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Abstract

With the surge of interest in metabolism and the appreciation of its diverse roles in numerous

biomedical contexts, the number of metabolomics studies using liquid chromatography cou-

pled to mass spectrometry (LC-MS) approaches has increased dramatically in recent years.

However, variation that occurs independently of biological signal and noise (i.e. batch

effects) in metabolomics data can be substantial. Standard protocols for data normalization

that allow for cross-study comparisons are lacking. Here, we investigate a number of algo-

rithms for batch effect correction and differential abundance analysis, and compare their

performance. We show that linear mixed effects models, which account for latent (i.e. not

directly measurable) factors, produce satisfactory results in the presence of batch effects

without the need for internal controls or prior knowledge about the nature and sources of

unwanted variation in metabolomics data. We further introduce an algorithm—RRmix—

within the family of latent factor models and illustrate its suitability for differential abundance

analysis in the presence of strong batch effects. Together this analysis provides a frame-

work for systematically standardizing metabolomics data.

Introduction

Metabolomics involves the simultaneous analysis of hundreds of small molecule compounds,

or metabolites, in biological systems[1, 2]. Metabolite measurements can provide direct bio-

chemical readouts of cellular and organismal behavior and lead to biological insights that are

otherwise unobtainable[2, 3]. Quantitation of cellular metabolites can be measured using
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high-throughput techniques including Mass Spectrometry (MS) approaches[4–6]. In recent

years, applications of metabolomics have proven useful in a variety of contexts ranging from

basic biochemistry to human health and disease[7–9].

As with other technologies that acquire high-dimensional data on biological systems, such

as gene expression analysis[10], the interpretation of metabolomics data is limited by appro-

priate mathematical tools for normalization and downstream data processing that ensure

reliable and reproducible data collection. Cross-study comparisons and meta-analyses of meta-

bolomics data are currently impractical due to the existence of various sources of unknown

experimental, technical, and biological variability. Thus, tremendous advances in metabolo-

mics could be made from the development of standardized algorithms for assessing and

removing batch effects from metabolomics data while preserving true biological patterns of

interest. We use the term “batch effects” here and throughout, to refer to all undesirable varia-

tion in data collected by different operators in different facilities and at different time points.

Possible sources of such variability include differences in instrument performance including

the current state of the LC column, sample handling, differences in preparation of batches,

and many other unmeasurable environmental and technical factors[11] (Fig 1). Removal of

Fig 1. Description of the biological effects and batch effects in the metabolomics dataset used in this

study.

A) Results of principal components analysis (PCA) on data collected by operator A. Plots illustrate the first two

PCs. Samples in green (AC) represent the three replicates from the control condition and samples in red

(AT) show replicates from the drug treated condition (2DG = 2-deoxy glucose).

B) PCA results as described in (A) using data collected by operator X.

C) PCA results as described in (A) on the combined dataset containing samples from both operators A and X.

D) Heatmap of metabolite abundances showing hierarchical clustering of the combined dataset. Columns rep-

resent samples and rows represent metabolites. Rows are scaled (mean centered and divided by standard

deviation).

https://doi.org/10.1371/journal.pone.0179530.g001
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this latent variation becomes particularly important when combining data sets to both increase

statistical power and improve reproducibility across different metabolomics studies.

Several methodologies are currently available for analyzing metabolite profiles of samples

in different conditions to find differentially abundant metabolites, both with and without con-

trolling for potential batch effects. One of the most widely used approaches for assessing differ-

ential abundance without the consideration of batch effects is a technique termed Linear

Models for MicroArray data (LIMMA)[12]. Originally conceived for microarray gene expres-

sion data, LIMMA has grown in applicability to accommodate LC-MS and count-based RNA-

Seq data as well[13–15]. However, the consideration of batch effects during analysis with

methods such as LIMMA would require addition of parameters into their models, with the

ability to do this predicated on directly measuring these effects as covariates. In practice, batch

effects present in metabolomics data are often unknown or unmeasurable.

The use of internal standards as controls is one approach that has proven useful for cross-

comparison of different batches of samples[16, 17]. However, the variability in the levels of

internal control metabolites may not always reflect that of other metabolites due to differences

in their chemical properties[18]. Several proposed techniques for the removal of batch effects

and the normalization of mass spectrometry-based metabolomics data currently exist in the

literature[7, 8, 19, 20]. Many of these methods are based on the use of heavy isotope spike-in

quality controls (QCs) or require direct measurement of the possible technical variation

through batch factors and/or injection times. The normalization methods work by performing

variants of Principal Component Analysis (PCA) on the QC data, and subsequently using the

principal components to characterize the unwanted variation. A recent study introduced a

normalization algorithm called Remove Unwanted Variation (RUV) for removing batch

effects from metabolomics data by taking advantage of reference or control metabolites that

are immune to such undesirable variation[11]. Despite its power, this method requires internal

standards or prior knowledge about specific metabolites that are robust to treatment effects

and can therefore serve as negative controls in the models. Unfortunately, these controls are

not always present or straightforward to identify. Other scientists have proposed clustering-

based signal drift algorithms using reference samples to correct for batch effects[21, 22]. Bru-

nius et. al cites several alternate strategies for batch effect correction in LC-MS experiments,

which include but are not limited to: the utilization of internal standards, normalization with

respect to stable feature intensity, more advanced quantile normalization, and quality control

sampling. However, while each of these techniques have made significant improvements to

the quality of untargeted metabolomics data, certain issues with feasibility are noted as well

