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Abstract

Predicting extrema of chaotic systems in high-dimensional phase space remains a chal-

lenge. Methods, which give extrema that are valid in the long term, have thus far been

restricted to models of only a few variables. Here, a method is presented which treats

extrema of chaotic systems as belonging to discretised manifolds of low dimension (low-D)

embedded in high-dimensional (high-D) phase space. As a central feature, the method

exploits that strange attractor dimension is generally much smaller than parent system

phase space dimension. This is important, since the computational cost associated with dis-

cretised manifolds depends exponentially on their dimension. Thus, systems that would oth-

erwise be associated with tremendous computational challenges, can be tackled on a

laptop. As a test, bounding manifolds are calculated for high-D modifications of the canoni-

cal Duffing system. Parameters can be set such that the bounding manifold displays har-

monic behaviour even if the underlying system is chaotic. Thus, solving for one post-

transient forcing cycle of the bounding manifold predicts the extrema of the underlying cha-

otic problem indefinitely.

Introduction

Coupled systems of non-linear ordinary differential equations (ODEs) are ubiquitous in scien-

tific literature and appear as the end result of efforts to mathematically model phenomena

from practically every branch of science. The desire for quantitative accuracy often leads to

such models containing large numbers of variables, for example, as a consequence of a highly

resolved finite element mesh, an in-silico model of human tissue—be it heart, tumour or brain

—containing many simulated cells, or an electrical circuit with many nodes. Systems of ordi-

nary differential equations with non-linear terms have the potential to display chaotic behav-

iour, in which case their solutions evolve on “strange” attractors of fractal dimension.

The ability to precisely predict the extrema of large chaotic systems has obvious utility

across many fields. While bifurcation analysis serves to characterise the qualitative behaviour

of a system, extrema prediction adds quantitative knowledge. Perhaps the clearest benefit is

where state variables have critical values, e.g., in predator-prey systems where reaching a
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critical value might spell extinction of a species or in neuron- or cardiac myocyte models,

where reaching certain states might initiate seizures or arrhythmias. Even when such dichoto-

mous phenomena are not in play, extrema may still be important, such as in finance and struc-

tural mechanics. Historically, mechanical constructions have been designed for predictable

operation in the quasi-static regime and, more recently, in the harmonic regime. The ability to

design structures for safe operation in the chaotic regime would push the envelope even fur-

ther and pave the way for lighter and more flexible designs.

Much chaos research has dealt with small systems with attractor dimension close to phase

space dimension. The Lorenz attractor [1] is perhaps the quintessential example: Originally a

model of atmospheric dynamics, its phase space dimension is 3 and the attractor dimension is

2.06. However, in an effort to preserve quantitative accuracy, models in industrial use tend to

contain very large numbers of variables. For example, “real” weather forecast models contain

thousands to millions of variables. They are highly spatially resolved and the computational

challenge of dealing with them is considerable. Yet, they still display low-D chaos [2]. Thus,

here, the gap between phase space dimension (millions) and attractor dimension (single fig-

ures) is enormous.

While the seminal work of the likes of Poincaré and his colleagues laid a crucial foundation

for the research in non-linear dynamics [3], Lorenz’s famous paper [1] was arguably the first

complete account of a system exhibiting deterministic chaos. While the Lorenz equations, as a

highly reduced version of the Navier-Stokes equations, described atmospheric dynamics, the

range of systems now shown to display chaotic behaviour is vast. The decades that followed

Lorenz’s paper saw the publication of a number of seminal chaos papers across several fields of

science and the canon of chaos now includes systems derived from solid mechanics, fluid

mechanics, electrical dynamics and chemistry [4–11]. Since the 1980s, in the wake of the

expansion of mathematics into new fields, chaos research has come to interface with, e.g.,

finance, biology and medicine [12–23], but also with fields such as game theory, behavioural

science and opinion formation [24–27].

In the early 1960s the Noble model [28, 29] of cardiac tissue was developed. The model was

refined over the subsequent years and advanced incarnations of it are still being published

today, with the most recent versions being relevant for drug discovery [30, 31] and as clinical

decision tools [32]. What all Noble-type models have in common is that, being coupled sys-

tems of non-linear ODEs, they contain the substrate for chaos. Indeed, in the late 1980s it was

shown experimentally that cardiac tissue, when driven at increasing pace, goes through a cas-

cade of bifurcations and ultimately displays low-dimensional deterministic chaos [33]. While

cardiology will probably be the first medical speciality to incorporate physiological and patho-

logical mathematical models into the forefront of clinical practice, other areas of medicine are

the subject of non-linear dynamics and chaos research, such as neurology [18, 19] and oncol-

ogy [20, 34, 35].

Some of the more fundamental properties and definitions pertaining to chaos have begun

to find use in practical applications. For example, the Lyapunov spectrum—a concept central

to chaos—can be utilised for parameter identification purposes [36]. Also, the tendency of a

chaotic system to visit large regions of state space can be exploited in control systems [37].

Luther and co-workers applied this principle to enable low energy resynchronisation of fibril-

lating cardiac myocytes [23] and managed to do so at significantly lower energies than those of

standard defibrillation. Recently, Wang and co-workers developed a chaos control framework

and applied it to control apoptosis in a model of T-cell leukaemia [21].

The search for methods to predict the future behaviour of chaotic systems spans at least

three decades, but the only widely applicable methods thus far have focused on making tight

and local near-future predictions [38, 39]. The advantage of such methods is that they delimit
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possible future states of a system relatively narrowly in phase-space and that they can be

applied to high-D chaos in high-D phase space. The obvious drawback is their local and conse-

quently short-term nature. The effort towards determining quantitatively accurate long-term

global bounds of chaotic systems has mainly been focused on obtaining closed-form solutions

to specific systems on an ad-hoc basis. As the information required to store a manifold is expo-

nentially dependent on dimension, existing methods of bounding strange attractors break

down in high-D phase space. Efforts to bound chaotic systems have, so far, mainly focused on

systems of three variables [40, 41] with attractor dimension close to phase space dimension. A

more generalised method for the bounding of low-D chaotic systems was proposed in [42, 43],

which took the approach of defining localising sets with bounding manifolds defined as

polynomials.

