / non-cycling decay rates are reversed only in the

final [350d, 370d] interval: the xq1(t) and xs1(t) curves stabilize at a very low level and decline

exponentially, respectively.

We will now analyze the mechanism responsible for this relation between the xq1(t) and

xs1(t) stem cell pools. As in the case of the simulations of PP14, the total leukemic burden y(t)
surpasses θq1 at the beginning of the calculation. Therefore, deactivation of xs1(t) is initially

proceeding in addition to activation of xq1(t), however, the net effect is transfer of population

from the non-cycling to the cycling growth environment since νc1 xs1(0) = 8.3 × 10−7 < νq1

xq1(0) = 4.00 × 10−6. From a mechanistic perspective, two situations critical for the xs1(t)–xq1(t)
balance are encountered as the system evolves: (i) At 162d, activation and deactivation rates

cancel: νc1 xs1(162) = νq1 xq1(162) = 7.10 × 10−9. From this point on, νc1 xs1(t)> νq1 xq1(t). How-

ever, a net population shift from cycling to non-cycling stem cell pool takes place only from

162d until the next mark is reached. (ii) At 235d, y(t) = θq1 = 0.51 and from this instant until

370d the inequality y(t)<θq1 holds. This condition implies that the deactivation term is turned

off in Eqs (8a) and (8g) and therefore the xs1(t) cell pool is bolstered again from 235d on at the

expense of xq1(t). The smooth transition from a net xq1(t)!xs1(t) to a net xs1(t)!xq1(t) transfer

regime at 162d thus ensures the nearly synchronous, biphasic decay of the xs1(t) and xq1(t)
populations stretching from the end of the initial xs1(t)–xq1(t) equilibration phase to 235d.

Fig 14(b) shows that while the agreement between the clinical values (red squares) and the

model prediction (red curve, xd2(t)) is particularly poor for clone T315I at 270d, the model for

Y253H (blue curve, xd1(t)) does not fit experiment (blue circles) well at all four sampling

times, although the plateau and final steep decline are qualitatively reproduced (the function

xd1(t) exhibits a triphasic decay, cf. Table 1). Inspection of Table 5 reveals that the runaway

value at 270d substantially spoils the R2 coefficient of xd2(t) due to the large difference between

~xd2(270d) and xd2(270d). As a result, the fit xd1(t) is more precise than xd2(t). In addition to the

low accuracy, this two-clone model fit suffers from early population growth features not cor-

roborated by the data.

Despite their similar appearance, the mechanisms for the fast preliminary expansions of the

xd1(t) and xd2(t) population functions are different. The growth of xd1(t) is induced by widely

divergent values of xs1(0) and xq1(0), leading to a nearly parallel time evolution of the xs1(t) and

xd1(t) functions from the beginning (cf. analysis above). This is obviously not the case for the

pair xs2(t) / xd2(t): model C does not include a quiescent stem cell reservoir associated with the

active clone xs2(t), and the surge of xd2(t) instead represents a xs2(t)–xd2(t) equilibration process

caused by an imbalance between the initial values xs2(0) and xd2(0).

If this proposed mechanism responsible for the initial steep increase of function xs1(t)
would properly describe the biological system, then application of dasatinib would disturb the
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xs1(t)–xq1(t) balance by reducing the xs1(t) (and xd1(t)) populations which in response would

trigger a sudden xq1(t)!xs1(t) activation. Due to the scarcity of the clinical data, a rapid growth

of the Y253H and T315I populations as a reaction to the onset of dasatinib administration is

not explicitly supported by the observed patient profile. However, the lack of experimental

information in the critical time interval also does not allow to entirely exclude such a phenom-

enon. In fact, Ref. [51] reports a stimulatory effect of dasatinib on proliferation of certain

clones of acute myelogenous leukemia progenitor cells in vitro at low dose.

However, the non-quantitative nature of the xd1(t) (Y253H) and xd2(t) (T215I) approxima-

tions to the observed data points and the necessity to define starting conditions that lead to

rapid equilibration processes accompanied by somewhat artificial sudden population increases

indicate that the two-clone version of model C is not appropriate for a realistic simulation of

PP15.

Alternatives to the two-clone scenario are therefore of interest. For PP15, the experimen-

tally determined total leukemic burden differs significantly from the sum of the levels of clones

Y253H and T315I at the final data point at 360d, despite good agreement at 0d, 90d and 270d

(Fig 14(b)). If this anomaly is not a sampling error, it may indicate the expansion of an uniden-

tified third CML clone, consistent with other observations of delayed appearances of resistant

CML clones [41] (cf. strains V299_1 and V299_2 in PP14). Should a third clone in fact be

involved in the CML dynamics shaping PP15, then the question arises whether clone 3 stem

cells originated (i) already during the preceding imatinib treatment period or (ii) in the course

of dasatinib administration. The simulations presented in Figs 12 and 13 assume option (i)

and (ii), respectively.

