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Abstract

The pathophysiology of myocardial injury that results from cardiac ischemia and reperfusion

(I/R) is incompletely understood. Experimental evidence from murine models indicates that

innate immune mechanisms including complement activation via the classical and lectin

pathways are crucial. Whether factor B (fB), a component of the alternative complement

pathway required for amplification of complement cascade activation, participates in the

pathophysiology of myocardial I/R injury has not been addressed. We induced regional

myocardial I/R injury by transient coronary ligation in WT C57BL/6 mice, a manipulation that

resulted in marked myocardial necrosis associated with activation of fB protein and myocar-

dial deposition of C3 activation products. In contrast, in fB-/- mice, the same procedure

resulted in significantly reduced myocardial necrosis (% ventricular tissue necrotic; fB-/-

mice, 20 ± 4%; WT mice, 45 ± 3%; P < 0.05) and diminished deposition of C3 activation

products in the myocardial tissue (fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%; P<0.05). Reconsti-

tution of fB-/- mice with WT serum followed by cardiac I/R restored the myocardial necrosis

and activated C3 deposition in the myocardium. In translational human studies we mea-

sured levels of activated fB (Bb) in intracoronary blood samples obtained during cardio-pul-

monary bypass surgery before and after aortic cross clamping (AXCL), during which global

heart ischemia was induced. Intracoronary Bb increased immediately after AXCL, and the

levels were directly correlated with peripheral blood levels of cardiac troponin I, an estab-

lished biomarker of myocardial necrosis (Spearman coefficient = 0.465, P < 0.01). Taken

together, our results support the conclusion that circulating fB is a crucial pathophysiological
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amplifier of I/R-induced, complement-dependent myocardial necrosis and identify fB as a

potential therapeutic target for prevention of human myocardial I/R injury.

Introduction

Myocardial ischemia from inadequate coronary perfusion can occur regionally (e.g. due to

coronary atherosclerosis) or globally (e.g. following aortic cross clamping (AXCL) during

bypass surgery) and leads to myocardial necrosis. Prolonged regional myocardial ischemia

manifests clinically as myocardial infarction (MI) while global cardiac ischemia is commonly

subclinical and manifests as an increase in the peripheral blood of cardiac troponin I (cTnI)

[1–9]. Emerging evidence suggests that small post-surgical elevations in cTnI can negatively

impact long-term outcomes [10, 11], underscoring the importance of such subclinical injury.

Reperfusion of the ischemic heart tissue with thrombolytic therapy, percutaneous coronary

intervention, or following release of aortic cross clamping can acutely limit the necrotic dam-

age but paradoxically may elicit an inflammatory response that contributes to further tissue

damage. The induced reperfusion injury can stun the myocardium (limiting contractile func-

tion) and induce non-necrotic forms of cell death [12–15]. Understanding the molecular

mechanisms underlying myocardial I/R injury is vital for future design of therapeutic inter-

ventions aimed at improving survival and reducing long term morbidity.

The discovery of a protective effect of “ischemic pre-conditioning” in a canine cardiac I/R

model by Murry et al. offered hope for nonpharmacological interventions in I/R injury [16].

Since then, various cardioprotective strategies have been proposed to condition the heart

directly or indirectly through brief episodes of ischemia and reperfusion. These include ische-

mic preconditioning, ischemic post-conditioning and remote ischemic conditioning, all of

which showed success in animal models and small clinical studies (reviewed in-depth else-

where) [17–22]. However, two recent large clinical trials investigating the role of remote ische-

mic preconditioning in cardiac surgery (RIPHeart [23] and ERICCA [24]) had negative

outcomes.

Similarly, a number of pharmacological interventions to reduce myocardial damage have

also been studied in clinical trials without encouraging results. One recent trial with the CypD

inhibitor Cyclosporine-A (the CIRCUS Trial) showed no benefit in long term clinical outcome

[25] and while β-blockers greatly improve overall clinical outcomes [26–28], their effect on

infarct size in STEMI patients is still debatable [18]. There are other promising cardioprotec-

tive agents yet to be evaluated in clinical trials, e.g. glucose modulators, cyclooxygenase