The present method is applicable in situations when the phase-space is high-D, but the

attractor is low-D. In this situation it is computationally feasible to define a long-term bound

for the system. Although study of high-D chaos and the factors impacting on attractor dimen-

sion has taken place since the 1980s [39, 44–46], as discussed above, many natural processes,

even if high-D in terms of phase space, generate low-D attractors. It has been and still is com-

monplace to reduce large systems to the minimum dimension necessary for qualitative accu-

racy [5], which in turn tends to be defined as preservation of the topology of the attractor [9].

However, qualitative methods sacrifice quantitative accuracy. And quantitative accuracy may

be crucial. Even periodic systems, are often simulated by very large quantitatively accurate

high-D models. The study of dynamic phenomena with linear finite element models is an

example of this.

The method presented here finds its niche in situations where model reduction is unaccept-

able and the extrema of system variables are important. It is deliberately designed to be intui-

tive and easy to apply, i.e. “wrap around” an existing system. The aim is that, once applied and

proven on attractors of higher (but still low) dimension, it can be used by non-experts in chaos

and non-linear dynamics in a plug and play fashion.

Results

Two manifolds are defined in the following: The auxiliary manifold (AM) and the bounding

manifold (BM). The AM is anM-dimensional manifold, whereM is an integer. It is embedded

in the phase space of the system to be bounded and, in turn, the BM is embedded on the AM.

The hope is that the AM and the BM display stationary harmonic behaviour in time, such that

they only need to be calculated for a couple of post-transient forcing cycles.

The bounding- and auxiliary manifolds

The manifolds are non-autonomous extensions of the concept of invariant and inertial mani-

folds and draw inspiration from existing literature [47, 48]. However, the following does not

adhere strictly to the quite specific definitions and nomenclature of inertial manifold theory.

Firstly, inertial manifolds are most often employed as a means to directly solve the original

equations on the manifold. They allow the reduction of dimensionality from either infinity (for

partial differential equations) or high-finite dimension (ODEs with many degrees of freedom).

Here, no attempt is made at solving the underlying system of ODEs on the manifolds. The AM

serves the purpose of reducing the dimensionality of the BM—not that of the underlying prob-

lem. Secondly, inertial manifold theory rests on the premise that solutions in full phase-space

approach a solution on the manifold. The requirement here is simply that solutions approach

the manifold, which is less restrictive. So, although the AM draws from inertial manifold the-

ory, it is named as it is to emphasize the differences and avoid confusion.

Bounding low-D chaos in high-D phase space
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If all unstable directions are contained on the AM, solutions that do not start out on the

manifold, will decay exponentially onto it and, post-transiently, an attractor will lie on the

AM. Let c denote the bounding manifold. Then, the premise of the method is that

A � C � B

c ¼ @C
ð1Þ

where A is an attractor, B is the auxiliary manifold and C is anM-manifold with boundary.

Thus, c is a closed (M − 1)-manifold. Note that “bounding manifold” is formally a (potential)

misnomer as extrema of the system may lie on interior points (and not on the BM itself). Fur-

ther, this necessitates the post hoc calculation of interior points, which is discussed below.

The AM is embedded in the full phase space x 2 RN of the system of ODEs:

_x ¼ fðx; tÞ ð2Þ

As it shall become apparent in the following, it is a requirement that f is smooth. Furthermore,

it is a requirement thatM> d, where d is the (fractal) dimension of the attractor. The most

obvious choice is to selectM as the nearest integer greater than d. As mentioned above, the dis-

cipline of bounding chaotic systems has previously focused on N − 1 dimensional boundaries

to systems with N dimensional phase spaces [40, 42, 43]. Such approaches will fail rapidly as N
increases to that of even modest sized problems, since the computational cost of operating on

a discretised manifold depends exponentially on its dimension. Here, it is exploited that the

strange attractor is normally a low-D entity in a high-D phase space, i.e, that d<M<<N. So,

the BM, c(t), need not be more thanM − 1 dimensional. If c(t) is harmonic in time, the solu-

tion can be stopped after a couple of post-transient forcing cycles. Fig 1 shows this scenario for

M = 2. For the method to work, the AM must be invariant under the flow, meaning that solu-

tions that start on it, stay there. The manifold is allowed to vary with time. So, labelling the

manifold “invariant” may cause confusion. Nevertheless, this is the naming convention widely

adopted in literature and time dependent inertial manifolds are well known [49]. The key

requirement is that the manifold displays regular motion. Clearly, if the manifold itself is cha-

otic, hence the BM also, the method has achieved very little.

To introduce key concepts, we consider the case of a 2-D AM in aRN phase space and then

generalise the ideas toM-D manifolds in RN phase spaces. Fig 2 shows a schematic of the BM

and AM. It also introduces the basis vectors of the AM (w1,w2), the inward normal u1 and the

BM unit tangent vector u2. Furthermore, the figure shows an off-manifold point which is pro-

jected along a stable direction onto the manifold. If certain criteria are met, it can be proven

that the off-manifold point converges exponentially with a solution on the manifold [9, 48, 50,

51]. However, what matters is that off-manifold points approach the manifold asymptotically,

end up somewhere on it and stay there, which is uncontroversial. Here, the notion of points

being “on” the manifold is taken to include points infinitesimally close to it, which is the case

with asymptotically approaching points. Obviously, once the distance drops below machine

precision, there is no practical distinction.

The motion of the BM is the sum of the tangent on-manifold motion and the orthogonal

off-manifold motion. The latter is readily determined through Gram-Schmidt processing of

the flow. The expression for BM motion then becomes:

_c ¼ f � u1ðf � u1Þ � u2ðf � u2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
?