We first simulate PP15 employing a full 7D model C (including three CML strains Y253H

(xs1(t), xq1(t), xd1(t)), T315I (xs2(t), xd2(t)) and a hypothetical third clone (xs3(t), xd3(t))). The

time propagation of this three-clone ansatz yields Fig 12. Since the best fitting result was

achieved by defining νc1 ≔ 0.0, model C is reduced to the linear source term model (model B).

The starting conditions assume that no differentiated cells of clone 3 (xd3(0) ≔ 0.0) are present

but a very low population of cycling stem cells (xs3(0) ≔ 1.0 × 10−16). Mutations are not taken

into account (ν2 ≔ 0.0, ν3 ≔ 0.0).

The initial populations xs1(0) and xq1(0) are assumed to be identical. Deactivation of xs1(t)
is switched off from the beginning, resulting in rapid exponential decay of function xq1(t) until

the quiescent stem cell pool is exhausted after ca. 85d (Fig 12(a)). The complete transfer of

population from the quiescent to the active growth environment of clone 1 within the [0d,

85d] interval results in an efficient buffering of the sudden drop of function xs1(t), marked by a

clearly distinguishable kink in the xs1(t) curve after ca. 5d. The first depletion phase is followed

by a drawn-out period of non-exponential, remittent decline of the xs1(t) reservoir down to a

value of xs1(198) = 2.5 × 10−10. Beyond 198d, xs1(t) interestingly passes over into an incremen-

tal mode (induced by ω12 = -0.03) before at 268d turning to a final decrease.

The xs2(t) population increases monotonically, takes over as dominant clone and reaches a

maximum after 50d and 281d, respectively. The subsequent cutback of the xs2(t) reservoir is

due to competition from xs3(t). The imaginary clone 3 grows exponentially, overtakes the lead-

ing xs2(t) pool in size by 315d and subsequently saturates.

Fig 12(b) proves that the dynamics in the stem cell compartment is largely reproduced in

the realm of differentiated cells. A comparison with Fig 14(b) demonstrates that the three-

clone ansatz yields a much better approximation to the clinical datasets of clones Y253H,

T315I and of the total leukemic burden than the two-clone approach. This impression is con-

firmed by the R2 coefficients compiled in Table 5.

Finally, we investigate option (ii), the mutation-induced appearance of clone 3 during dasa-
tinib therapy. Model C is again reduced to model B by specifying νc1 ≔ 0.0 for the preparation
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of Fig 13. In general, the parameterizations of the simulations underlying Figs 12 and 13 differ

only slightly, most notably, the mutation scenario of Fig 13 is realized via the definitions xs3(0)

≔ 0.0 and ν3 ≔ 3.0 × 10−10 (cf. Table 3). A comparison of Figs 12 and 13 confirms the good

general consistency of the results. For the differentiated cell compartments, very similar R2

coefficients (cf. Table 5) of the xd1(t) (Y253H) and xd2(t) (T315I) fits shown in Figs 12(b) and

13(b) support the concordant quality of the approximations to the datasets of clones Y253H

and T315I. Also the total leukemic burden (black triangles) is again well reproduced in Fig 13

(b). The most prominent difference is the initialization phase of the clone 3 stem cells, with a

nonzero starting value xs3(0) in Fig 12(a) and an immediate population build up via xs1(t)!
xs3(t) mutations in Fig 13(a).

Figs 10 and 11 for PP14 as well as Figs 12 and 13 for PP15 therefore indicate that the

dynamics of either third clone of these two patients may be fit well using a mutation rate

instead of initial stem cell population so the model is unable to distinguish between the appear-

ance of new resistant clones via low-level pre-existing populations or via mutation.

Discussion

In this manuscript, we have analysed the behavior of three models of CML dynamics in

patients who have been placed under new treatment after diagnosis of resistance to imatinib.