(COX)- and lipoxygenase (LOX)-directed lipid mediators [29, 30] and Exendin-4 [31], but the

current absence of effective cardioprotective therapies supports the need for identifying novel

therapeutic targets potentially capable of limiting cardiac ischemic injury

Current concepts of mechanisms leading to I/R injury [18, 32–35] are that after reperfusion,

activation of a number of intracellular signaling pathways leads to calcium influx [36–39],

mitochondrial dysfunction [40–45], production of reactive oxygen species [46–49], and activa-

tion of proteases [50]. These intracellular changes can directly cause cell death and can activate

the vascular endothelium to express adhesion molecules, release proinflammatory cytokines

and chemokines, and upregulate production of complement components [51–55]. Comple-

ment activation synergizes with toll-like receptor (TLR) signals induced by ligation of damage-

associated molecular patterns (DAMPs), including HMGB1, [56–60] to upregulate NF-κB [61,

62] and amplifies local inflammation [63–65] and recruitment of inflammatory cells [66–68].
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Complement activation can be initiated by the classical, mannose binding lectin (MBL),

and alternative pathways that converge at the generation of C3-convertases. A common central

factor B (fB)-dependent amplification loop continually generates C3-convertases, resulting in

production of the potent yet short-lived anaphylatoxin C3a and the opsonin C3b, and has

been shown to be critical in pathogen-induced inflammation [69, 70]. Subsequent common

terminal pathway (C5-9) activation generates another anaphylatoxin, C5a, and causes forma-

tion and deposition of the membrane-attack complex (MAC) on cell surfaces [71–75] which

can lead to NF-kB-dependent inflammatory responses [69, 70, 76] While prior work by our

group among others focused on the role of the classical and MBL pathways as initiators of

complement-dependent inflammation in myocardial I/R injury, [69–75, 77–81] the role of fB,

required for amplification of the complement cascade, has not been clearly delineated. To test

the hypothesis that fB is a key mediator of complement-dependent myocardial I/R injury, we

studied surgically-induced cardiac I/R using fB-/- mice and serum samples obtained from

patients undergoing global heart ischemia during cardiac surgery. Together our new transla-

tional data provide evidence that fB is a key mediator of myocardial I/R injury.

Materials and methods

Mouse model of surgically-induced myocardial I/R injury

Complement fB knockout (fB-/-) mice and wild type (WT) littermates were generated by co-

author Dr. Marcella Pekna [82] and maintained at the SUNY Downstate Medical Center

Department of Laboratory Animal Resources. Genotyping was provided by GeneTyper (New

York, NY) using established PCR protocols [82]. Male mice were used at 10–12 weeks of age

(weights 26-30g) in accordance with the requirements of the NIH and the Institutional Animal

Care and Use Committee (IACUC) of SUNY Downstate Medical Center. The protocol was

approved by the IACUC of SUNY Downstate Medical Center (Approval#11–10276).

We used an established model of myocardial I/R injury model [77, 83] in which mice were

anesthetized using pentobarbital sodium (60 mg/kg, i.p.), intubated and ventilated with a

mouse ventilator (Harvard Apparatus, MA). After midline sternotomy, the left anterior

descending artery (LAD) was ligated for 1 hour; occlusion of the LAD was confirmed by the

color change of myocardial tissue and the ST elevation on ECG. Reperfusion was established

and verified by the color change of the left ventricle and the appropriate ECG changes. Postop-

erative management included fluid replacement with normal saline and pain relief with the

analgesic buprenorphine (0.1 mg/kg, intramuscularly). The mice were sacrificed after 24h

(euthanized in CO2 chamber at Downstate facility), serum was collected and the hearts were

harvested for histopathology analyses.

Evaluation of murine myocardial necrosis by fluorescence using two

probes delivered in vivo

A fluorescent method for tracking necrosis (initially developed by others [84, 85] and further

refined by us [83]) was used. Shortly before the end of the reperfusion period described above

in Materials and Methods, and before tissue harvesting, mice were anesthetized, intubated as

described above, and injected i.v. with propidium iodide (PI), which enters damaged cells,

intercalates with DNA and fluoresces, thus identifying necrotic tissue. The LAD was then re-

occluded before heart harvesting and blue fluorescent microspheres (BFM, ThermoFisher,

PA) were injected through the aortic arch to delineate the non-ischemic region of the heart.

The heart was harvested and atrium was removed. The ventricle was sectioned into four slices
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(~1mm thickness), which were weighed and imaged under a fluorescent microscope (Olym-

pus, PA), using the red fluorescent channel for PI, the blue for BFM.

The percentage of the tissue in a heart which was at risk for necrosis (no blue fluorescence)

and which became necrotic (had red fluorescence) was determined by computerized planime-

try (Image J, MD) and by the following equations:

Weight of necrotic tissue ¼ ðA1 x Wt1Þ þ ðA2 x Wt2Þ þ ðA3 x Wt3Þ þ ðA4 x Wt4Þ;

where A was the percentage of the area of a slice staining for necrosis (red fluorescence) mea-

sured by planimetry (average of both sides of a slice) and Wt was the weight of that slice of ven-

tricle.