þ u1d1 þ u2d2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

ð3Þ

where f(x, t) = f(c(m), t) is defined in Eq (2), _cðm; tÞ is the rate of the BM, di are the on-mani-

fold velocities and ui is a local orthonormal basis spanning the tangent space of the AM. For
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AMs of dimension 3, 4 and so on, Eq (3) is easily expanded with d3, u3, d4, u4, etc. That is, gen-

erally

_c ¼ f �
XM

i¼1

uiðf � uiÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
?

þ
XM

i¼1

uidi
|fflfflffl{zfflfflffl}

k

ð4Þ

The flow and the vectors are evaluated locally along the length of the BM and depend on

time, i.e.

f ¼ fðx; tÞ ¼ fðcðmÞ; tÞ

ui ¼ uiðcðmÞ; tÞ; i ¼ 1; 2; :::;M

di ¼ diðcðmÞ; tÞ; i ¼ 1; 2; :::;M

ð5Þ

Fig 1. Schematic showing the contraction of a set of initial conditions along off-manifold directions onto the AM and the post-transient

harmonic behaviour of the AM and BM. The parameter m runs from 0 to 1 along the length of the BM. A number of solutions are shown as dots.

Initially they lie as a cloud in phase space, but they rapidly contract along stable directions until they converge to the AM. As shall become apparent, it is

sufficient to calculate the tangent space of the AM to orientate the BM c(m, t). This is done with a spectral method.

https://doi.org/10.1371/journal.pone.0179507.g001
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The fundamental idea behind the method is that the locally unstable directions, the directions

of stretch, are contained in the on-manifold terms (“k”). If that is the case, the remaining off-

manifold motion (“?”) will consist only of exponential decay onto the manifold.

The nomenclature is such that u1 is the inward normal (tangent to the AM and orthogonal

to the BM) with all other vectors spanning the space tangent to the BM (tangent to both the

AM and the BM).

Fig 2. Schematic of AM and BM. An off-manifold point with stable orthogonal motion is shown. The unit vector u1 points in the inward direction and the

unit vector u2 is tangential to the BM. The vectors w1(x) and w2(x) span the tangent space of the AM. On the BM (u1,u2) and (w1,w2) span the same 2-D

tangent space. Here, the dimension of the AM, M, is 2.

https://doi.org/10.1371/journal.pone.0179507.g002
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The inward motion of the boundary is taken to follow the heuristic expression:

d1 ¼ max ð u1 � f; k=bÞ ð6Þ

where β is the linear impedance and κ = κ(c(m, t)) is the signed dimensionless curvature signal

passed through a low-pass filter with time constant τ:

_k ¼
@u2

@m
� u1 � k

� �

=t ð7Þ

The equation of motion Eq (6) automatically bounds the underlying ODE and filters away

high frequency oscillations. It will straighten the BM locally until the curvature term vanishes,

at which point the BM is at equilibrium. Since the BM is a closed curve, the global net effect of

the curvature term is to contract the BM. The responsiveness of the BM is determined by the

values of β and τ. Although the expression is non-linear in d1, it has the merit of being local, so

does not require the (iterative) solution of a system of non-linear equations. A spatially cou-

pled formulation, e.g., based on constrained optimization and a Lagrange multiplier field,

would come with this drawback. The present study considers 1-D BMs, so the measure of cur-

vature is given. For higher-dimensional BMs (2-D surfaces and beyond), a scalar quantity such

as the mean curvature might be used. The motion of the BM is discretised using Hermite finite

elements. These have the sufficient order to allow the calculation of curvature.

Axial motion. The axial motion of the BM seeks to space nodes evenly along the BM. This

is no more than an adaptive meshing exercise. For the sufficiently well discretised BM, the

axial motion has no appreciable impact on the shape of c. The below expressions are valid for a

1-D BM, so a general (M − 1)-D version is needed. Consider the rate of change of elastic energy

with the addition of a dissipative term

s ¼ ðc0 � u2Þð _c0 � u2Þ þ
1

2
b2d

2

2
ð8Þ

Now, applying Eq (3) and requiring stationarity with respect to the d2 field, one gets the

expression

ds ¼ ðc0 � u2Þu2 � ðu2dd02 þ u0
2
dd2Þ þ b2d2dd2 ¼ 0 ð9Þ

where prime denotes differentation with respect tom. As with the d1 field described above, the

d2 field is expanded in terms of Hermite shape functions and the finite element method is used

to solve Eq (9) for nodal values of d2. The details are given in the methods section.

Interior points

Unlike in some other methods from the literature, the interior of the manifold is not necessary

for the determination of manifold orientation. Despite this, it must still be considered, as an

extremum of a state variable might lie on the interior and not on the BM. One must balance the

added computational cost of sampling the interior against the need for a high number of sam-

ples. The equation of motion for the interior points is a compromise between simplicity and the

desire for evenly spaced points and could be defined in a variety of ways. What is unequivocal

though, is that interior points must ride on the tangent space associated with the AM.

The orientation at interior points is determined in the same way as on the BM. A practical

and fairly straight forward way of ensuring evenly spaced points throughout a simulation,

where the BM may change shape significantly, is to connect the interior points to their neigh-

bours and the BM with linear truss elements of zero initial length. Then, point positions are

updated dynamically as nodes of truss elements. For the purposes outlined here, this is nothing
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more than a simple, and probably sub-optimal, adaptive meshing technique. The advantage of

truss elements is that they are readily defined in higher dimensions as their length can be easily

calculated in N-dimensional Cartesian coordinates. Thus, they are practical for point spacing

in phase spaces above 3-D. The equation of motion for interior points is identical in form to

Eq (3), except that now d1 and d2 are determined by force summations of the truss elements.

That is, the interior points, i.e., truss element nodes, are restricted to move on the AM onto

which all truss element forces, accelerations and velocities are projected. The truss element

normalised stiffness and damping, kt/mt and dt/mt, respectively, are given in Table 1. The

motion of truss element nodes on the BM c is prescribed to follow the BM in a one-way cou-

pling fashion, so the motion of the BM is not influenced by the interior nodes. This means that

the motion of the BM can be computed first, and interior point sampling performed in post-

processing.

