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Abstract

Noroviruses are a leading cause of human gastroenteritis worldwide. The norovirus geno-
type Gll.4 is the most prevalent genotype in the human population and has caused six pan-
demics since 1995. A novel norovirus lineage containing the Gll.P16 polymerase and
pandemic Gll.4 Sydney 2012 capsid was recently detected in Asia and Germany. We dem-
onstrate that this lineage is also circulating within the UK and USA and has been circulating
since October 2014 or earlier. While the lineage does not contain unique substitutions in the
capsid, it does contain polymerase substitutions close to positions known to influence poly-
merase function and virus transmission. These polymerase substitutions are shared with a
Gll.P16-Gll.2 virus that dominated outbreaks in Germany in Winter 2016. We suggest that
the substitutions in the polymerase may have resulted in a more transmissible virus and the
combination of this polymerase and the pandemic Gll.4 capsid may result in a highly trans-
missible virus. Further surveillance efforts will be required to determine whether the Gil.
P16-Gll.4 Sydney 2012 lineage increases in frequency over the coming months.

Introduction

Noroviruses are the leading cause of human gastroenteritis worldwide and are estimated to be
responsible for 900,000 clinic visits amongst children in industrialized countries and up to
200,000 deaths of children in developing countries annually [1,2]. Noroviruses belong to the
Caliciviridae family and their ~7.5Kb RNA genome contains three open reading frames
(ORFs): ORF1 encodes a nonstructural polyprotein that is cleaved into six proteins including
an RNA-dependent RNA polymerase (RdRp), ORF2 encodes the VP1 capsid protein and
OREF3 encodes a minor structural protein, VP2. Recombination frequently occurs close to the
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junction between ORF1 and ORF2, necessitating independent genotyping of the RdRp and
capsid [3]. While noroviruses are divided into seven genogroups and further into more than
30 genotypes based on capsid sequence, the majority of cases and outbreaks are caused by
viruses associated with a single capsid genotype, GII.4, which has also caused six pandemics of
gastroenteritis since 1995 [4,5]. Each pandemic has been caused by a distinct strain of GII.4.
While the first five pandemic strains contained the GII.P4 RdRp, the most recent pandemic
strain (Sydney 2012) circulated more commonly with the GII.Pe RdRp. Recent reports demon-
strated circulation of the Sydney 2012 capsid with a GII.P16 RdRp in South Korea, Japan and
Germany [6-8]. While the GII.P16 RdRp is not typically highly prevalent, a GIL.P16-GIL.2
virus was the dominant strain amongst a large peak of norovirus infections in Germany in
Winter 2016 [8]. Here, we demonstrate using whole genome sequencing [9] and phylogenetic
analyses that the GIL.P16-GII.4 Sydney 2012 lineage is also circulating within the UK and
USA. While the lineage does not contain unique capsid substitutions, it does contain RdRp
substitutions that are shared with the GII.P16-GII.2 RdRp and are close to positions known to
influence RdRp function and viral transmission.

Materials and methods
Sample collection and sequencing

We identified noroviruses with the GII.P16 RdRp in ten stool samples collected as part of rou-
tine surveillance from South East and North West England between June 2015 and April 2016;
samples were from both sporadic cases and outbreaks. Four of these faecal specimens were
referred to the Virus Reference Department, Public Health England, as part of a sentinel noro-
virus strain surveillance programme, which collects norovirus-positive specimens from geo-
graphically disparate regions across England. The other six faecal specimens were collected
from a tertiary referral paediatric hospital in London, UK. These six specimens were residual
diagnostic specimens obtained from patients with confirmed norovirus infections. Specimens
were collected as part of the FP7 PATHSEEK study and submitted to the UCL Infection DNA
Bank. The samples were supplied to the study in an anonymised form; the use of these speci-
mens for research was approved by the NRES Committee London—Fulham (REC reference:
12/L0O/1089). Other specimens used were sent to the Enteric Virus Unit at Public Health
England in the course of routine surveillance and diagnosis work. RNA was extracted and
whole genome sequencing performed as described previously [9]. Sample genotypes were
obtained using the norovirus genotyping tool, available at http://www.rivm.nl/mpf/norovirus/
typingtool [10]. The GenBank accession numbers for viruses sequenced in this study are as fol-
lows: KY887597-KY887606.