Weight of tissue at risk for necrosis ðweight at risk; WAR Þ ¼ ðR1 x Wt1Þ þ ðR2 x Wt2Þ þ ðR3 x Wt3Þ þ ðR4 x Wt4Þ;

where R is the percentage of the area of a slice which lacked the blue fluorescence of BFM,

determined by planimetry (average of both sides of a slice used). In all cases, the tissue with

red fluorescence was within the boundary of the tissue which lacked blue fluorescence.

Percentage of the weight of a ventricle at risk for necrosis which became necrotic ¼ ðweight of necrotic tissue =WAR Þ x 100:

Power analyses performed using G�Power 3.1 [86] showed>99% power for detection of

differences in infarct size with 6–8 animals per group.

Western blotting of murine and patients’ fB and its active fragment, Bb

Following SDS polyacrylamide gel electrophoresis, proteins were transferred to a nitrocellulose

membrane. A constant amount of plasma from a healthy individual was run on each gel of

human samples to control for inter-gel differences in band staining. The membranes were

blocked with bovine serum albumin in 20 mM Tris, 0.9% NaCl and 2% Tween-20 and incu-

bated with polyclonal goat anti-fB antibody (Complement Technology, TX) which detects the

fB, Ba and Bb proteins separated by electrophoresis. After washing, the membrane with

murine samples was incubated with a donkey anti-goat antibody conjugated with AP (Rock-

land, PA) and developed with BCIP/NBT Substrate System (KPL, MD). The membranes with

human samples were incubated with rabbit anti-goat IgG conjugated with alkaline phospha-

tase (Abcam, MA) and developed with the BCIP/NBT Substrate System. Quantification of

bands of interest was carried out using the ImageJ program (NIH). The intensities of bands in

the human samples were normalized to that of the 93 kDa fB band of the normal control lane

and expressed as relative intensity.

Quantitative real-time PCR to detect fB mRNA expression

RNA isolation, cDNA synthesis, reverse transcription, and real-time RT-PCR were performed

as described previously [87]. Briefly, RNA was isolated from heart tissues of fB-/- and WT mice

using Trizol (Life Technologies; CA). cDNA was reverse-transcribed using the High Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, NJ) as per the manufacturers’ instruc-

tions. Q-PCR was performed with TaqMan primers (Applied Biosystems) and run on the

CFX96 Real-Time System (Bio-Rad Laboratories, CA). PCR products were normalized to the

18S control gene and expressed as fold increase over the mean value of fB-/- heart samples

using the ΔΔCt method.

fB primers are obtained as TaqMan probes from Applied Biosystems (Waltham, MA):

Mm00433918_g1 and 18s primer: Mm03928990_g1.

Complement factor B in myocardial ischemia/reperfusion injury
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Immunohistochemical analysis of complement C3 deposition

Frozen sections were cut from the heart slices described in Section 2, fixed in acetone and

stained with an FITC-labeled anti-C3c antibody (Dako, CA). Each section was imaged (2x

objective lens) using channel 4 (for all fluorescence) to give total area. The C3 positive area was

imaged (10x objective lens) and quantified by Image J software. The percentage of the total

area that was C3 positive was determined.

Patient enrollment, perioperative management and blood sampling

The prospective clinical study was approved by the Institutional Review Boards of SUNY

Downstate Medical Center and Yale University School of Medicine (Approval#07–106). Adult

patients (total 105), undergoing elective cardiac surgery with cardiopulmonary bypass (CPB),

were enrolled in the study following their consent. All participants provided their written

informed consents to participate in this study.

At the discretion of the attending cardiac surgeons, oral antiplatelet agents were discontin-

ued within 7–10 days before surgery. Patients chronically treated with beta-blocking agents or

statins continued these medications until the morning of surgery. Midazolam (1-2mg) was

given as soon as the standard monitors (i.e., five-lead electrocardiogram with computerized

analysis of repolarization, end tidal CO2 monitor and pulse oximetry) were applied and prior

to insertion of the arterial line. Other monitors, including central venous pressure and pulmo-

nary artery occlusion pressure were applied after induction of anesthesia. A smooth induction,

aiming to maintain hemodynamic parameters as close as possible to each patient’s baseline,

was used. Antifibrinolytic therapy with tranexamic acid (a 10-20mg/kg bolus followed by an