This study represents the first theoretical investigation of competition dynamics of imatinib-

resistant CML strains exposed to second-line medication (dasatinib, nilotinib) as observed in

recent clinical trials [40, 41]. We compared the relative effects of mutation rates, initial popula-

tions, clonal competition (with differential sensitivities), and stem cell quiescence to data sets

provided in Ref. [41]. In creating the models, we set out to investigate how patient data may be

explained, and conversely, how the data may constrain model parameters and provide evi-

dence for mechanisms of disease and drug action. Patterns of dynamics particularly suited for

this include the differentiation between rapidly appearing vs. persistent resistant clones, and

also include population declines of therapy sensitive clones that are biphasic or that proceed

through a plateau or partial recovery phase. As described above, these phenomena can be

explained by the models: sequential dominance by the inclusion of clonal competition with

differential sensitivities (coupled to choices of initial population values), rapid clearance by

stem cell net decay rate dependence on its sensitivity to drug, and biphasic or more complex

decline dynamics by the inclusion of quiescence in the model.

The condition for general decline of the primary (i.e. dominant at the beginning of dasati-
nib or nilotinib therapy) stem cell clone 1 is z1(xs(t))α1 < δ1 (cf. Eq (1)), that is, the decay rate

exceeds the feedback controlled symmetric division rate. Detailed modelling of the effect of

the drug would require semi-quantitative knowledge of the action of aberrant BCR-ABL1 sig-

nalling on proliferation processes, as well as of drug influence across the signalling networks.

In the test simulations (cf. Secs. 3.2.1, 3.3 and 3.4.1), the relative sensitivity of clone 1 (xs1(t)) is

accomplished numerically by providing the secondary (xs2(t)) and tertiary (xs3(t)) stem cell

variants with a lower decay rate (cf. Table 2), such that clonal competition eliminates xs1(t).

The rapid initial decay of clone 1 differentiated cells xd1(t) in our models results from the same

process, as the populations of stem (xsi(t)) and differentiated cells (xdi(t)) of clone i stay in

quasi-balance, except for short equilibration phases that may be induced by biased definitions

of initial populations xsi(0) and xdi(0) (cf. Sec. 3.2.1). As a result, the models employed for the

test (and patient) simulations describe the rapid initial decay of the population xd1(t) fre-

quently observed in the clinical data by assuming that the drug (dasatinib or nilotinib) downre-

gulates asymmetric division of the parent stem cell clone (xs1(t)), which under the previous

treatment regime (imatinib) was at a higher level.
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For stem cells of the secondary (xs2(t)) and tertiary clones (xs3(t)), the growth and decay

rates remain roughly equal, zi(xs(t))αi� δi (i = 2, 3), with the clonal competition term (via

zi(xs(t))) lowering the symmetric division rate sufficiently to converge to a finite limit (zero or

nonzero) asymptotically. The long term behavior depends on the parameter regimes and

details of the clonal competition terms, as described for model A in Sec. 3.2.2. Persistence of

resistant clones at stable levels of total leukemic burden is characteristic of most patients, with

only PP8 and PP15 representing significant deviations from this pattern [41].

The test simulations show that the increasing complexity from model A to C enables pro-

gressively successful reproduction of complex patterns observed clinically (cf. Table 1). Model

A can describe the rapid decay of an initially dominant clone, according to Ref. [41] frequently

Y253H or M315T, and also the appearance of new dasatinib- or nilotinib-resistant strains, e.g.

F317L, V299L, and T315I, as observed in PP11, PP14 or PP15. The persistence of resistant

strains (especially T315I as in PP15) can also be reproduced. This model does not, however,

replicate stabilization and eventual reduction of some strains, e.g. of the Y253H population

reported in PP14 and PP15.

The addition of a depleting pool of quiescent stem cells (xq1(t)) that proportionally provides

cycling stem cells (xs1(t)) to Eq (4) yields model B and improves the approximation of tempo-

rary stabilization of declining species, such as the multiphasic decline of the Y253H cell pool

shown in PP14 and PP15. However, because in model B both the function xs1(t) and the

xq1(t)!xs1(t) conversion rate must decrease monotonically over time (with a parameterization

according to Table 2, which implies ωii, ωij� 0.0, this assumption is true for xs1(t) since the

asymptotic validity of the inequality z1(xs(t))α1 < δ1 is ensured by a large, stable value of ∑i xsi),
the model cannot reproduce recovery of xs1(t) by resupply from reservoir xq1(t). Instead, as

described in Ref. [28], physiological and computational considerations argue for bidirectional

switching between cycling and quiescent states of stem cells, that is, relative rates of activation

of quiescent stem cells of clone i (xqi(t)) should be regulated by the size of the xsi(t) population.

