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Abstract

Considering that metro network expansion brings us with more alternative routes, it is attrac-
tive to integrate the impacts of routes set and the interdependency among alternative routes
on route choice probability into route choice modeling. Therefore, the formulation, estima-
tion and application of a constrained multinomial probit (CMNP) route choice model in the
metro network are carried out in this paper. The utility function is formulated as three compo-
nents: the compensatory component is a function of influencing factors; the non-compensa-
tory component measures the impacts of routes set on utility; following a multivariate normal
distribution, the covariance of error component is structured into three parts, representing
the correlation among routes, the transfer variance of route, and the unobserved variance
respectively. Considering multidimensional integrals of the multivariate normal probability
density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sam-
pling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all
parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Fur-
thermore, the proposed CMNP model also shows a good forecasting performance for the
route choice probabilities calculation and a good application performance for transfer flow
volume prediction.

Introduction

With new lines put into operation almost every year, the large scaled metro system has formed
in some major cities in China, such as Beijing, Shanghai, Guangzhou and Shenzhen. Taking
Guangzhou Metro for instance, up to the year of 2014, it is the sixth busiest metro system in
the world and the third largest metro network in China with 9 lines, 164 stations including 21
transfer stations, and 260.5 km of tracks. In a large scaled metro network, the large number

of transfer stations which brings plenty of routes for some origin-destination (OD) pairs
increases the complexity of route choice modeling. Usually, according to a specific scheme, an
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individual chooses the best route among many alternative routes with comprehensive consid-
eration of multiple factors, including the variables denoting the level of service of metro sys-
tem, such as in-vehicle travel time, number of transfers, transfer time, congestion level, etc.
and the variables describing the influence of topological structure of the metro network and
route direction on passengers’ route choice preferences, such as angular cost [1-2].

The complex nature of route choice process responses to a large scaled metro system has
brought challenges in establishing route choice model to reveal realistic behavioral decisions
in the actual route choice process. Traditionally, with respect to route choice in a large scaled
metro network, a route is chosen from a route set which is derived from attributes’ limitations,
such as travel time and number of transfers. For example, for an OD pair, if the shortest travel
time of one route is 30min, it is a common sense that passengers will not consider the route
with more than 60min travel time. In this case, the 60min travel time is the limitation and the
routes with less than 60min travel time constitutes the routes set. However, route choice and
routes set steps are usually carried out separately and independently in the metro system
which leads to losing the consistence between the two steps. For the two steps, the route choice
step is a compensatory choice process which focuses on calculating the trade-offs among mul-
tiple influencing factors and the routes set generation step is a non-compensatory process
which pays attention to the cut-offs associated with the attributes’ limitations. The non-com-
pensatory behavior has been proved in the choice process [3-5]. And semi-compensatory
route choice modelling which combines the routes set generation and route choice steps has
attracted much more attention. The relationships between semi-compensatory, compensatory
and non-compensatory choice processes are shown in Fig 1.

Meanwhile, route over-lapping problem in the large scaled metro network has already been
figured out by Yai et al. [6]. Especially for some OD pairs with long direct distance, the fact
that some alternative routes will share some links brings the correlation among the routes.
Although most Logit-based models were satisfactory in representing route choice behavior
associated with route over-lapping problem, they were still the approximate responses to the
real behavior. In order to exactly express the interdependency among alternatives, Probit
model [7] is more suitable though its estimation is a little harder than Logit models. Faced
with elaborative operational requirements and services, the operational department is looking
forward to a more advanced route choice model to reveal passengers’ actual route choice
behaviors so as to support personalized travel service and travel demand prediction.

Therefore, it is necessary to establish a semi-compensatory Probit route choice model and
design an easier estimation approach for practice. In this paper, a constrained multinomial

Compensatory Non-compensatory | il Semi-compensatory
choice process choice process | N choice process
Routes set . Route choice
. Route choice step I
generation step I procedure

Fig 1. The relationships of different choice processes. In the figure, ‘A+B = C’ means C is the combination of A and B. The arrow
displays the one-to-one match.

https://doi.org/10.1371/journal.pone.0178789.9001
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Probit route choice model is proposed to reveal the realistic route choice process along with
the estimation approach, focusing on analyzing the semi-compensatory choice behavior and
representing the interdependency among alternative routes.