The equation of motion for an interior point, o 2 RN , is

_o ¼ f �
XM

i¼1

wiðf � wiÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
?

þ
XM

i¼1

widi
|fflfflfflffl{zfflfflfflffl}

k

ð10Þ

where di are determined as

ai ¼
X

i

wi � h; di ¼
Z

t
aidt ð11Þ

and h 2 RN is the resultant mass-normalised force from trusses pulling on an interior point.

Example: The duffing oscillator

The Duffing oscillator is among the simplest systems known to exhibit chaos, yet still finds use

for a wide variety of applications including, e.g., nano-mechanical systems [52]. Consider a

system consisting of a Duffing oscillator in series with a number of linear spring-mass-damper

oscillators. The linear oscillators add to the phase space of the system, and quantitatively affect

Table 1. Model parameters for the simulations. The parameter τ is the time constant for curvature filtering,

β is the proportional impedance on curvature, β2 is the impedance on axial motion, kt, dt and mt are the stiff-

ness, damping and mass of interior point truss elements, α is the non-linear Duffing stiffness, k1, d1 and m1

are the linear stiffness, damping and mass of the Duffing oscillator, f0 is the forcing term amplitude,ω is the

forcing term frequency, k2, d2 and m2 are the stiffness, damping and mass of the linear oscillators, Δt is the

time step for the time integration scheme (BM and interior point position update), Δtλ is the time step for eigen-

value calculation and orientation update, K is the number of nodes (and elements) used to discretise c, and

KG is the number of Gauss points for numerical integration in space along c.

All τ = 0.01 β = 0.1 β2 = 1.0 kt/mt = 500

dt/mt = 50 α = 1 k1 = −1 m1 = 1

Δt = π/2 � 10−5 Δtλ = π � 10−2 K = 80 KG = 280

I N = 22 f0 = 1.0 ω = 2.0 d1 = 0.2

m2 = 0.05 d2 = 2.0 k2 = 20.0

II N = 42 f0 = 0.5 ω = 1.0 d1 = 0.2

m2 = 0.025 d2 = 2.0 k2 = 20.0

III N = 82 f0 = 0.5 ω = 1.0 d1 = 0.2

m2 = 0.0125 d2 = 4.0 k2 = 40.0

IV N = 22 f0 = 0.4 ω = 1.0 d1 = 0.1

m2 = 0.05 d2 = 2.0 k2 = 20.0

https://doi.org/10.1371/journal.pone.0179507.t001
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the solution to the equations, but do not add to the dimension of the attractor or influence its

topology. If the duffing oscillator is assigned the first two degrees of freedom, the system of

equations can be written as

_y1 ¼ y2

_y2 ¼
1

m1

ðf0 cos ðotÞ � k1y1 � d1y2 � ay3

1
þ ðy3 � y1Þk2 þ ðy4 � y2Þd2Þ

_y3 ¼ y4

_y4 ¼
1

m2

ððy1 � 2y3 þ y5Þk2 þ ðy2 � 2y4 þ y6Þd2Þ

:::

_y2i� 1 ¼ y2i

_y2i ¼
1

m2

ððyi2� 3 � 2y2i� 1 þ y2iþ1Þk2 þ ðyi2� 2 � 2y2i þ y2iþ2Þd2Þ; i ¼ 3; 4; ::

:::

_yN� 1 ¼ yN

_yN ¼
1

m2

ððyN� 3 � yN� 1Þk2 þ ðyN� 2 � yNÞd2Þ

ð12Þ

where f0cos(ωt) is a harmonic forcing term, k1, d1, α andm1 are the parameters of the Duffing

oscillator and all the linear oscillators are assigned the identical parameters k2, d2 andm2. The

governing equations are on the form of Eq (2) so can be plugged into the method as described

above. In order to reduce the mesh refinement and time step requirements associated with

curvature and stretch along fast, linear terms, the equations are transformed as x = [x1, x2, x3,

. . ., xN]T = [y1, y2, y3/10, . . ., yN/10]T and transformed back in post-processing. This transfor-

mation is beneficial and possible because it is known a-priory that the non-linearity of the sys-

tem appears in the first two equations—thus “compressing” all other variables and effectively

increasing mesh refinement in the non-linear directions. For some systems, all variables might

appear in non-linear terms, or it may not be known which ones that do. Then, scaling becomes

futile, potentially necessitating finer meshes and shorter time steps. Parameters for all simula-

tions are shown in Table 1. In general terms, a fast system requires a fast BM. So a system con-

taining high frequencies and rapid changes in J will require low impedances on the BM, lower

time constants for the first order filter and, of course, smaller time steps.

In Fig 3 is shown the convergence of the AM with twenty solutions for parameter set II in

Table 1. The phase space is 42-D, and only the (y1, y2, y42) projection is shown, so more infor-

mation is contained in the simulation than can be displayed on the figure. Note that the solu-

tions converge to the AM and stay there. The figure also shows the truss elements connecting

interior points to each other and to the BM. A video of a similar process for parameter set III is

shown in S1 File. Fig 4 shows snapshots of projections of the BM onto a selection of coordinate

surfaces for parameter set III in Table 1. The projections vary considerably in shape and size,

indicating differences in phase and magnitude, respectively, of the harmonic components of

the state variable motion. A video of a similar process for parameter set III is shown in S2 File.

Figs 5–7 show projections of extremal values onto selected coordinate directions (y1, y2, yN
−1 and yN) for parameter sets I-III. These are found by sampling all Gauss points on the BM as

well as the interior points (see, e.g., Fig 3). The motion of the AM and the BM is calculated for

five forcing cycles and the subsequent 95 cycles are copies of the fifth, which is post-transient.