infusion of 1-2mg/kg/hr.) was administered. CPB was carried out under hypothermia at

approximately 32˚C with a pump flow of 2.0–2.4 L/min/m2. The cardioplegic solution was

delivered after clamping of the aorta. The hematocrit was maintained at�16% while patients

were on bypass and>23% postoperatively. General anesthesia was maintained with a combi-

nation of opioid-volatile techniques and the depth of anesthesia was titrated to meet the

requirements of the varying intensities of surgical stimulation. Boluses of vasoactive agents

were given intraoperatively as necessary to maintain mean arterial pressure between 50 and 80

mm Hg. If, after aortic unclamping, sinus rhythm did not resume spontaneously, the heart was

defibrillated. After termination of CPB, catecholamines were used at the discretion of the anes-

thesiologist. Postoperatively, patients were admitted to the CT-ICU under the care of the anes-

thesiologist and cardiac surgeon on duty.

Coronary sinus blood samples were collected after CPB prior to AXCL and 5 minutes after

AXCL termination. Blood samples were centrifuged and the plasma stored at -80˚C.

Of the 105 patients who consented to participate, complete sets of coronary sinus blood

samples were collected from 56. Data from the remaining patients, where at least 1 blood col-

lection was missed, were not included. Collections were missed due to the exigencies of cardiac

surgery which prevent surgeons from taking time to sample blood for research. Relevant

demographic and clinical parameters were collected (Table 1). Levels of cTnI were determined

by ELISA (Calbiotech, CA) on plasma from peripheral blood samples collected pre-surgery

and immediately post-surgery.

ELISA measurement of patients’ Bb

Patients’ plasma levels of Bb were measured using the ELISA kit from Quidel (San Diego, CA)

which detects the Bb component of activated fB but not native fB, nor the other fragment of fB

activation, Ba.

Complement factor B in myocardial ischemia/reperfusion injury
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Statistical analysis

Statistical analyses were performed using IBM SPSS Software version 20 (IBM Corp., NY). For

animal studies, an independent t-test with two tails and unequal variances was used to deter-

mine the statistical significance between the results for fB-/- and WT mice. Descriptive data

were summarized as the mean ± standard error of mean. For clinical studies, the patients’

demographic and relevant clinical data, together with plasma Bb levels, were entered into a

Microsoft Excel database. Descriptive data were summarized as the mean ± standard devia-

tion. A paired t-test with two tails and unequal variances was used to determine statistically

significant differences in the levels of Bb and fB (from Western blotting) in coronary blood

taken before and after AXCL. Post hoc power analyses performed using G�Power 3.1 [86]

showed>99% power for detection of differences in the levels of Bb in coronary blood taken

before and after AXCL. Statistically significant correlations between the post-AXLC levels of

Bb, the post-surgery levels of cTnI and AXCL time were determined using Spearman’s correla-

tion. Box-charts were plotted using SigmaPlot 11 software (Systat Software, CA).

Results

Factor B deficiency limits cardiac I/R-induced myocardial necrosis in

mice

To test for a relationship between myocardial I/R injury and activation of the alternative path-

way complement, we subjected fB-/- and congenic WT control mice to 1 hour of surgically-

induced myocardial ischemia (LAD coronary ligation) followed by 24 h of reperfusion. Assays

performed on blood samples from WT mice showed activation of fB (manifested as detection

of the activation product Bb) at 24 h, while no fB or Bb was detected in peripheral blood of

fB-/- mice (P<0.05, Fig 1a and 1b; S1 Fig; Part A in S1 File). When we examined the heart tissue

for deposition of C3 activation products by immunohistochemistry, we observed that the

absence of fB fully prevented C3 deposition (C3-positive staining area as a % of total section

area: fB-/- mice, 0 ± 0%; WT mice, 31 ± 6%, P<0.05; Fig 1c and 1d; Part B in S1 File). Remark-

ably, we also observed significantly less myocardial necrosis in the fB-/- mice compared with

the WT littermate controls (n = 7/per group; % ventricular tissue which was necrotic: 20 ± 4%

versus 45 ± 3%, respectively, P< 0.05; Fig 1e and 1f; S2 Fig; Part C in S1 File). Together with

Table 1. Demographics and baseline data for the 56 patients in the study who underwent open heart

surgery.