In the model of Ref. [28], the rate terms describing activation of xqi(t) and deactivation of xsi(t)
are linear in xqi(t) and xsi(t), respectively, and it is assumed that feedback relations exist only

between the cycling and non-cycling growth environments of a single clone i, i.e., the cycling

population xsj(t) of a competing clone j does not influence the net activation rate of xqi(t).
In model C a modified approach is implemented based on the idea that it would be more

realistic if (i) the total population of clones i, j controls the net activation rate of xqi(t) (because

the cycling stem cell populations xsi(t) and xsj(t) are competing for resources in the same bone

marrow niche), and (ii) a sigmoidal signalling function, or its Heaviside-type abstraction, is

employed rather than a less realistic linear feedback term. More precisely, the Heaviside signal-

ling function for the deactivation of xs1(t) depends on the total population of differentiated

cells y(t) (Eq (8)), but this is only a minor detail since the sum of stem cell populations ∑i xsi
should be nearly proportional to y(t) according to Eq (10).

Models that are suitable for CML dynamics studies may be grouped into two categories:

stochastic models are based on probabilities of fundamental cellular processes such as cell divi-

sion [20, 21, 25, 52–57, 57–64], while deterministic concepts represent the time evolution of

cell population functions by coupled differential equation systems rather than describing the

dynamics at the level of individual cells [15, 19, 22, 23, 26–28, 54–56, 65–72]. The deterministic

models presented here describe CML cell dynamics along the lines of the compartment con-

cept proposed in Ref. [15], adding clonal competition [31], and using only one level of matura-

tion/differentiation [69]. Stem cell mutation rate terms are included in the models in the

straightforward, deterministic way suggested by Ref. [23].

Alternative deterministic models that take a clonal competition of normal and cancer cells

into account have also been investigated [28, 69], linking other physiological phenomena to
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population dynamics, such as combination treatment [28] or the effects of immune response

[23, 27].

Mathematical analysis of the test simulations performed with model A leads to the identifi-

cation of two bifurcations of the stationary solutions and of three long term regimes, two stable

line equilibria and one with unstable co-existence of two drug resistant clones (clones 2 and 3,

cf. Sec. 3.2.2). The extensions of the θs2 parameter space by xq1(0) and νq1 in model B and by

the feedback-control term for the activation of quiescent stem cells in model C do not intro-

duce new bifurcations, because the xq1(t) reservoir will be exhausted in the limit t!1, reduc-

ing models B and C to model A asymptotically. Thus for the parameter regimes considered in

the test simulations (cf. Secs. 3.2.1, 3.3 and 3.4.1), the three long term states (clone 2 or 3 alone

or a clone 2 and 3 combination) can be realized by varying the single parameter θs2 with all

three equation systems. The deterministic dynamics of related approaches to CML cell evolu-

tion are investigated in more detail in Refs. [31, 34]; Ref. [33] covers in addition a stochastic

ansatz.

From a methodological perspective, the present study contributes in particular with respect

to two aspects:

• Our ansatz, notably model C, can be considered a modification of the deterministic

approaches outlined in Refs. [15, 28, 31] in the sense that a quiescent stem cell reservoir

xqi(t) is coupled to the cycling growth environment xsi(t) in a new fashion.

• The analysis of the global dynamics of the stem cell compartment of model A in Sec. 3.2.2

demonstrates that information on the bifurcation landscape described by the solutions to

such an equation system in a multidimensional parameter space can be systematically

obtained based on the criteria derived in Refs. [33, 34]. Locating the branch points separating

equilibria is important because the sensitivity of the solutions to parameter variations is

reaching a maximum in their vicinity. The classification of the various equilibria and a com-

prehension of the dependence of the corresponding regions on bifurcation parameters is not

only of interest for the interpretation of simulation results but also useful for predictions on

how the biological system will react to therapy-induced modifications of CML clone rate

constants αj and δj. This knowledge can be of value for the timing of CML treatment

procedures.

The patient simulations outlined in Sec. 3.4.2 indicate that model C provides a satisfactory

approximation to the complex clinical data of PP14, independent of the assumption whether a

small clone 3 (V299_2) stem cell population pre-existed (Fig 10) or originated via mutations

during dasatinib application (Fig 11). PP15 is a special case since our analysis provides evi-

dence for the involvement of a third clone. Model C can describe the key features of PP15

within a two-clone framework based on the clinical datasets, but the accuracy of this approach

is rather low (Fig 14, Table 5). However, the experimentally determined total leukemic burden

suggests that a third clone, not explicitly identified in PP15, may play an important role, and

the three-clone ansatz in fact elegantly yields an excellent match to the observed BCR-ABL1

values, again based on simulations implying an origin of clone 3 either preceding (Fig 12) or,

by a mutation mechanism, within the dasatinib treatment interval (Fig 13). Interestingly, the

best agreement between experiment and theory for PP15 can be reached by reducing model C

to model B, i.e., deactivation of the xs1(t) population does not seem to play a major role in stem

cell dynamics creating PP15, under the condition that a third clone xs3(t) is substantially

involved.