Twenty time series are calculated for 100 forcing cycles in order to validate the BM and it is

seen that they all remain within the predicted values. The BM is noted to be reasonably tight

and to be following the low frequency dynamics of the system. As one would expect, not all

variables in the system influence the BM equally. The geometric nature of the method means
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that for the BM to contract, curvature must exist in the coordinate direction of the relevant

variable. With the proposed equation of motion, the BM will tend towards being convex every-

where. The approach works well with the here presented Duffing-type system, but there is no

proof that it will in general, so future modifications to the equation of motion Eq (6) producing

a locally concave BM might be beneficial.

Example: The parametric duffing oscillator

To illustrate the method’s ability to deal with situations where the Jacobi matrix depends

explicitly on time, a parametrically excited version of the duffing equation is considered. The

equations for this system are given in Eq (13). Notice that the non-linear term now varies

explicitly with time.

_y1 ¼ y2

_y2 ¼
1

m1

ð� k1y1 � d1y2 � ðð1 � f0Þ þ f0 cos ðotÞÞay3

1
þ ðy3 � y1Þk2 þ ðy4 � y2Þd2Þ

_y3 ¼ y4

_y4 ¼
1

m2

ððy1 � 2y3 þ y5Þk2 þ ðy2 � 2y4 þ y6Þd2Þ

:::

_y2i� 1 ¼ y2i

_y2i ¼
1

m2

ððyi2� 3 � 2y2i� 1 þ y2iþ1Þk2 þ ðyi2� 2 � 2y2i þ y2iþ2Þd2Þ; i ¼ 3; 4; ::

:::

_yN� 1 ¼ yN

_yN ¼
1

m2

ððyN� 3 � yN� 1Þk2 þ ðyN� 2 � yNÞd2Þ

ð13Þ

Fig 3. The (y1, y2, y42) projection of the AM and BM at times tω/(2π) = {0.005, 0.1, 0.15, 0.3, 0.6, 1.5, 2.0, 4.66}

during a simulation. Overlaid are twenty different time series with tails tracing their motion shown in red. Each tail

represents Δtω/(2π) = 0.05. The time series rapidly converge onto the manifold. The BM will expand to contain

those attractors whose basins of attraction it intersects. The interior points are connected with truss elements of

zero initial length which are shown in the figure.

https://doi.org/10.1371/journal.pone.0179507.g003
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Fig 4. Snapshots of projections of the BM c(t) onto coordinate surfaces (y1, y2), (y3, y4), . . ., (y81, y82) for various

times during a simulation for parameter set III in Table 1. Note that the last two figures are largely similar, indicating

that the BM is becoming post-transient.

https://doi.org/10.1371/journal.pone.0179507.g004
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Fig 5. Extrema of Eq (12): Plots of extrema (red) and 20 different time series (black) of variables y1, y2, y21 and y22 for parameter set I. The

bounds for odd (0th order) variables are somewhat tighter than those of even numbered (1st order) variables.

https://doi.org/10.1371/journal.pone.0179507.g005
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This system has an explicitly time dependent Jacobi matrix. Fig 8 shows the extrema of Eq (13)

with parameter set IV as computed by the method. The method bounds the equation success-

fully. This is as expected, since the underlying derivations make no assumptions of autonomy:

See the methods section for details. Fig 9 shows the transient phase of the extrema with indica-

tion of some of the degrees of freedom.

Methods

Local and instantaneous stretch and compression

Let us explore the behaviour of two infinitesimally nearby trajectories in a smooth, non-linear

and non-autonomous flow. Due to smoothness, the state can be represented by its Taylor

expansion. Consider a perturbation in time by Δt and in space by a v, where a is a scalar and

Fig 6. Extrema of Eq (12): Plots of extrema (red) and 20 different time series (black) of variables y1, y2, y41 and y42 for parameter set II.

https://doi.org/10.1371/journal.pone.0179507.g006
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v 2 RN is a unit vector:

x ¼ x0 þ _xDt þ
@x
@a
aþ 1

2
€xDt2 þ 1

2

@
2x
@a2

a2 þ
@ _x
@a
aDt þ Oð3Þ ð14Þ

where Δt = t − t0 and O(3) represents terms of order 3 and above. Fig 10 shows a state, x1, per-

turbed forward in time and another, x2, perturbed in space and time. Representing the per-

turbed states x1 and x2 as their Taylor expansions and substituting _x ¼ f we obtain

x1 ¼ x0 þ fDt þ
1

2
_f Dt2 þ Oð3Þ

x2 ¼ x0 þ fDt þ
@x
@a
aþ

1

2
_f Dt2 þ

1

2

@
2x
@a2

a2 þ
@f
@a
aDt þ Oð3Þ

ð15Þ

Fig 7. Extrema of Eq (12): Plots of extrema (red) and 20 different time series (black) of variables y1, y2, y81 and y82 for parameter set III.

https://doi.org/10.1371/journal.pone.0179507.g007
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where f = f(x0, t0). Now, from Eq (15) and recognising that @x
@a ¼ v, the rate of stretch is readily

obtained as

lim
a!0

Dt!0

ðx2 � x1Þ � av
aDt

¼ lim
a!0

Dt!0

@f
@a
þ
Oð3Þ
aDt

� �

¼
@f
@a ð16Þ

It is easily seen that

@f
@a
¼ Jv ð17Þ

Where J is the Jacobi matrix. If v is an eigenvector with a real eigenvalue, the local stretch is

parallel to it. If it is complex, the stretch will lie in the space spanned by v and its complex con-

jugate (since the flow is real). Thus, imagnining for a moment a full spectral decomposition, it

Fig 8. Extrema of Eq (13): Plots of extrema (red) and 20 different time series (black) of selected variables for parameter set IV.

https://doi.org/10.1371/journal.pone.0179507.g008
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is easily seen that, locally, the only directions of positive stretch are those associated with eigen-

values with a positive real part. Nearby solutions will converge exponentially in all other direc-

tions—i.e. contract. This holds for either autonomous or non-autonomous systems as no

assumptions have been made in regards to the time dependence of _xðx; tÞ apart from the

requirement of smoothness. So, as is evident, the spectrum plays a pivotal role in manifold ori-

entation, even for non-autonomous systems.