Age (years) 64 ± 13

Male 66%

Body mass index (kg/m2) 28 ± 5

Left ventricle ejection fraction (EF) 47 ± 18%

Diabetes mellitus 44%

Hypertension 94%

Hyperlipidemia 77%

Current smokers 25%

Type of cardiac procedure:

Coronary artery bypass grafting (CABG) 36%

Valvular replacement 39%

Combined CABG and valvular replacement 25%

CPB time (min) 110 ± 40

AXCL (min) 72 ± 34

https://doi.org/10.1371/journal.pone.0179450.t001
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Fig 1. Factor B knockout mice experienced reduced myocardial necrosis and complement C3

deposition. fB-/- mice and WT were used in a myocardial I/R model. The left anterior descending (LAD)

coronary artery was occluded for 1 hr then reperfused for 24 hrs. Propidium iodide and blue fluorescent

Complement factor B in myocardial ischemia/reperfusion injury
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the published literature [73, 77], the data indicates a central role for fB and the alternative path-

way in the pathophysiology of myocardial I/R injury.

Factor B from circulation contributes to myocardial necrosis in cardiac

I/R

To determine the source of the fB which contributed to post-I/R myocardial necrosis, fB-/-

mice (n = 4) were re-constituted i.v. with WT serum to provide an extracellular source of fB

(i.e. no local production) and subjected to myocardial IR as above (1 h ischemia / 24 h reperfu-

sion). WT mice (similarly subjected to myocardial I/R) acted as positive controls (n = 4/group)

and sham operated fB-/- and WT mice served as negative controls. Reconstitution of fB-/- mice

with WT serum restored the myocardial necrosis (Fig 2a and 2b; S3 Fig; Part D in S1 File) and

activated C3 deposition in the myocardium (Fig 2c and 2d; Part E in S1 File) after cardiac I/R.

To test whether I/R altered gene expression of fB in WT hearts, we measured myocardial fB

mRNA levels by qPCR. These assays showed<2-fold differences (not statistically or physiolog-

ically different) between fB levels in hearts from naïve mice vs those that underwent I/R or

sham surgeries (Fig 3; Part F in S1 File), further supporting the hypothesis that systemic rather

than local derived fB is the key mediator of these effects.

Activation of fB in patients’ coronary circulation during aortic cross-

clamping in cardiac surgery

To determine whether fB is activated by I/R in humans during cardiac surgery, we analyzed

the Bb levels in plasma from coronary sinus blood collected prior to aortic cross clamping

(AXCL) and immediately after its cessation. Consistent with the findings in mice, global heart

ischemia (AXCL) and reperfusion (cessation of AXCL) was associated with higher coronary

sinus blood Bb levels compared with those prior to application of AXCL ([Bb] prior to

AXCL = 2.4 ± 2.0 μg/ml; [Bb] after AXCL cessation = 4.4 ± 2.9 μg/ml, P< 0.01) (Fig 4a;

S4 Fig). Likewise, peripheral blood levels of Bb rose post-surgically ([Bb] prior to AXCL =

2.4 ± 1.8 μg/ml; [Bb] after AXCL = 5.0 ± 3.8 μg/ml, P<0.05. Data not shown). The pre-AXCL

levels of Bb were similar between the coronary and peripheral blood but after reperfusion the

Bb levels in the peripheral blood were slightly higher (P< 0.05) than in the coronary blood.

The clinical relevance of this difference is unclear.

To determine whether these increases in Bb were caused by an increase in the production

of the precursor, fB, and/or an increase in the activation rate of existing fB, we next performed

Western blotting to separate and quantify the intact fB (93 kDa) and the cleaved product,

active Bb (60 kDa) in coronary sinus blood samples. We reasoned that if fB production were

increased during the ischemia caused by cross-clamping, then an increase in the amounts of

microspheres (BFM) (the latter after re-occlusion of the LAD) were injected in vivo just prior to heart

harvesting to delineate the necrotic tissue and the tissue lacking circulation and therefore at risk for necrosis,

respectively. (a) Circulating fB in the blood was significantly activated in WT mice (n = 4) but not in fB-/- mice

(n = 4). Serum obtained from cardiac puncture at the end of reperfusion was analyzed by Western blotting as

described in Materials and Methods, Section 3. Each lane in the blot represented a separate mouse. Arrows

indicate fB and Bb fragments. (b) The bar chart summarizes the relative intensities of Bb fragments. Bars

represent Means ± SEM (* indicates P<0.05 compared with WT controls). (c) Cryosections prepared from the

heart slices were stained with a FITC-tagged anti-C3 antibody. (d) Bar graph: bars indicate the percentage of

total area that is C3 positive. (e) Necrotic tissue (bright red fluorescence) was visualized under a fluorescent

microscope immediately after the harvest of hearts, using a 2x objective lens, in slices obtained by dividing the

heart into four (top and bottom of each slice are adjacent in the figure). Non-ischemic tissue was defined by

the blue fluorescence of BFM, the non-fluorescing tissue constituting weight of tissue at risk (WAR) (n = 7 per

group). (f) Bar graph: Necrotic area expressed as % WAR as defined in the Materials and Methods, Section 2.