[citation]. The main drawback to the use of such techniques remains the necessity of prior

information which may, or may not, be available to researchers. While internal controls and

reference samples are common in LC-MS experiments, there are certain practical limitations

in using them in metabolomics experiments. Further, other normalization techniques often do

not factor in differences in signal intensity distributions or feature drift patterns, of which are

individual experiment-specific. Therefore, there is a need for mathematical methods that do

not rely on such internal controls to analyze metabolomics data.

In this study, we apply a range of statistical models to metabolomics data and compare and

contrast their performances in differential abundance analyses. We introduce a more heuristic

algorithm that provides a hierarchical latent factor mixture model with random primary effect

and error variance, referred to herein as RRmix[23] (Random main effect and Random com-

pound-specific error variance with a mixture structure). We show that this class of latent factor

models can provide a means to handle unwanted variability without prior knowledge of its

source, by instead modeling this systematic experimental noise as a whole, rather than correct-

ing for feature-specific or source-sensitive variation[24]. Instead of attempting to parameterize

Batch effect correction and standardization of metabolomics data
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known effects, factor analysis is used as a robust approach to modeling all hidden factors, with-

out regard to independent metabolite properties or other specific technical artifacts resulting

from LC-MS based studies (see Methods). We show that the model-based classification with

simultaneous adjustment for unwanted variation[23] provided by RRmix is suitable for han-

dling batch effects in metabolomics data and has advantages over alternative methodologies.

Materials and methods

Cell culture and drug treatment

The metabolite samples used for metabolomics were derived from the HCT116 colorectal can-

cer cell lines. Cells were grown in RPMI 1640, 10% fetal bovine serum, 100 U/mL penicillin,

and 100 mg/mL streptomycin. Cells were cultured in a 37˚C, 5% CO2 atmosphere. At the start

of each metabolite extraction experiment, cells were seeded at a density of 3x105 in a 6-well

plate and allowed to adhere and grow to 80% confluence. Cells were then washed with phos-

phate buffered saline (PBS) and treated with either 5mM of 2-deoxy-D-glucose (2DG) (Sigma)

or 0.01% DMSO (cellgro) for 6 hours (Fig 2A).

Fig 2. Comparison of performance of 6 methods in differential abundance analysis.

A) Schematic depicting the enzymatic steps in glycolysis pathway and the step where 2DG inhibits upon treat-

ment. The metabolites shown in the diagram were analyzed by LC-MS.

B) Plot depicting the fraction of positive controls discovered by each method as significantly differentially abun-

dant between the control and 2DG treated samples in the presence of batch effects.

C) Venn diagram comparing total number of discoveries made by each of the methods in the combined data-

set (at 0.9 posterior probability for RRmix and 10% FDR correction for other methods).

https://doi.org/10.1371/journal.pone.0179530.g002
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Metabolite extraction

Metabolite extraction and subsequent Liquid Chromatography High-Resolution Mass Spec-

trometry (LC-HRMS) for polar metabolite of HCT116 cells were carried out using a Q-Exac-

tive Orbitrap as previously described[5, 25]. For culture from adherent HCT116 cells, media

was quickly aspirated and cells were washed with cold PBS on dry ice. Next, 1mL of extraction

solvent (80% methanol/water) cooled to -80˚C was added immediately to each well and the

dishes were transferred to -80˚C for 15 min. After, the plates were removed and cells were

scraped into the extraction solvent on dry ice. All metabolite extractions were centrifuged at

20,000g at 4˚C for 10 min. Finally, the solvent in each sample was evaporated using a speed

vacuum for metabolite analysis. For polar metabolite analysis, the cell metabolite extract was

dissolved in 15μL water, followed by 15μL methanol/acetonitrile (1:1 v/v) (LC-MS optima

grade, Thermo Scientific). Samples were centrifuged at 20,000g for 10 min at 4˚C and the

supernatants were transferred to Liquid Chromatography (LC) vials. The injection volume for

polar metabolite analysis was 5μL.

Liquid chromatography

An Xbridge amide column (100 x 2.1mm i.d., 3.5μm; Waters) is employed on a Dionex (Ulti-

mate 3000 UHPLC) for compound separation at room temperature. Mobile phase A is 20mM

ammonium acetate and 15mM ammonium hydroxide in water with 3% acetonitrile, pH 9.0,

and mobile phase B is 100% acetonitrile. The gradient is linear as follows: 0 min, 85% B; 1.5

min, 85% B; 5.5 min, 35% B; 10 min, 35% B; 10.5 min, 35% B; 14.5 min, 35% B; 15 min, 85% B;

and 20 min, 85% B. The flow rate was 0.15 mL/min from 0 to 10 min and 15 to 20 min, and

0.3 mL/min from 10.5 to 14.5 min. All solvents are LC-MS grade and purchased from Fisher

Scientific.