Although the above is not a novel result, its implications justify its repetition here. Chaos is

a global phenomenon and eigenvalue decompositions cannot be utilised globally to describe

stretching and folding. However, locally and instantaneously, stretching and folding are

described by the spectrum of the (ever changing) Jacobi matrix and the recognition of this

underpins the present method.

Fig 9. Transient phase of extrema calculated for Eq (13) (parameter set IV). The extrema will not be valid before the manifold is post-

transient.

https://doi.org/10.1371/journal.pone.0179507.g009
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Spatial discretisation. The choice of spatial discretisation method is not central to the

method, and the approach taken here may well be substituted with another method depending

on application. Here, all fields on the BM are discretised using finite element theory with Her-

mite shape functions:

cðm; tÞ ¼
XK

i¼1

�iðmÞciðtÞ _cðm; tÞ ¼
XK

i¼1

�iðmÞ _ciðtÞ

ujðm; tÞ ¼
XK

i¼1

�iðmÞujiðtÞ wjðm; tÞ ¼
XK

i¼1

�iðmÞwjiðtÞ

djðm; tÞ ¼
XK

i¼1

�iðmÞdjiðtÞ; j ¼ 1; 2; :::M

ð18Þ

where ϕi(m) are the shape functions, K is the number of degrees of freedom used to discretise

the BM and, e.g.,

ci ¼ cij; i ¼ 1; 2; :::K; j ¼ 1; 2; :::N ð19Þ

are nodal values of the position of the BM and N is the dimension of the system. Time deriva-

tives and spatial derivatives for the BM are easily obtained from these expressions. The use of

Hermite (higher order) shape functions allows for the definition of curvature, which appears

Fig 10. Perturbed solutions and their behaviour. These particular solutions are shown to converge as time

is perturbed forward. The N–dimensional state space is represented conceptually as a surface and time as an

arrow.

https://doi.org/10.1371/journal.pone.0179507.g010

Bounding low-D chaos in high-D phase space

PLOS ONE | https://doi.org/10.1371/journal.pone.0179507 June 23, 2017 17 / 27

https://doi.org/10.1371/journal.pone.0179507.g010
https://doi.org/10.1371/journal.pone.0179507


in Eq (6). All simulations use the same 40-node (K = 80) mesh of 1-D elements with isopara-

metric Hermite shape functions. Numerical integration over m is performed with a full Gauss

integration scheme with 7 Gauss points per element (KG = 280). Nodal updates are determined

by solving for nodal rates and integrating numerically over t with an explicit time integration

scheme. The forward Euler method is used for ease of implementation.

Introducing the approximations in Eq (18), multiplying Eq (3) by ϕj and integrating overm
on both sides, we obtain

I

m

X

i

�i _ci�jdm ¼
I

m
ðf � u1ðf � u1Þ � u2ðf � u2Þ þ u1d1 þ u2d2Þ�jdm; j ¼ 1; 2; ::;K ð20Þ

Which can be written in matrix form and solved as

_ci ¼
XK

j¼1

Bijrj; B ¼ A� 1; i ¼ 1; 2; :::K ð21Þ

where

rj ¼
I

m
ðf � u1ðf � u1Þ � u2ðf � u2Þ þ u1d1 þ u2d2Þ�jdm

A ¼ Aij ¼

I

m
�i�jdm

ð22Þ

Now, the time integration scheme can be utilised to update c. The system matrices from the

finite element formulation do not change between time steps, which can be exploited for

efficiency.

For a higher order attractor, the expression for the right hand side is modified according to

the attractor dimension M as

rj ¼
I

m
f �

XM

i¼1

uiðf � uiÞ þ
XM

i¼1

uidi

 !

�jdm ð23Þ

The inward velocity d1 can be evaluated at each point on c directly using Eq (6). The tangential

velocity d2 is found by the finite element solution to Eq (9):

d2i ¼
1

b2

XK

j¼1

Bijqj; i ¼ 1; 2; :::K ð24Þ

where

qj ¼
I

m
ððc0 � u2Þu2 � ðu2�

0

j þ u0
2
�jÞÞdm ð25Þ

Auxiliary manifold orientation - concepts. There exists an extensive body of literature

on how to define and practically determine invariant manifolds. A comprehensive overview is

given by Gorbana and co-workers in [53]. This is an active area of research and new highly

advanced methods are continually being developed [54]. Here, an approach is taken, which is

somewhat related to what is labelled the “method of invariant grids” in [53]. It differs substan-

tially in that the tangent field of the invariant manifold is not found by numerical differentia-

tion in phase space. This approach, though intuitive, requires refined meshes and is prone to

numerical instability. Instead, a hybrid approach is taken, where AM orientation is determined
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by a spectral method, but selection of eigenvectors from this spectrum, and thus orientation,

makes use of the grid. The reasoning behind this choice is pragmatic and based on experience:

Even if very large time steps are taken between two orientation updates, the tangential motion

of the AM in between these updates will be small when compared to typical mesh refinement.

Furthermore, the use of a spectral method renders the orientation of the inward normal u1

independent of interior points. The obvious drawback is the need for solution of the eigen-

value problem at each Gauss point and at every time step. A redeeming feature is that this can

be done efficiently by use of sparse iterative solvers that solve for only the M necessary eigen-

values and utilise eigenvalues from previous time steps as initial guesses. The current software

implementation does not exploit these features and computes the entire spectrum from full

matrices using direct methods.

Locally, the tangent space of the AM is spanned by the tangent vectors wi 2 R
N where i = 1,

2, . . ., M. Chaotic motion is often described as successive processes of stretching and folding.

As discussed, locally, these processes correspond to exponential growth and decay, respec-

tively. The selection of the tangent vectors wi is such that every direction in which stretch

occurs is contained within the AM. In this way, every off-manifold motion will be an exponen-

tial decay onto the manifold.