Phylogenetic analyses

We combined our sequences with all GIL.P16 ORF1 sequences and all GII.4 Sydney 2012 cap-
sid and VP2 sequences available on GenBank. We reconstructed maximum likelihood trees
using RAXML [11] and time trees using BEAST 2 [12]. GII.P16 dating analyses were carried
out using the RdRp as there are many more GIL.P16 sequences containing the RdRp (n = 165)
compared with the complete ORF1 (n = 45), enabling estimation of more accurate dates. The
GIL.4 Sydney 2012 capsid maximum likelihood tree was used to identify a well-supported
monophyletic clade (bootstrap support 81) containing 70 samples that includes all of the sam-
ples with the GIL.P16 RdRp. The GII.4 Sydney 2012 time tree was reconstructed using the sam-
ples in this clade. Ancestral reconstruction to identify nonsynonymous changes occurring
along particular branches was carried out using PAML [13].
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Data availability

All alignments, phylogenetic trees and BEAST XML files are included as supporting informa-
tion (S1-S6 Files).

Results

We identified ten viruses collected in routine surveillance in the UK containing the GII.P16
RdRp. Of these, seven were found with the GII.4 Sydney 2012 capsid and three were found
with the GII.3 capsid. The ten RdRp sequences formed a well-supported monophyletic clade
(Fig 1), that also contains GIL.P16-GII.4 Sydney 2012 samples from the USA and Japan,
including the GII.P16-GII.4 Sydney 2012 sample described in 2016 from Kawasaki City, Japan
[7]. These samples also cluster in the phylogenetic tree of available GII.P16 ORF1 samples. The
GIL.P16-GIL.4 Sydney 2012 RdRps cluster with the GII.P16-GII.2 RdRps that dominated noro-
virus outbreaks in Germany in winter 2016 (Fig 1) [8]. The common ancestor of the GII.
P16-GII.4 Sydney 2012 and GIL.P16-GII.2 RdRps occurred in March 2013 (95% highest proba-
bility density (HPD) January 2012-May 2014).

In a phylogenetic tree containing all available GII.4 Sydney 2012 capsid sequences, the GIL
P16-GIIL.4 Sydney 2012 samples from the UK again cluster with samples from the USA and
Japan containing the GII.P16 RdRp (Fig 2). This clade contains additional samples from the
USA where the RARp was not sequenced. However, all of the RdRps sequenced within this
clade are of the GIL.P16 genotype. It is therefore likely that these samples also contain the GII.
P16 RdRp, although without genotyping this is uncertain. The common ancestor of this clade
occurred in October 2014 (95% HPD June 2014-February 2015).

No nonsynonymous substitutions occurred in the capsid along the branch leading to the
GIL.P16-GIIL.4 Sydney 2012 clade and there are no amino acid changes shared amongst capsids
in this clade that are not found in the remainder of the GII.4 Sydney 2012 capsids. However,
14 nonsynonymous substitutions occurred within ORF1 along the branch leading to the com-
mon ancestor of the GILP16-GII.4 Sydney 2012/GIL3 clade (Fig 1, Table 1). Eleven of these
changes are shared amongst all of the samples in the GII.P16-GII.4 Sydney 2012/GIL3 clade.
Five of these changes occurred in the RdRp, with several of the changes occurring close to posi-
tions known to impact polymerase function and transmission (Fig 3) [14,15]. Only four of the
positions that change leading to the GII.P16-GII.4 Sydney 2012/GII.3 clade are in the partial
RdRp region sequenced by Niendorf et al in the GIL.P16-GII1.2 samples [8]. All four of these
nonsynonymous changes are also present in the GIL.P16-GIL.2 samples and were therefore
acquired by the common ancestor of the RARp clade containing the samples with the GII.4
Sydney 2012, GII.3 and GII.2 capsids. Additionally, a single nonsynonymous change (S157N)
occurred in VP2 along the branch leading to the GII.P16-GII.4 Sydney 2012 clade.

Discussion

Here, we demonstrate that the emerging GIL.P16-GII.4 Sydney 2012 norovirus lineage is circu-
lating in the UK and USA, in addition to previous reports of circulation in Asia and Germany
[6-8]. Analysis of available sequences suggests that this lineage has been circulating since
October 2014 or earlier (Fig 2). The lack of amino acid substitutions in the capsid suggests that
this lineage will not be able to escape existing herd immunity generated against Sydney 2012
since its emergence as a pandemic in 2012. However, previous studies have implicated the
RdRp as an important component of viral fitness and demonstrated that RARp changes can
influence viral transmission by modulating the replication fidelity, and thus the viral diversity
[14,15]. Several of the changes in the RdRp are in the palm subunit that contains most of the
catalytic residues (Fig 3). Little is currently known about whether changes in the other proteins
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reconstructed using BEAST 2. The Gll.P16 samples found with the Gll.4 Sydney 2012 capsid are highlighted
red. The GlI.P16 samples found with the GlI.3 capsid are highlighted in magenta. The Gll.P16-Gll.2 samples
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associated with most norovirus cases in Germany in winter 2016 are highlighted in blue. The starred node is
the common ancestor of this clade. Posterior supports are shown at key nodes.