Mass spectrometry

The Q Exactive MS (Thermo Scientific) is equipped with a heated electrospray ionization

probe (HESI) and the relevant parameters are as listed: evaporation temperature, 120˚C;

sheath gas, 30; auxiliary gas, 10; sweep gas, 3; spray voltage, 3.6kV for positive mode and 2.5kV

for negative mode. Capillary temperature was set at 320˚C, and S lens was 55. A full scan range

from 60 to 900 (m/z) was used. The resolution was set at 70,000. The maximum injection time

was 200 ms. Automated Gain Control (AGC) was targeted at 3,000,000 ions.

Peak extraction and data analysis

Raw data collected from LC-Q Exactive MS is processed on Sieve 2.0 (Thermo Scientific).

Peak alignment and detection are performed according to the protocol described by Thermo

Scientific. For a targeted metabolite analysis, the method “peak alignment and frame extrac-

tion” is applied. An input file of theoretical m/z and detected retention time of 197 known

metabolites is used for targeted metabolite analysis with data collected in positive mode, while

a separate input file of 262 metabolites is used for negative mode. M/Z width is set at 10 ppm.

The output file including detected m/z and relative intensity in different samples is obtained

after data processing. If the lowest integrated mass spectrometer signal (MS intensity) is less

than 1000 and the highest signal is less than 10,000, then this metabolite is considered below

the detection limit and excluded for further data analysis. If the lowest signal is less than 1000,

but the highest signal is more than 10,000, then a value of 1000 is imputed for the lowest sig-

nals. After following this data filtering process[5], a total of 265 metabolites remained in the

study.

Batch effect correction and standardization of metabolomics data
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Statistical analyses of differential abundance

Two independent operators performed the steps described above in triplicates (each operator

provided 3 samples from the control and 3 samples from the treated condition), leading to a

total sample size of 12. We used six methods for the analysis of this metabolomics data set,

both with and without the presence of an operator-specific batch effect. These methods are

individual t-tests, LIMMA, Surrogate Variable Analysis followed by LIMMA (SVA-LIMMA),

Principal Components Analysis followed by LIMMA (PCA-LIMMA), Factor Analysis model

for Multiple Testing (FAMT),[24] and RRmix. By performing simple t-tests on each of the 265

post-processing metabolites, we are provided with a baseline for comparing the efficacy of the

other methods.

Linear Models for MicroArray Data (LIMMA)

LIMMA[12], like the t-test, does not account for latent variation, but it does have several key

properties which make it well suited for the analysis of high-dimensional biological data.

Firstly, LIMMA calculates a moderated t-statistic[12], ~t , which uses a shrinkage estimate of the

standard error in the denominator of the t-statistic, utilizing information from all the com-

pounds being analyzed. In addition, the method proposed by Smyth[12] involves closed-form

estimates of the hierarchical model parameters, and the proposed moderated t, ~t , is more

robust to small metabolite-specific sample variance estimation than t. Computational imple-

mentation of this linear modeling strategy is carried out in the Bioconductor package for

R—“LIMMA”[26].

PCA-LIMMA and SVA-LIMMA

As the issues surrounding the analysis of high-dimensional biological data with batch effects

are well known, it is often commonplace for packages such as LIMMA to provide a means for

batch effect correction in the pre-processing of the data matrix. The LIMMA-specific function,

“removeBatchEffects[13]” provides a variant on the classical mixed ANalysis Of VAriance

(ANOVA), to remove any measurable, technical variation not associated with the treatment

condition or biological signal of interest. By fitting a linear model with the known batch and

treatment effects, the procedure essentially performs an ANOVA decomposition on the data

and removes the variability associated with the batches while retaining that which is associated

with the experimental design. However, given that the nature of this technical variation makes

it often unmeasurable, we explore two methods of batch effect correction, coupled with

LIMMA, for the analysis of such affected data: PCA and SVA. In the PCA setting, we first per-

form a singular value decomposition (SVD) on the row-centered data matrix (M):

Mn�G ¼ Un�nDn�GV
T
G�G

where V is the G × G matrix of orthonormal right-singular vectors (eigenvectors) of MTM.

From there, we extract the first eigenvector from V. This is treated as a covariate, i.e. a mea-

sured source of variation separate from the biological signal, along with an indicator vector for

the treatment condition (differentiation of interest), and is used to build the model matrix

used in the LIMMA method.