https://doi.org/10.1371/journal.pone.0179450.g001
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Fig 2. Factor B from circulation contributed myocardial necrosis in cardiac I/R. fB-/- mice (n = 4) were re-constituted i.v. with 500ul

WT serum (first 250ul i.v. 1 hour prior to surgery; second 250 μl i.v. 40 minutes prior to surgery) to provide an extracellular source of fB.

WT mice (n = 4; similarly injected) were used as positive controls. Animals were subjected to myocardial IR (1 h ischemia/24 h

reperfusion). Sham operated fB-/- (n = 5) or WT mice (n = 5) were included as negative controls. (a) Myocardial necrosis was determined

as done in Fig 1. (b) Bar graph: Necrotic area expressed as % WAR as defined in Fig 1. (c) Heart cryosections were stained with a FITC-

tagged anti-C3 antibody. (d) Bar graph: bars indicate the percentage of total area that is C3 positive.

https://doi.org/10.1371/journal.pone.0179450.g002
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Fig 3. mRNA expression of fB in the WT hearts after IR. RNA were isolated from WT hearts without

surgery (naïve group; n = 3), or sham operation (n = 10), or I/R operation (n = 12). cDNA were synthesized,

reverse transcribed, and real-time RT-PCR were performed as described in Method Section.

https://doi.org/10.1371/journal.pone.0179450.g003

Fig 4. Activation of fB in the coronary circulation after AXCL. (a) Bb levels increased in the coronary circulation after the AXCL of

human cardiac surgery. Coronary sinus blood was collected prior to AXCL and 5 minutes after AXCL termination. Bb levels were

determined by ELISA using an antibody which detects the Bb component of activated fB but not native fB, nor the other fragment of fB

activation, Ba. Statistical significances were analyzed as described in Materials and Methods, Section 8. Box-charts were plotted using

SigmaPlot software. The boundary of the box closest to zero indicates the 25th percentile, while the boundary of the box farthest from

zero indicates the 75th percentile. Error bars above and below the box indicate the 90th and 10th percentiles. The two filled circles above

and below the box indicate the 95th and 5th percentiles. The solid line within the box marks the median, and the dotted line marks the

mean (average). N = 56; * indicates statistical significance (P < 0.05). (b) Plasma from the coronary sinus blood obtained before the start

of AXCL and 5 minutes after AXCL cessation was analyzed by Western blotting using a polyclonal antibody that detects fB and Bb. A

representative blot is depicted showing fB positive bands from a patient’s plasma. Arrows indicate fB and Bb fragments. Band intensities

on scanned images of such blots were quantified and normalized to the 93 kDa fB band of a control plasma and expressed as relative

intensity. (c) A bar chart summarizes the relative intensities of Bb fragments.

https://doi.org/10.1371/journal.pone.0179450.g004
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both the intact fB and the Bb fragment would be expected in the post-AXCL samples. If fB acti-

vation to produce Bb used pre-existing fB, then an increase in the amount of the Bb fragment,

but not the parent protein, would be expected.

The 60 kDa Bb band showed a significant 20% increase (Fig 4b and 4c) in intensity after

AXCL (60 kDa band intensities relative to those of the normal control 93 kDa fB band: pre-

AXCL = 0.74 ± 0.39; post-AXCL = 0.89 ± 0.46, P< 0.01). In addition, there was a small non-

statistically significant decrease (3%) in the intensity of the 93 kDa fB band after cessation of

AXCL (93 kB band intensities relative to those of the normal control 93 kDa band: pre-

AXCL = 0.70 ± 0.19; post-AXCL = 0.68 ± 0.19, P = 0.201). Together, these results are consis-

tent with the hypothesis that the increased levels of Bb after AXCL cessation are derived from

activation of pre-existing fB.