https://doi.org/10.1371/journal.pone.0179572.9001

encoded by ORF1 have the ability to influence viral transmission. However, as the GII.P16
RdRp found with the GII.4 Sydney 2012 capsid has acquired several nonsynonymous changes
close to positions known to influence RdRp function and viral transmission, this RARp may
have different properties and/or a greater ability to transmit compared with other GIL.P16
RdRps. Only four of the RARp changes occur in the genome region sequenced from the GII.
P16-GII.2 virus that recently dominated norovirus outbreaks in Germany [8]. However, all
four of these changes are also present in the GII.P16-GIIL.2 virus. We therefore suggest that the
worldwide circulation of the GII.P16-GIL.4 Sydney 2012 lineage and the high prevalence of the
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Fig 2. Evolutionary history of the Gll.4 Sydney 2012 capsid. A maximum likelihood tree was reconstructed for 781 Gll.4 Sydney 2012 capsid samples.
From this, a well supported clade (bootstrap support 81) containing the GII.P16-Gll.4 Sydney 2012 lineage and several other samples was selected and a
time tree reconstructed on this smaller dataset using BEAST 2. The starred node is the common ancestor of the Gll.P16-Gll.4 Sydney 2012 lineage and the
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shown at key nodes.

https://doi.org/10.1371/journal.pone.0179572.9002
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Table 1. Sites in ORF1 that change leading to the Gll.P16-Gll.4 Sydney 2012 clade.

Change Protein Polymerase position Shared by all Gll.P16-Gil.4 Sydney 2012 samples
N52E P48 (NS1/2) N/A Yes
S53P P48 (NS1/2) N/A No
K165R P48 (NS1/2) N/A Yes
S644P NTPase (NS3) N/A No
R731K P22 (NS4) N/A Yes
K750R P22 (NS4) N/A Yes
P845Q P22 (NS4) N/A Yes
A853T P22 (NS4) N/A Yes
V10571 Protease (NS6) N/A Yes
D1362E RdRp (NS7) 173 Yes
S1482T RdRp (NS7) 293 Yes
V15211 RdRp (NS7) 332 No
K1546Q RdRp (NS7) 357 Yes
T1549A RdRp (NS7) 360 Yes

Each nonsynonymous change that occurred along the branch in the ORF1 and RdRp phylogenetic trees leading to the Gll.P16-Gll.4 Sydney 2012/GlI.3/
Gll.2 clade is shown. N/A—not applicable.

https://doi.org/10.1371/journal.pone.0179572.t1001

Thumb domain Fingers domain

Active site
Sites influencing RdRp function or
transmission
Sites changing leading to the GlI.
4 Sydney 2012 clade

Palm domain

Fig 3. Location of RdRp sites that change leading to the Gll.P16-Gll.4 Sydney 2012 clade. Sites are highlighted on PDB structure 1SHO. The sites
that change leading to the GlIl.P16-Gll.4 Sydney 2012 clade are shown in red. The sites that form the RdRp active site are shown in blue. Sites previously
demonstrated to alter RdRp function and/or transmission when mutated are shown in magenta (14,15).

https://doi.org/10.1371/journal.pone.0179572.g003
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GIL.P16-GII.2 virus are due to increased transmissibility driven by RdRp changes in GIL.P16.
Importantly, the GII.2 capsid is typically rare and is therefore unlikely to be as fit as the preva-
lent GII.4 capsid. It is therefore possible that combining an advantageous RdRp with the GII.4
Sydney 2012 capsid may result in a highly transmissible virus, despite the lack of antigenic
changes in the capsid. Importantly, surveillance strategies based on capsid genotyping alone
would be unable to distinguish between the GII.P16-GII.4 Sydney 2012 lineage and other Syd-
ney 2012 viruses. It is therefore vital that surveillance efforts genotyping both the capsid and
RdRp assess whether the GII.P16-GIL.4 Sydney 2012 lineage replaces the GII.Pe-GIL.4 Sydney
2012 strain over the coming months.

Supporting information

S1 File. Alignment of GII.P16 RdRp sequences. This alignment was used to reconstruct the
GIL.P16 phylogenetic tree in Fig 1.
(FASTA)

S2 File. Alignment of GII.4 Sydney 2012 capsid sequences. This alignment was used to
reconstruct the GII.4 Sydney 2012 phylogenetic trees in Fig 2.
(FASTA)

S3 File. Phylogenetic tree of GII.P16 RdRp sequences. The BEAST maximum clade credibil-
ity tree used in Fig 1.
(NEX)

$4 File. Phylogenetic tree of GII.4 Sydney 2012 sequences. The BEAST maximum clade
credibility tree used in Fig 2.
(NEX)

S5 File. BEAST XML file for GII.P16 analysis.
(XML)

S6 File. BEAST XML file for GII.4 Sydney 2012 analysis.
(XML)
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