Surrogate Variable Analysis (SVA)[27] provides an alternative method for accounting for

cross-compound dependencies induced by latent variation. The R package, EigenMS [28]

implements a variation on this method, with additional functionality specific to mass-spec-

trometry based metabolomics data, as follows. First, the data is modeled as a function of the

predictor variable of interest (i.e. treatment condition), and the matrix of residual values is

Batch effect correction and standardization of metabolomics data
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separated from the effect of treatment status. SVD is then performed on the residuals to obtain

eigenvectors. Iteratively, each eigenvector is tested to determine whether or not it is associated

with a significant proportion of the residual variation in the data. The subset of metabolites

associated with each significant eigenvector is determined through further analysis, and surro-

gate variables are calculated from this set of eigenvectors and the subset of the original data

matrix for the differential metabolites. Finally, these constructed surrogate variables are

included in the model along with the primary predictor in the LIMMA model[27].

RRmix (Random main effect and Random compound-specific error

variance with a MIXture structure)

Unlike the closed-form solution found in the LIMMA method, an iterative approach to

parameter estimation is defined by Bar and colleagues[29], which adapts a modeling frame-

work for empirical Bayes inference. Computational implementation is carried out utilizing a

variant of the Expectation-Maximization (EM) algorithm[30]. The EM algorithm is so named

for its two steps at each iteration: the Expectation, or E-Step, and the Maximization, or

M-Step. In the E-Step, the expected log-likelihood function for the data is calculated using

estimated values for the model parameters. In the M-Step, the Maximum Likelihood Estimate

(MLE) of the parameter vector is computed by maximizing the log-likelihood function from

the E-Step. The parameter estimates in the E-Step are updated using the MLE from the M-

Step, and the algorithm iterates until convergence is achieved. Implementation is both scalable

and tractable, and outperforms other computational methods such as Markov Chain Monte

Carlo (MCMC) sampling[29].

Wan[23] developed the RRmix model as an extension of a model proposed by Bar and col-

leagues with an explicit goal of capturing unobserved variation (such as batch effects) through

the inclusion of latent factors. In the metabolomics context, the model is defined as follows:

yg j bg ; Fg ; s2

g ¼ mþ Xbg þ Xcgg þ L Fg þWg

Wg js
2

g � Nnð0; s2

g InÞ

Fg � Nqð0; IqÞ

bg jbg � N2

0

bgc

" #

; ð1 � bgÞ
s2

0
0

0 0

" #

þ bg

s2
0

0

0 s2
1

" # !

bg � BernoulliðpÞ

s2

g � IGðA;BÞ

where yg is the gth column of the n × G matrix of n samples of G log-transformed, standard-

ized mass-to-charge ratio values, βg is the gth column of the matrix β2×G, μ is a vector of

intercept parameters, X = [1n,x] is an n × 2 matrix in which the second column is an indica-

tor vector for treatment/control group status, Xc is the n × r matrix of r known covariates,

Fg is the gth column of the q × G factor matrix, Λ is the n × q loading matrix, and Wg is the

n × 1 residual error vector. RRmix is fit simultaneously for all metabolites, and thus, the

term ΛF is specified such that it accounts for all possible hidden factors contributing to the

unwanted variation in the experiment across all compounds. Given that the true factors are
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unmeasurable and therefore unverifiable, RRmix estimates ΛF without the intention of

identifying individual sources of latent variation, but rather to capture this variation as

a whole. It is the goal of this approach to model ΛF in order to enhance the accuracy of dif-

ferential abundance testing in the presence of a true biological signal. This approach is

supported in Leek and Storey[27]. The number of hidden factors (q) to be estimated is

determined by PCA on the correlation matrix of the data, with subsequent visual examina-

tion of a scree plot to determine the number of principle components needed to explain a

majority of the variation in the system[31]. Within a reasonable range of values, RRmix is

shown in simulation[23] to be robust to the specific choice of q.

Given the compound-specific latent indicator (bg), metabolite g can be classified as null or

non-null using the estimated posterior mean of bg, or the posterior probability that the com-

pound is differentially abundant between groups. If the estimated bg ðb̂gÞ is greater than a cho-

sen threshold (e.g. 0.9), then it can be concluded that the compound is significantly associated

with the group status in X. From a modeling perspective, the natural sparsity found in LC-MS

data is accounted for by the mixture component, that is, the large number of null effects are

accounted for by this approach. The RRmix model is closely related to the Hidden Expression

Factor analysis model (HEFT) of Gao et al.[31], although the latter does not include this mix-

ture component. Both RRmix and HEFT are implemented using variants of the EM-algorithm.

However, in the case of HEFT, classification is done separately from the fitting process using

compound-specific approximate t-statistics.

As RRmix is a Bayesian mixture model, association of metabolite abundance with treatment

status is determined using a posterior probability, rather than a classical p-value. As such,

RRmix is not directly comparable to the other methods, which rely on post-estimation FDR

thresholding. However, it is shown that an FDR less than 0.1 corresponded to empirical poste-

rior probability threshold of 0.9999[23]. We performed a similar calculation in the context of

our simulation studies. In the large simulated dataset with two latent factors, a 0.9997 posterior

probability threshold resulted in an FDR of 0.1 consistent with the previous finding[23]. In

adopting this new threshold with the original data, the total number of significant metabolites

discovered by RRmix decreases from 42 (posterior probability = 0.9000) to 22 (posterior prob-

ability = 0.9997). However, 6 out of 8 of the positive controls were still recovered (7 out of 8

originally with a 0.9000 cutoff). With regards to specificity, RRmix is robust to the choice of

posterior probability threshold due to its simultaneous model selection and estimation and

mixture component which accounts for the inherent sparsity of effects found in many high-

dimensional biological settings.