Activated fB levels correlate significantly with the postoperative increase

in myocardial necrosis marker cTnI

To investigate the clinical significance of fB activation in the coronary circulation, we deter-

mined whether activated fB correlated with post-surgical levels of the myocardial necrosis

marker cTnI. Peripheral blood cTnI levels increased significantly following cardiac surgery

compared with the immediate pre-surgery values (Table 2), consistent with previous literature

[7, 8, 81]. A univariate analysis showed that coronary Bb levels immediately after release of

AXCL directly correlated with post-surgical peripheral blood cTnI levels (Spearman’s rho cor-

relation coefficient = 0.465, P< 0.01; Fig 5a). Peripheral blood cTnI levels correlated with

AXCL time (Spearman’s rho correlation coefficient = 0.304, P< 0.05; Fig 5b) but Bb levels did

not (P>0.05). To assess whether the AXCL time influenced the relationship between Bb and

cTn1 we repeated the analyses using the mean and median ACXL times as cutoffs. These anal-

yses showed that Bb levels correlated with cTn1 above and below the tested thresholds (not

shown).

Discussion

Building upon the emerging knowledge regarding mechanisms underlying acute myocardial

I/R injury (reviewed in-depth elsewhere [18, 88–90]), various strategies aimed at preventing

myocardial I/R injury since the 1980s have shown promise in animal models and small human

trials [16–22]. Nonetheless, to date, none of the large trials targeting various mechanisms

thought to be involved in I/R injury have shown benefit in reducing post-MI damage [18, 23–

25, 29–31]. New mechanistic insights are required to drive novel therapeutic approaches.

Our new findings demonstrate that activation of circulating systemic fB is central to myo-

cardial damage in a murine model of surgically-induced cardiac I/R. Factor B-/- mice showed a

significant reduction in complement C3 deposition and a remarkable abrogation of myocar-

dial necrosis compared to WT littermates (Fig 1). Reconstitution of fB-/- mice with WT serum

restored both C3 deposition and myocardial damage (Fig 2). These results add to previous

Table 2. Levels of the myocardial necrosis marker cTnI in the peripheral blood increased significantly

following cardiac surgery.

Time points cTnI level (ng/ml) p-value

1. immediately pre-surgery 0.89 ± 0.44

2. immediately post-surgery 7.03 ± 0.87 <0.01*

* indicates statistical significance between cTnI levels at post-surgery and pre-surgery levels.

https://doi.org/10.1371/journal.pone.0179450.t002
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studies describing the critical role of the complement alternative pathway in other models of

cardiac ischemic injury (e.g. permanent occlusion of coronary arteries, after heart transplanta-

tion) [91–94], and on late post-ischemic organ sequelae such as cardiac hypertrophy [95]. The

alternative pathway has also been shown to be important in renal IR injury [96–100] but not

gastrointestinal IR damage [101, 102] suggesting that there are important organ specific mech-

anistic differences that need to be explored further.

Fig 5. (a) The increases in coronary blood Bb levels immediately after AXCL correlated significantly with

postoperative increases in cTn1 levels. (b) The increases in postoperative increases in cTn1 levels correlated

significantly with AXCL time. Univariate analyses were carried out as described in Method. * indicates

statistical significance.

https://doi.org/10.1371/journal.pone.0179450.g005
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The current paradigm of complement activation after myocardial I/R injury developed

from prior work by our lab, among many others, is that ischemia of cardiac cells results in

exposure of neo-antigens on the cell surface that can be recognized upon reperfusion by natu-

rally occurring circulating IgM antibodies[77, 78, 103, 104]. The lectin pathway can recognize

these antibody-neoantigen complexes and appears to be the dominant pathway of C3 activa-

tion [73, 81, 105]. C3 activation is then amplified in a fB-alternative pathway-dependent man-

ner. The exact mechanism by which fB amplifies complement activity after cardiac I/R injury

(the standard model of C3 hydrolysis[106] [107–110], the properidin-directed model[111, 112,

113, 114, 115], or the IgG-mediated model[116, 117]) needs further study.

The downstream effects of complement activation after ischemia reperfusion injury has

been well described and include production of the anaphylatoxins C3a/C5a as well as the

membrane attack complex C5b-9 [118, 119]. Multiple experimental models have already

shown that targeting these mechanisms effectively reduces tissue damage (reviewed in depth

elsewhere) [118, 119], but large randomized trials using blockade of C5 did not alter the inci-

dence or severity of I/R injury [120, 121]. Our new findings show that blocking the upstream

complement amplification loop is sufficient to mitigate I/R-injury. Whether and how factor B

deficiency affects the distal effector mechanisms of the complement cascade still needs to be

formally tested.