Consider the Jacobi matrix of Eq (2)

J ¼ @ _x=@x ð26Þ

In any non-linear system, the Jacobi matrix depends on the state, i.e., J = J(x). In non-linear

non-autonomous systems it may also depend explicitly on time, i.e. J = J(x, t). The method is

equally applicable in both of these situations.

The AM is oriented such that all directions of stretch are contained within it at all times.

Locally and instantaneously, these directions are those spanned by eigenvectors associated

with eigenvalues with a positive real part. That is, the manifold tangent vectors wi are selected

such that they span the same space as solutions to the local system associated with directions of

stretch. The number of eigenvalues with positive real parts determines the required dimension

of the AM. For two positive real parts at least a surface is required, and for three a 3-D hyper-

surface, and so on. Knowing the dimension of the attractor a priori is advisable, since then a

good (if not perfect) indication of the dimension of the AM is then known. A good account of

the estimation of attractor dimension, for both experimental data and systems with known

ODEs, is given by Wolf and co-workers [55].

When a direction of stretch with associated eigenvalue λ is encountered somewhere in

phase space, there are two situations

1. l 2 C: The directions of stretch lie on a surface spanned locally by v1elt þ v2e
�lt; 8t,

where v1 and v2 are the eigenvectors associated with eigenvalues λ and �l.

2. l 2 R: The direction of stretch is parallel with the eigenvector associated with λ.

In case 1, one may define the local tangent vectors in any way that span the same space as

v1elt þ v2e
�lt , e.g., by selecting two distinct phases: 0 (giving v1 + v2) and +/−i (giving i v1 − i

v2). If the flow is real v1 and v2 appear as complex conjugate, so the space is spanned by Re(v1)

and Im(v1). These vectors are then Gram-Schmidt orthonormalised to yield the orthonormal

basis (w1,w2) of the AM. With the requirement of smoothness, the orientation of the AM is

defined even in regions of phase space with no directions of stretch. This implies the require-

ment that J(x) is continuous and differentiable. Even if a direction of stretch is associated with

a positive real eigenvalue, there may be another region of phase space where this eigenvalue

becomes complex (with positive or negative real part) and thus requires a second direction of
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expansion. The only way to know this is to trace the eigenvalue along the AM and track its evo-

lution. A schematic illustrating this process is shown in Fig 11. The phenomenon of directions

of stretch varying in number across phase space is well known and is what is labelled “unstable

dimension variability” in, e.g., [39].

Auxiliary manifold orientation—initialisation. Selecting the appropriate eigenvectors

during initialisation takes a two step approach: First, the eigenvalues of all Gauss points on the

BM are determined until a node is reached where at least one eigenvalue has a positive real

part. Subsequently, the rest of the Gauss points are scanned incrementally along the BM select-

ing the ones corresponding with minimum increments in modulus. If the discretisation of the

BM and AM is sufficiently fine, the minimum increment selection criterion will correspond to

continuity. Thus, eigenvalues for neighbouring points on the AM and the BM can be directly

organised and numbered consistently. Although it is somewhat computationally wasteful, it is

conceptually more straight forward to perform the sorting process before the selection of

eigenvalues. This is illustrated as pseudo-code in algorithm 1.

Algorithm 1: Sort eigenvalues for point-to-point continuity

m m1
J J(c(m),t0)
Solve Jvð1Þj ¼ l

ð1Þ

j vð1Þj for l
ð1Þ

j and vð1Þj ; j ¼ 1; 2; ::N
Loop over Gausspoints
for p = 2, 3, .., KG do
m mp
J J(c(m),t0)
SolveJ vi = λi vi for λi and vi, i = 1, 2, ..N
Now sort eigenvaluesapplyingprincipleof continuity
for j = 1, 2, .., N do
Selectλi from spectrumsuch that

Fig 11. Schematic showing the evolution of two key eigenvalues along the entire length of the BM, i.e, for m 2 [0, 1[. Note that λ1 has

a positive real part in sub-domain I, which is negative in sub-domain II, III and IV. In sub-domain III λ1 is complex with the complex conjugate

λ2. Due to the requirement of continuity, the local solution space associated with λ1 and λ2 must be spanned by v1 and v2 along the entire BM.

Thus, the fact that one eigenvalue has a positive real part for only a portion of the BM, means that the motion corresponding to two

eigenvalues must be spanned along the entire BM.

https://doi.org/10.1371/journal.pone.0179507.g011
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jl
ðp� 1Þ

j � lij is minimised

l
ðpÞ
j  li

end
end

With the eigenvalues sorted, the local orientation vectors are easily identified as those eigen-

vectors, vj, where ReðlðpÞj Þ > 0 at any point along the BM (mp, p = 1, 2, .., KG). Let them be

identified as 1s in a binary array lj. The principles of the identification procedure is shown as

pseudocode in algorithm 2.

Algorithm 2: Identify directions of stretch

lj 0, j = 1, 2, ..N
for p = 1, .., KG do
for j = 1, 2, .., N do
if ReðlðpÞj > 0Þ > 0 then
lj 1 end

end
end

end

Now, the number of entries in lj equalling 1, should exceed the a-priori predicted dimen-

sion of the attractor. If it does not, then the initialisation of the BM is inadequate and another

must be tried.

The above pseudocode is written to communicate the concept of the method and is not

optimised. For example, there is no need to sort eigenvalues that do not correspond to direc-

tions of stretch.

Auxiliary manifold orientation—updates. Updating l
ðpÞ
j at each time step simply follows

the principle of continuity in time, so updates in eigenvalues are those minimizing changes in

modulus from the previous time step. At each time step, the inward normal u1 is projected

onto the orthonormal basis associated with the corresponding eigenvectors. Thus, at each time

step, Gauss point and interior point the Jacobi matrix is updated, the eigenvalues of the Jacobi

matrix are calculated, and the eigenvectors associated with minimum change in eigenvalue

modulus are used to update the orientation of the manifold. If Δtλ is sufficiently small, this cor-

responds to continuity in time of manifold orientation. The process of time integration and

manifold updates is outlined as pseudo-code in algorithm 3. Note that the time step between

orientation updates is larger than the time step for position updates. For clarity, the algorithm

is written for a 2-D AM (M = 2) with l
ðpÞ
1

and l
ðpÞ
2

corresponding to the eigenvalues of orienta-

tion at gauss point mp. Generalisation to higher dimension is straight forward.