Factor Analysis for Multiple Testing (FAMT)

Another method in the family of latent factor models is Factor Analysis Model for Multiple

Testing (FAMT)[24]. The FAMT model is also similar to RRmix but does not include the mix-

ture component or prior assumptions on the regression coefficients and compound-specific

variances. As with RRmix, FAMT model fitting is accomplished via the EM algorithm, and as

with HEFT classification is done subsequently using compound-specific approximate t-statis-

tics. The sparsity in the data is not modeled directly in FAMT; it is accounted for by a post-hoc

FDR thresholding step.

Simulations

To better understand the comparative performance of the methods detailed above, we have

conducted a series of four simulation studies using synthetic data, which closely mirror the

LC-MS data set. In the first simulation, two sets of 50 simulated data sets were created, one set

Batch effect correction and standardization of metabolomics data
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with a sample size of n = 12 and four latent factors representative of unwanted variability

(1) across two machine operators, (2) from analysis on separated but identical LC-MS plat-

forms, and (3–4) from other sources of unknown technical variation, and one set with a sam-

ple size of n = 6 and no latent structure, representative of the single-operator setting. Within

each of the 50 simulated data sets in each set, the data was simulated using model parameters

estimated from our original LC-MS data (refer to S1 Text for details). Further, we defined 5%

of the simulated metabolites to non-null status between treatment and control groups, and,

5% of the metabolites are simulated so that they resemble negative control metabolites as

used previously[11]. Data simulated in the single operator case followed similarly, with no

latent factor component and sample size n = 6. Due to low sample sizes in the study data, as

well as the relatively low metabolite counts, three additional sets of simulations were per-

formed with simulated datasets consisting of 50 and 100 observations on 265 metabolites,

100 and 200 observations on 265 metabolites, and 100 and 200 observations on 500 metabo-

lites, with each pair of observations pertaining to no unwanted variation and two latent fac-

tors respectively. As before, the simulation parameters were estimated using the RRmix

model analysis on the original data set, and 5% of the metabolites are truly differentially

abundant between the samples designated treatment and control. The studies compared the

performance of RRmix to several well-known methodologies. Individual t-tests and LIMMA,

described previously, represent the analysis of high-dimensional biological data without the

consideration of any source of latent variation. RRmix, PCA coupled with LIMMA, unsuper-

vised Surrogate Variable Analysis (SVA), and FAMT, both with and without specifying the

number of latent factors, provide means of analysis, which require no additional information

or measurements on the sources of technical variation from batches, operators, injection

times, or otherwise unspecified.

By simulating negative control spike-in metabolites, it was also possible to explore the per-

formance of additional methodologies which require such prior information. Remove

Unwanted Variation (RUV)[11] and a control-based supervised variant on the Surrogate

Variable Analysis (SVA)[27] were utilized as data normalization techniques in a two-stage

procedure for analysis, coupled with LIMMA. Average Receiver-Operator Characteristic

(ROC) curves and the associated areas under these curves (AUC) were calculated for the sim-

ulated sets and compared across methods for each operator combination, and across operator

combination for each of the methods. Results are shown graphically in Fig 3. FAMT-DEF

was unable to converge on a solution for 6/50 simulated data sets in the 100x500 no factor

case. The remaining 44 simulated sets for which a solution was achieved were averaged over

in the final comparison. analysis was performed on the false classification rates for each of

the 9 methods. The miss rate for truly differentially abundant compounds, or the False Nega-

tive Rate (FNR), and the incorrectly discovered compounds, or False Positive Rate (FPR),

were calculated for each of the methods given that the truly differential compounds were

known in simulation. At varying FDR and posterior probability thresholds, the FNR and FPR

were calculated, and the detection-error tradeoff (DET) curve for the methods are shown in

Fig 4, scaled to a generally accepted FPR range of [0.0, 0.2]. In doing this, we provide a means

for assessing the tradeoff in performance between two measures of negative error for various

methods.

Software

All computations were performed in R[32] version 3.3.1. (https://www.R-project.org). The

heatmap in Fig 1E was generated by hierarchical clustering of the scaled metabolite abundance

data using MetaboAnalyst 3.0[33].
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Fig 3. Evaluation of model performance using ROC of simulations.

A) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the absence of batch effects with 6 observations and

265 metabolites.

B) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the presence of batch effects with 12 observations

and 265 metabolites.

C) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the absence of batch effects with 50 observations

and 265 metabolites.
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Results

Operators induce major undesirable variation in metabolomics data

We used a metabolomics dataset in this study containing relative abundances of 265 metabo-

lites after filtering, across a total of 24 samples obtained using LC-MS methods as described

previously[5] (Methods). The samples were collected by four different operators—namely

“A”, “X”, “D”, and “Z”. Each operator performed the metabolomics experiment on 6 samples

in triplicates: three replicates in the untreated condition (control) and three replicates from

samples treated with a drug (A and X treated samples with a different drug than D and Z).