The biological relevance of this investigation can be summarized as follows:
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• Models of the type suggested in Eq (4) have in principle the flexibility to reproduce regrowth

of population functions xsi(t) and xdi(t) by means of appropriately selected stem cell competi-

tion parameters ωij, i.e., the inclusion of quiescent stem cell reservoirs xqi(t) is not required

for this purpose. However, simulations of multiphasic decay patterns as observed for clone

Y253H (xs1(t), xq1(t), xd1(t)) in PP14 (Figs 10 and 11) and, with a two-clone ansatz, also in

PP15 (Fig 14) reveal a complex interplay of xq1(t) activation and xs1(t) deactivation rates.

Solution of the fitting problem represented by PP15 is simplified via integration of an uncon-

firmed third clone, requiring only activation of xq1(t) to reach an accurate approximation to

the clinical datasets, i.e., model B is sufficient in this case (Figs 12 and 13). The results under-

line that decline processes as experienced by strain Y253H in response to dasatinib adminis-

tration could not be modelled without involvement of a quiescent growth environment.

• The question of whether substances like imatinib, dasatinib and nilotinib can target not only

progenitor and differentiated CML cells but also CML stem cells in their bone marrow

niches is a subject of intense research [7, 15, 23, 62, 73–75]. If a suppressing effect of a drug

like imatinib on cycling wild-type CML stem cells is accepted, and if no resistant clones

develop in a patient, then the next issue needs to be addressed: Can residual reservoirs of

non-cycling wild-type CML stem cells be completely eliminated by time-limited imatinib
administration [15]?

The test and patient simulations of typical treatment profiles of CML patients with imatinib-

resistant clones demonstrate that activation and deactivation of quiescent and cycling CML

stem cells, respectively, are common phenomena in the course of TKI medication. The rapid

and sustainable elimination of differentiated cell populations of clones like Y253H and

F317L in PP7 (dasatinib) and PP35 (nilotinib), respectively, indicates that both agents have

the potential to target active CML stem cells in their bone marrow niches and possibly eradi-

cate both active and quiescent CML stem cells under certain circumstances.

The simulations of PP14 and PP15 reported in this study are further compatible with the

notion that quiescent stem cell pools (xq1(t)) of a clone like Y253H that is efficiently targeted

by a CML drug both at the level of differentiated cells and of cycling stem cells are intensely

activated to buffer the simultaneous decay of the xs1(t) and xd1(t) populations. As a conse-

quence, the xq1(t) reservoirs drain rapidly and are eventually depleted. The net xq1(t)!xs1(t)
transfer processes are accompanied by a retardation and finally acceleration of the decay of

the xs1(t) and xd1(t) cell pools, leading to the observed multiphasic decline scenarios of the

Y253H strain in PP14 and PP15.

Our results support the viability of a complete extermination of cycling and non-cycling

wild-type CML stem cells in patients by time-constrained imatinib therapy, assuming that

the mechanism of buffering the decay of active stem cells followed by exhaustion of the qui-

escent stem cell pool in response to imatinib administration is realized in the same way as

predicted for resistant clone Y253H. Under these conditions, imatinib treatment could rep-

resent a durable cure for CML if no resistance develops [25].

• The example of the patient simulations of PP15 (Sec. 3.4.2) shows that studies of this type

can be helpful for the interpretation of patient data and for the design of treatment protocols.

Our results point to the involvement of a third, dasatinib-resistant CML strain that acquires

a differentiated cell BCR-ABL1 / GUS ratio of 1.0 × 10−3 only after ca. 190d of treatment

(Figs 12 and 13).

• Simulations of PP14 (Figs 10 and 11) and PP15 (Figs 12 and 13) indicate that a distinction

between pre-existence and a mutation origin (during dasatinib treatment) of stem cells of

the respective clone 3 based on fits to sparse datasets of differentiated cell populations cannot
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be reliably made. Precise clinical information on stem cell populations is necessary to localize

the appearance of a CML clone in time.

Future models will be able to implement ongoing experimental determination of key prop-

erties of CML and its treatment. In addition to the controversially discussed accessibility of

stem cells to medication [7, 15, 21, 25, 28], key properties will include modelling of signalling

systems more broadly to include effects of drug on individual components of the signalling

pathways in CML, including e.g. off-target (i.e. non-ABL) effects of drug. These developments

promise to enable knowledge based drug and treatment design to an unprecedented degree.
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