Literature review

Route choice model based on random utility maximization (RUM) theory [8] mainly consists
of two types, including Logit and Probit models. Among various models, Multinomial Logit
(MNL) model [9] is the most widely used due to its easy estimation and application. Ramming,
Raveau et al., Zhang et al. and Liu et al. successfully analyzed route choice behavior with the
consideration of level of service, social demographics, travel purpose and route direction based
on MNL model [1, 2, 10-11]. But the assumption that the error component follows an identi-
cal and independent (IID) Gumbel distribution induces many weaknesses. In order to alleviate
one of the weakness, known as route over-lapping problem which is caused by the interdepen-
dency among routes, many extended Logit models are developed, such as C-Logit [12], Path
Sized Logit (PSL) [13-14], Paired Combinatorial Logit (PCL) [15-16], Cross Nested Logit
(CNL) [17], Generalized Nested Logit (GNL) [18], Mixed Logit [19], etc. For the application in
the metro network, Raveau et al. applied successfully C-Logit model to analyze passengers’
route choice preferences [20]. However, Logit models cannot avoid IID distribution assump-
tion to formulate probability equation with closed form, weakening the interdependency
among alternative routes, while Probit model [7] can reflect deeply the interdependency by
covariance, closer to passenger’s actual route choice behavior. Yai et al. proposed a Probit
model with structured variance to analyze route choice behavior in the railway network, saving
the computational time to an extent [6].

Those models mainly focus on the process that an individual chooses the best route from a
given routes set. The consistence between the routes set generation and route choice processes
is usually neglected for metro passengers. Considering the interplay between the two sub-pro-
cesses, Zhang et al. [21] successfully introduced constrained multinomial logit (CMNL) model
[22-23] into route choice modeling in the metro network to analyze passengers’ semi-com-
pensatory choice behavior. Semi-compensatory models combining compensatory and non-
compensatory behaviors have been paid more and more attention [24-26]. As one of two
major approaches, the two-stage approach is widely used, consisting of two stages: generating
all possible consideration routes sets and then choosing routes from the generated routes sets
[27]. The consideration routes set is a subset of master routes set which is limited by some
specific attributes. The two-stage approach is attractive that different models are allowed to
explain each stage and many successful applications have already been found in the literature
[28-30]. However, it leads to computational complex because too many consideration routes
sets need to be constructed from master routes set [31]. And it also would have no sufficient
robustness of choice prediction at the level of individual sets [32]. In order to avoid such a
complex combinatorial number of choice sets, a kink called non-compensatory component is
added to utility function, known as the second semi-compensatory choice modeling approach
[33-34]. The non-compensatory component won’t affect the utility when the attribute value
lies in the domain, while it will negatively and significantly affect the utility when the attribute
value exceeds the threshold. The non-compensatory component simplifies the structure of
semi-compensatory choice model and saves the computational time by avoiding huge number
of consideration choice sets compared with the two-stage approach. However, in those
researches, kinks in the utility function make it non-differentiable at the cut-off, which is diffi-
cult to be applied in equilibrium and optimization processes.
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To solve this problem, a constrained multinomial logit (CMNL) route choice model [21] is
developed where the non-compensatory component is a continuous function, making utility
function differentiable at the cutoff. However, its error component still follows (IID) Gumbel
distribution and the route over-lapping problem in the route choice context still needs to be
solved. Moreover, compared with the Gumbel distribution, the normal distribution is more
approximate to the actual distribution of error component. To address the aforementioned
problems, a study for developing a constrained multinomial probit (CMNP) route choice
model for metro passengers is proposed in the paper. In this model, the error component fol-
lows the normal distribution instead of the IID Gumbel distribution to avoid the weaknesses.
The correlations among alternative routes are measured by the covariance matrix.

The following sections of this paper are organized as follows: Section 3 introduces the
CMNP route choice modeling methodology; Section 4 is about the estimation approach which
is carried out based on MCMC method after transforming the CMNP model into Bayesian
formulation; in Section 5, the CMNP model is estimated by the proposed estimation approach
based on surveyed RP data in Guangzhou Metro and applied in forecasting the transfer pas-
sengers volumes; Section 6 is the conclusions.

Modeling methodology

Based on random utility theory, the utility function with constrained characteristic attributes
mainly consists of three parts: compensatory, non-compensatory and error components.

U=V, +Ct+e, (1)

n

S

where with respect to route k for OD pair s, Uy, is the generalized utility perceived by passen-
ger n; V¥, is the compensatory component; C;;, is non-compensatory component; £, is the
random error component.