The biological goal in this experimental set-up was to discover metabolites that significantly

change in abundance as a result of a drug treatment. Therefore, the operator factor is consid-

ered an unwanted effect whereas the drug treatment is the biological effect of interest in this

experiment.

We first performed singular value decomposition (SVD) and factor analysis using RRmix

to visualize the grouping of samples (Methods). Plot of the singular values reveal that the sam-

ples are clustered according to the operators (S1A Fig). Plots of the first four factor loadings

extracted from the RRmix model analysis also confirm a distinct grouping of samples based on

operators (S1B Fig), confirming the existence of a strong undesirable effect. For the subsequent

analysis of differential metabolite abundances, we focused on the control and treated subset of

the data from operators A and X with the exclusion of data from operators D and Z due to the

difference in drug treatment.

Fig 1A and 1B illustrate the first two principal components (PCs) of the metabolomics data-

sets collected by operators A and X, respectively, where PC1 clearly separates control and

treated samples in each case. The results show that when analyzed separately, samples collected

by each operator cluster according to the treatment condition as expected. However, when all

of the samples were combined and analyzed as a larger dataset, the main factor explaining vari-

ance was the operator effect, with PC1 separating operators A and X and PC2 separating sam-

ples with respect to the drug treatment (Fig 1C). The operator effect in this case is an example

of undesirable variation in metabolomics data that can bias the subsequent differential abun-

dance analyses. We observed that in the combined dataset, 56% of the overall variability is

explained by PC1—a batch effect—and only 20% by PC2—the biological effect of interest

(treatment with 2-deoxy-D-glucose (2DG)). Hierarchical clustering of the samples also con-

firmed that samples obtained from the same operator tend to group together more strongly

than samples from the same biological condition (Fig 1D). In all cases, the three replicates

from the same condition and the same operator were always clustered together as expected

(Fig 1D).

D) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the presence of batch effects with 100 observations

and 265 metabolites.

E) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the absence of batch effects with 100 observations

and 265 metabolites.

F) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the presence of batch effects with 200 observations

and 265 metabolites.

G) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the absence of batch effects with 100 observations

and 500 metabolites.

H) Receiver operating characteristic (ROC) plots comparing the performance of the 9 methods in the presence of batch effects with 200 observations

and 500 metabolites.

https://doi.org/10.1371/journal.pone.0179530.g003
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Fig 4. Evaluation of DET using simulations.

A) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the absence of batch effects with 6 observations and 265

metabolites.

B) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the presence of batch effects with 12 observations and 265

metabolites.

C) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the absence of batch effects with 50 observations and 265

metabolites.
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Simple statistical methods are able to detect biological effects in the

absence of major batch effects

We next set out to perform differential abundance analyses using multiple approaches to find

metabolites that are significantly affected by the drug treatment. Since 2DG directly targets a

particular enzyme in the glycolysis pathway (Methods), metabolites in this pathway are

expected to show substantial changes upon the drug treatment (Fig 2A). According to the

underlying mechanism of action of 2DG in cells, we defined a set of 8 glycolytic metabolites

that were expected to change in abundance upon the drug treatment as “positive controls”.

This set of metabolites was then used to compare the performance of a number of differential

abundance analyses methods listed in Table 1.

We first performed differential abundance analyses on samples from each operator sepa-

rately using six statistical methods—the t-test, LIMMA, PCA coupled with LIMMA (PCA-

LIMMA), SVA coupled with LIMMA (SVA-LIMMA), FAMT, and RRmix (Methods, S2A

Fig). The t-test and LIMMA simply assess the significance of differences in mean abundance

levels for each metabolite between the control and drug treated conditions without correction

for potential batch effects. PCA and SVA normalize the data against unwanted variation before

the analysis, and FAMT and RRmix use latent factor models to account for potential batch

effects during the analysis (Methods). The total number of significant discoveries made by

each method (at posterior probability of 0.9 for RRmix and 10% false discovery rate (FDR) for

the other methods) is reported in Table 1 (see Methods for a discussion of the choice of poste-

rior probability in RRmix). Results show that latent factor models as well as simpler methods

such as the t-test make many common discoveries (S2B and S2C Fig), suggesting that they are

able to perform equally well in the absence of any major batch effects (Table 1). Next, we

compared the performance of the six methods using the positive control set of metabolites.

Table 1 lists the number of positive controls that each of the methods was able to discover as

significantly changing upon 2DG treatment (at posterior probability of 0.9 for RRmix and 10%

D) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the presence of batch effects with 100 observations and 265

metabolites.

E) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the absence of batch effects with 100 observations and 265

metabolites.

F) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the presence of batch effects with 200 observations and 265

metabolites.

G) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the absence of batch effects with 100 observations and 500

metabolites.