Complement activation has been implicated in human I/R injury [122–128], but not with-

out some controversy [129–133]. In clinical trials, blockade of the common terminal comple-

ment pathway using the anti-complement C5 drug Pexelizumab failed to provide statistically

significant improvements in outcomes for cardiac patients undergoing coronary artery bypass

graft surgery [134] or PCI [120]. It is possible that this lack of efficacy relates to the fact that

targeting downstream C5 cleavage does not affect production of upstream alternative path-

way-amplified complement effector molecules including C3-derived C3a and C3b. Two previ-

ous clinical studies of patients post cardiopulmonary bypass showed acute increases in

systemic serum activated fB [135, 136] as early as 30mins and 1hr post-procedure and con-

comitant elevations in C3 and C4 activation products, which are all proximal to complement

C5. Building upon these findings, we show for the first time that fB activation, as determined

by Bb levels, is also increased in samples drawn directly from the coronary circulation immedi-

ately following cessation of global heart ischemia induced by ACXL (Fig 4a) supporting the

hypothesis that the systemic activation of the complement alternative pathway originates in

part from the reperfused heart. Whether fB participates in the pathogenesis of cardiac necrosis

in humans with acute myocardial infarction and whether targeting fB will improve outcomes

following acute myocardial infarction remain to be determined through future trials.

We also provide evidence that this early activated fB is derived predominantly from pre-

existing fB rather than large de novo fB generation. Western blot analysis showed a rise in Bb

and a trend toward less fB in serum isolated from the coronary sinus after AXCL leading to a

relative rise in Bb vs fB levels (Fig 4b and 4c). Further, as noted above, the myocardial necrosis

and complement deposition that was seen in hearts of WT mice after I/R was able to be fully

restored in fB-/- mice after reconstitution with WT serum alone (Fig 2c and 2d). Correspond-

ingly we did not detect increased fB mRNA in WT hearts experiencing I/R relative to sham

surgery or naïve mice (Fig 3) supporting the argument that systemic fB is the dominant source

involved in the injury.

We also show that the Bb levels in the coronary circulation correlated with immediate post-

operative levels of the myocardial necrosis marker cTnI (Fig 5) which has been shown to

inversely correlate with clinical outcomes [7, 8, 137, 138]. Given our murine findings suggest-

ing the central role of alternative complement pathway activation and myocardial injury after

I/R, it is intriguing to consider that activated fB may serve not only as a predictive biomarker
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but also a potential therapeutic target. Still, since the postoperative cTnI level correlates with

length of AXCL, it is possible that the association between intracoronary fB activation (Bb lev-

els) and cardiac necrosis (cTnI levels) reflects the no-flow period rather than a causative rela-

tionship. Further, peripheral levels of Bb rose post-surgically and were statistically significantly

higher than coronary sinus samples. This could be due to additional Bb generation occurring

distal to the collection point of the coronary sinus blood or may be related to a mechanism

of complement activation occurring outside the reperfused organ that warrants further

investigation.

In summary our new results from our animal and clinical observations provide the first evi-

dence that fB contributes directly to the myocardial necrosis that occurs early after surgical

cardiac I/R injury and provides the foundation for testing fB inhibitors to limit IR injury and

improve patient outcomes.

Supporting information

S1 Fig. Additional experiments showing circulating fB in the blood was significantly acti-

vated in WT mice but not in fB-/- mice. It is of note that Bb levels in WT mice (n = 5) did

vary from mouse to mouse, and the highest level was about 5 times more than the lowest one.

The lowest Bb level in WT mice was indistinguishable from that of fB-/- mice (n = 4) by the

current Western blot method using an anti-human fB antibody and a donkey anti-goat anti-

body conjugated with HRP (Rockland, PA) (developed with an ECL Western blotting kit from

Thermo Scientific, NJ).

(EPS)

S2 Fig. Enlarged view of the heart sections from WT mice injected with saline and under-

gone heart I/R. White arrows indicate BFM.

(EPS)

S3 Fig. Enlarged view of the heart sections from fB -/- mice injected with WT serum and

undergone heart I/R. White arrows indicate BFM.

(EPS)

S4 Fig. Activation of fB in the coronary circulation after AXCL. Plasma from the coronary

sinus blood obtained before the start of AXCL and 5 minutes after AXCL cessation was ana-

lyzed by Western blotting using a polyclonal antibody that detects fB and Bb. Each diamond

and circle represents one patient. � indicates statistical significance between the groups

(P< 0.05).

(EPS)

S1 File. Part A: Original data set of Fig 1b; Part B: Original data set of Fig 1d. Part C: Original

data set of Fig 1f; Part D: Original data set of Fig 2b; Part E: Original data set of Fig 2d; Part F:

Original data set of Fig 3.

(XLSX)
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