The compensatory component V*, is a trade-off function of characteristic attributes,
including level of service variables, network topology, etc. This function represents the com-
pensatory trade-offs among attributes. For simplicity, the compensatory component is defined

as a linear function of attributes as shown below.
H
Vi = Z Gn,th‘h (2)
h=1

where H is the number of characteristic attributes; Xy , denotes the attributes; 0,,, is the corre-
sponding parameters needed to be estimated.
The non-compensatory component C?, is a cut-off function which should satisfy below

conditions:

1. It should be a continuous function which guarantees the application in traffic equilibrium
and optimization process.

2. Ifa constrained attribute value of one route exceeds threshold, non-compensatory compo-
nent will let the route utility tend to be negative infinity. Otherwise, non-compensatory
component tends to be zero.

Therefore, the non-compensatory component C?, is formulated in this paper as follows:

G =gy, (3)

where ¢/, is a continuous function limited in (0, 1). The part ¢, can be formulated as a
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probability function which represents the probability that route k is considered after the com-
parison between the constrained attributes of route k and the corresponding thresholds. Usu-
ally, more than one attribute is the constraint, according to conjunctive screen rule [35], ¢,
can be defined as follows:

IVI
G = H P (X5 (4)
i=1

where for OD pair r-s, X}*, is the constrained attribute i of route k; I,, is the number of attributes
constrained by individual n; the function ¢7, (X}*,) measures the considered probability influ-
enced only by characteristic attribute Xj',. To specify this function, we can assume a scenario
that a constrained attribute X}, with perceived error ¥, has an upper bound b};; with perceived
error Y, (if it is a lower bound, the sign will reverse), then the function ¢, (X;",) can be calcu-
lated by

(7" (Xf,) P(Xzf, +y, < b:f,i +,)

P TS s (5)
(lpl - lpz < bn‘i - Xk,i)

where for OD pair r-s, by;, is the threshold of attribute i constrained for individual n.

In this paper, we assume that the perception errors of the constrained attribute and thresh-
old both follow the normal distributions and are independent from each other. Further, the
errors ¥, and ¥, respectively follow normal distributions i, ~ N(0, ¢?) and ¥, ~ N(y,,03),
where 62 and 2 are the variances, and y; is the mean denoting the location parameter. Accord-
ing to the property of normal distribution, ¥';- ¥, still follows normal distribution, that is ¥;-
¥, ~N(~y; 0°), where 6° = 6>+a2. And the function ¢ (X7, is equal to

brs‘ _ er_ + ,y
(XS — (I) n,i ki i
(Pn,k( k,z) [ o ] (6)

= 0w, - (b:fz - X+ 7]

where w; is the scale parameter related to the variance (w;>0, if b, is the upper bound of X}*;
else, w;<0) which affects the changing speed of the probability from 0 to 1; @(-) is the cumula-
tive probability function of standard normal distribution. On account of the location parame-
ter y;, even if the constrained characteristic attribute value is equal to the threshold, the
considered probability may not be 0.5, depending on individual preference. The impacts of
these parameters (e.g. the scale parameter w; and location parameter ¥;) on the function are
shown in Fig 2.

Usually, in the metro system, the spatiotemporal constraints, referring to travel time and
number of transfers, are taken as the constrained characteristic attributes. The fact that the
passengers generally prefer to the route with smaller values of the two attributes leads to the
result that both of the two constraints only have the upper bounds. In the route choice context
for metro passengers, the thresholds to a specific attribute vary with OD pairs. The determin-
istic parts of the thresholds of constrained travel time and number of transfers are shown
below respectively.

b:fr = {xn : ln(T::m—'_l) + Tu:in (7)
b;S‘[ = ﬁn—i_M::Ain (8)

where b}y, is the bound of travel time (including in-vehicle time and transfer time) of
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Fig 2. The impacts of scale and location parameters. The impacts of scale and location parameters on
considered probability function are displayed separately by changing the values.

https://doi.org/10.1371/journal.pone.0178789.9002
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individual 7 for OD pair s, h; b7 is the bound of number of transfers; T7;, is the shortest travel
time for OD pair rs, h; M’

rsis the minimum number of transfers; o, and 8, are the bound
parameters needed to be calibrated.