H) Detection-error tradeoff (DET) plots comparing the performance of the 9 methods in the presence of batch effects with 200 observations and 500

metabolites.

https://doi.org/10.1371/journal.pone.0179530.g004

Table 1. Summary results of differential abundance analyses using various methods.

PERFORMANCE

METRIC!

METHOD #

No. of discoveries in

absence of batch effects

(total = 265)

No. of positive controls

discovered in absence of batch

effects (total = 8)

No. of discoveries in

presence of batch effects

(total = 265)

No. of positive controls

discovered in presence of batch

effects (total = 8)

t-tests 49 5 24 2

LIMMA 115 6 19 4

PCA-LIMMA 158 5 119 7

SVA-LIMMA 152 7 114 7

FAMT 118 7 166 7

RRmix 39 6 42 7

https://doi.org/10.1371/journal.pone.0179530.t001
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FDR for the other methods). FAMT and SVA-LIMMA showed the best performances by

detecting 7 of the 8 positive controls as significantly changed (Table 1). As expected, in the

absence of major batch effects, even simple methods such as the t-test perform reasonably well

in discovering metabolites with large changes in abundance (5 and 6 of the 8 positive controls

were discovered by the t-test and LIMMA, respectively) (Table 1).

Latent factor models are able to detect biological effects in the presence

of batch effects

Next, we combined datasets obtained from operator A and operator X into one dataset and re-

evaluated the performance of each method this time in the presence of an unwanted effect

(S2D Fig). In the combined setting, the number of positive controls discovered by the t-test

and LIMMA methods was lower than the other four methods (Fig 2B, Table 1). This confirms

that in the presence of a batch effect, models that somehow account for unwanted hidden vari-

ability strongly out-perform models that ignore such variations. Consistent with this finding,

the total number of discoveries made by the t-tests and LIMMA in this case was also much

smaller than the other methods (only 11 metabolites were discovered as significantly changing

by all 6 methods, whereas 21 additional metabolites—including 3 of the positive controls—

were discovered by methods other than t-test and LIMMA; Fig 2C, Table 1). Results also sug-

gest that the FAMT method may be discovering false positives that are not found significant

by any of the other methods (Fig 2C, S2D Fig). Together, these results suggest that the RRmix

algorithm is more suited to process metabolomics data with respect to both specificity and sen-

sitivity (lower false positive and higher true positive rates).

Latent factor models facilitate combining of datasets for increasing

statistical power

In order to test the generalizability of our results and applicability of our method, we next

attempted to perform a series of analyses using datasets of varying sizes. Due to the unfeasibil-

ity of obtaining large metabolomics datasets experimentally, we turned to simulated datasets.

We used a series of simulations to further evaluate the performance of 9 different methods.

These methods include the individual t-tests, LIMMA, PCA coupled with LIMMA (PCA-

LIMMA), unsupervised SVA coupled with LIMMA (UNSUPSVA-LIMMA), negative-control

supervised SVA coupled with LIMMA (SUPSVA-LIMMA), RUV coupled with LIMMA

(RUV-LIMMA), FAMT with (FAMT-NBF) and without (FAMT-DEF) specifying the number

of latent factors to be estimated, and RRmix). Receiver operating characteristic (ROC) and

detection error trade-off (DET) curves for multiple simulation settings were generated using

the results. In general, it is expected that increasing sample size would increase the statistical

power associated with identifying true positives. However, to mimic the real dataset, we intro-

duced a batch effect in the larger sample size simulations whereas no batch effects were present

in the smaller sample size cases (Methods).

The area under the curve (AUC) associated with the t-test decreases by 30% and 15% when

sample size increases from 6 to 12 or from 50 to 100, respectively (Fig 3A–3D), indicating that

the unwanted batch effect is confounding the true biological effect causing t-tests to perform

worse despite the increase in sample size. In contrast, latent factor models are able to adjust for

the unwanted variation and perform better with larger sample sizes in the presence of batch

effects (for instance, RRmix AUC increases by 4% and 0.4% when sample size increases from 6

to 12 or from 50 to 100, respectively; Fig 3A–3D). This finding shows that if the appropriate

algorithms are used to analyze metabolomics data, researchers can benefit from combining

multiple data sets by gaining higher statistical power. We confirm using simulations that the
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t-tests and LIMMA perform as well as the other seven methods in the absence of batch

effects (Fig 3A, 3C, 3E and 3G), while in the presence of batch effects, RRmix, FAMT, and

UNSUPSVA -LIMMA significantly outperform methods that fail to account for unwanted

variations (t-test and LIMMA) as well as alternative normalization methods (PCA-LIMMA,

SUPSVA-LIMMA, and RUV-LIMMA) (Fig 3B, 3D, 3F and 3H).

As shown in the larger dataset simulations, accounting for latent variation facilitates gains

in performance of all of the methods tested (Fig 3E–3H). However, in the presence of batch

effects, most methods do progressively worse with decreasing sample sizes, while RRmix,

FAMT, and UNSUPSVA-LIMMA maintain highest sensitivity levels (Fig 3B, 3D, 3F and 3H).