Algorithm 3: Time integration

Initialisation.whilet < T do
i i+1
ti ti−1+Δt
t�  t�+Δt
solveEq (21) for _c
c cþ Dt _c
if t� > Δtλ then
t�  0
Loop over gausspointson the BM:
for p = 1, 2, .., KG do
m mp
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J = J(c(m),ti)
SolveJ vj = λj vj for λj and vj, j = 1, 2, ..N
Selectλj from the spectrumof eigenvaluessuch that
jl
ðpÞ
1
� ljj is minimised

l
ðpÞ
1
 lj

Selectλk from the spectrumof eigenvaluessuch that
jl
ðpÞ
2
� lkj is minimised(s.t. k 6¼ j)

l
ðpÞ
2
 lk

If l
ðpÞ
1
is complex(λ2 is conjugate)then

w�
1
 ReðvjÞ

w�
2
 ImðvjÞ

else
w�

1
 vj

w�
2
 vk

end
Gram-Schmidtorthonormalise ðw�

1
;w�

2
Þ to yield(w1 w2). Updateinwardnor-

mal by projectingonto tangentspaceof AM:
uðpÞ�1  ðuðpÞ1 � w1Þw1 þ ðu

ðpÞ
1 � w2Þw2

All other directions(in this case one) appearas tangentspaceof the
BM:
uðpÞ2  

c0 ðmÞ
jc0 ðmÞj

Gram-SchmidtorthonormaliseuðpÞ�1 with respectto uðpÞ2 (and othertangent
vectorsif higher-D)to yield uðpÞ1

end
end

end

At the first time step, updates in orientation are associated with large changes in u1 if the

initial guess is poor. Conversely, if the initial guess for the AM is close to the real, long term,

AM, the projection will not alter u1 much. In this paper, a flat, circular surface is used as an ini-

tial guess and initial values of w1 and w2 computed on this surface. This approach works well

when off-manifold directions are almost in phase with on-manifold location, but may fail if

off-manifold dynamics are out of phase, potentially causing the AM to become degenerate and

numerically unstable. Thus, convergence depends on a reasonable initial guess. This which

might potentially be generated from Poincaré sections in future incarnations of the method.

Fig 3. shows a manifold changing its shape in the initial transient phase of a simulation.

Fig 12 depicts the converged manifold and the manifold eigenvalues for parameter set III in

Table 1. The manifold is projected to the (y1, y2, y81) space. Where complex, as expected, the

two eigenvalues of orientation are complex conjugate. There is a central region of stretch

where λ1 is positive. Conceptually, this corresponds to the area around the unstable saddle

equilibrium at (0, 0) in the unmodified 2-D Duffing system.

Discussion

A practical method for calculating extrema of chaotic systems has been presented here. The

equations of the method are written such that they can be wrapped around an underlying sys-

tem of which the detailed structure is less important, as long as its flow is continuous and dif-

ferentiable. The simulation results are post-transient extrema of systems with fairly fast, close

to in-phase, off-manifold dynamics. Such systems pose the least challenging in terms of defin-

ing (guessing) an initial shape, that will rapidly converge onto the real AM. Addressing this

challenge, for example by use of fits to Poincaré sections, would increase the chances of

convergence.
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The presented method has drawbacks which should be addressed in future work: Firstly, it

will not distinguish between basins of attraction as the BM is defined a priori as a single closed

curve. For this, an approach based on the level set method would be superior but perhaps at

the cost of added computational work. Secondly, the presence of noise would also make the

BM itself noisy. The method in its current incarnation offers no strategies to deal with this

added challenge, which will inevitably come with the application to experimental data. Thirdly,

the adaptation to experimental data would entail a phase space reconstruction step. The

method, in its current incarnation, requires knowledge of the rates of all phase space variables,

so will need to be modified if phase space reconstruction techniques based on time-delay coor-

dinates [56, 57] are to be employed. However, it may well be that a hybrid scheme where some

rates are inferred from knowledge of the rest would suffice.

The computational benefits associated with defining the BM as low-D as possible are poten-

tially enormous. Consider the cost of operating on a conventional N − 1 BM rather than an

M − 1 ditto. The memory needed to store the BM, let alone operate on it, scales as KD, where D

Fig 12. Eigenvalues associated with AM eigenvectors at tω/(2π) = 4.75 for Eq (12). The parameters (set III) are given in Table 1.

https://doi.org/10.1371/journal.pone.0179507.g012
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is BM dimension and K is the resolution of the BM, e.g., as in this case, the number of nodes of

a finite element formulation. Plugging in the numbers for even modest sized systems quickly

reveals why the D = N − 1 approach is infeasible. For example, storing an N − 1 BM, for an

N = 82 phase space system with identical resolution to the one used in the presented analyses

requires 1.13 � 10155 bytes if stored as double precision.

Conclusion

Based on the presented results, it is concluded that it is practically possible to predict extrema

for large differentiable chaotic systems and that these extrema have the potential to display har-

monic behaviour. This enables the efficient calculation of extrema of chaotic systems in the

long term once the post-transient regime is reached.

Supporting information

S1 File. Bounding manifold and interior points. Projection of the BM, interior points and

spacing truss elements into (y1, y2, y81) space for 5 forcing cycles. Overlaid are 20 solutions to

the ODE. The manifold and solutions are seen to converge.

(AVI)

S2 File. Bounding manifold. Projection of BM onto coordinate surfaces (y1, y2), . . ., (y81, y82)

for 5 forcing cycles of parameter set III.

(AVI)
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