These methods perform very well comparatively, and have the added benefit of not requiring

prior knowledge of batch effect sources or need for negative controls.

RRmix outperforms FAMT with respect to specificity

The RRmix approach is shown to benefit from imposing sparsity on the model directly. This is

done through the mixture component, with a prior assumption placed on the βg’s with the bg’s.

By modeling the large number of null effects directly, RRmix differs from FAMT, which relies

on heavy FDR thresholding after model selection. In simulation, RRmix was robust to changes

in posterior probability cutoff, while the number of metabolites FAMT found to be signifi-

cantly different between ‘treatment’ and ‘control’ groups depended greatly on FDR threshold

selection. S3 Fig shows the ranked null probabilities for each of the 265 metabolites from the

LC-MS dataset as calculated by both RRmix and FAMT. There is a steep drop-off between cal-

culated null and non-null metabolites for RRmix, while the null probabilities for FAMT gradu-

ally decrease with each successive rank. Overall, this shows that methods such as RRmix are

better suited to correctly classify metabolites of interest as significant or not, even with changes

in significance threshold cutoff, due to their consideration of sparsity of the effects directly in

the model (Methods). Notably, an analysis of the detection error tradeoff reveals that RRmix

yields the greatest performance with respect to false classifications of any of the methods in all

simulations (Fig 4A–4H). We emphasize here that RRmix is able to outperform other methods

despite the lack of incorporation of any prior knowledge or additional controls in this algo-

rithm, illustrating the appeal of RRmix over previously proposed alternatives.

Conclusions

Similar to other types of high-dimensional data, the distinction between hidden undesirable

variation and true biological variation in metabolomics data is crucial in order to ensure repro-

ducibility and draw conclusions from experimental results. Some of the approaches frequently

used to address this issue either impose additional experimental burden such as the use of mul-

tiple internal standards, or rely on prior knowledge of undesired effects such as the distribu-

tion of signal intensities, feature-specific drift patterns, or the determination of a set of

metabolites as controls that are robust to batch effects.

Here, we illustrate that latent factor models can reliably remove undesirable variability

from metabolomics data while preserving true biological effects. The main advantage to utiliz-

ing such algorithms is that they rely solely on mathematical methods to correct for batch

effects at the data analysis step without prior knowledge about the nature of the batch effects.

Therefore, these algorithms are robust, and can be applied to pre-existing metabolomics data

as well as future studies. In the family of latent factor models, we introduced the RRmix algo-

rithm and show that it efficiently handles batch effects in metabolomics data as well as simu-

lated data, and it outperforms alternative approaches. We believe that the field will greatly

benefit from application of these findings and implementation of the latent factor models
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introduced here. Wider implications of this study include the applicability of the RRmix

model to other fields of study that handle high-dimensional biological data. Genomics, tran-

scriptomics, proteomics, and other such disciplines often focus on detecting significant differ-

ences in mean measurable units from arrays of size n × p with n<< p. We should note that

although RRmix uses the entirety of a given dataset in one step for the model fitting and esti-

mation procedure, it is different from traditional multivariate methods that consider interac-

tions between different variables (in this case metabolites) into their models. As discussed in

the manuscript, the main function of RRmix is detecting differential expression in individual

variables, however, it is plausible to try to expand this framework to multivariate analyses in

the future to involve testing biologically meaningful groups of metabolites. We believe that

RRmix model will also perform well in analyzing high dimensional datasets other than meta-

bolomics data, although this remains to be validated.

Supporting information

S1 Text. Supplementary information on simulation details.

(DOCX)

S1 Fig. Dataset visualization.

A) Plots denotes the pairwise sequential comparison of the factor loadings from singular value

decomposition (SVD), with the left showing the plots produced with the first factor loading

on the x-axis and the second factor loading on the y-axis, the middle denoting the plots of

the second factor loading on the x-axis and the third factor loading on the y-axis, and the

right plotting the third factor loading on the x-axis and the third factor loading on the y-axis.

B) Plots are organized similarly to part (A) with the factor loadings from the RRmix model.

(TIFF)

S2 Fig. Method comparisons.

A) Diagram depicting the approach used to compare the performance of the four methods

with respect to detecting metabolite abundance changes upon drug treatment using data

collected by individual operators (no major batch effects present).

B) Total number of significant discoveries made by each method using metabolomics data

from operator “A” (RRmix p = 0.9; FDR 10%).

C) Total number of significant discoveries made by each method using metabolomics data

from operator “X” (RRmix p = 0.9; FDR 10%).

D) Diagram depicting the approach used to compare the performance of the four methods

with respect to detecting metabolite abundance changes upon drug treatment using meta-

bolomics data in the presence of a batch effect—operator.

E) Venn diagram comparing total number of discoveries made by each of the methods in the

combined dataset (RRmix p = 0.9; FDR 10%).

(TIFF)

S3 Fig. FAMT vs. RRmix.

A) Plot showing the distribution of null probabilities for the 265 metabolites from the LC-MS

metabolomics dataset (ranked in reverse-significance order) as calculated by RRmix and

FAMT.

(TIFF)
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