Assuming that error component £/;, follows the multivariate normal distribution, that is
e, ~ MVN(0,Z7), where X' is the covariance matrix associated with the correlation among
alternative routes, together with the constraints on route availability in the utility function, it is
called CMNP (constrained multinomial probit) model. With respect to the route choice sce-
nario, the route over-lapping problem in the railway network has been identified by Yai et al.
[6] which is similar to metro network. This paper rewrites the covariance matrix into three
parts, where the first part depends on the correlation among routes, the second one denotes
the transfer variance of the route, and the last one denotes the unobserved variance. The latter
two parts distribute independently by route.

op Oy e O, X5 0 - 0
Oy Oy =0 Oy, 0 X5
L B ol )
521 5::12 5::rm 0 0 X::2
bg = Z Kikjli (10)
il

where m is the number of alternatives in the routes set; 2 is the unit variance which is inde-
pendent from each other; g2, is the variance of transfer 1time; 67 is constant and identical to all
routes; J,; is the over-lapping length between route k and j for OD pair rs; X7, is the number of
transfers of route m; I is the identity matrix; [; is the length of link 4 Iy is the links set of route
k; if link i is shared by route k and j, kj; = 1, otherwise, k;i; = 0. There are only three parameters
in this covariance matrix, but we just need to estimate the ratio 4, of 67 to ¢% and the ratio A,
of 63, to a7,

Then based on the random utility maximization, given the values of all parameters, the cho-
sen probability of route k is equal to

Py =PV + Gt &), > max(Vi 4+ CF ey j # k,j € AL (11)
where A” is the routes set between OD pair rs for passenger n. With respect to current scale of
the metro network, the largest size of the routes set A”” can be set as 10.

Model estimation
The Bayesian formulation to the CMNP model

Faced with multidimensional integrals of the multivariate normal densities especially for large
routes set, MNP model is usually estimated by Bayesian formulation and Monte Carlo Markov
Chain (MCMC) approach [36]. This paper mainly wants to exhibit how to transform CMNP
model with structured covariance into Bayesian formula and introduce Cholesky Decomposi-
tion to descend the dimension of integral so that the computational time can be saved. After
the dimension reduction process and integral domain transformation, the calculation of multi-
dimensional integrals of the multivariate normal densities given the parameters can be carried
out based on quasi-Monte Carlo method.

Here, we construct a vector { = pUoUZ = 0UwUyUzUL including all unknown parameters,
where @ contains the parameters in the compensatory component; w is the vector with the
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scale parameters; v is the vector with the location parameters; z contains the parameters in the
threshold function, that is ,, and S, in this paper; A covers the parameters in the covariance
matrix. Meanwhile, the vector Y denotes the indicators of the observations referring to the
chosen routes. Compared with the traditional probit model and the proposed CMNP model,
the non-compensatory component in the CMNP model leads to the difference between the
two models. However, the value of the non-compensatory component can be easily calculated
given the unknown parameters, benefiting from the independent bivariate normal distribution
assumption. Based on Bayes’ theorem, the posterior distribution 7({|Y) is proportional to the
priors on all unknown parameters, that is, the joint posterior distribution for the Hierarchical
Bayes model is as follows.

TE(QY) X P(Y|ea m,y,z,i) : 77:(0,0), 'Yazvug) ' TE(C) (12)

where 71(-) is the probability density function; P(Y|0, w, v, z, &) is the probability of observation
Y given all unknown parameters which is equal to Eq (11). Supposing that all parameters are
independent from each other, we can get the below equations.

n(0,0,7,2,MC) = n(8lny, 0y) - (0, 0,) - n(¥ln,, 6,) - 7(zln,,6,) - w(Mw,0,)  (13)

n(8) = n(ny) - 7(0y) - 7(u,,) - 7(e,) - 2(w,) - n(e,) - n(w,) - n(o,) - n(p,) - n(ay)  (14)

Probit model is hard to be calculated even if all the unknown parameters are given because
of the multivariate normal distribution. The Eq (11) can be rewritten into the D-dimensional
integrals of the multivariate normal density as follows.

BV IV . VIO VE—C
P = / Q(e")del; - - - de? (15)
sf——oo sf——oc £y =—00
o =l 1 .
Q(e") = 2m) ¥ 2T exp[— 5 £"2 7 (&)'] (16)
where €° = [e7, €5, - - -, €] is the random error vector.

Considering that the covariance matrix is a Hermitian, positive-definite matrix, the integral
of the general multivariate normal distribution can be transformed into that of standard nor-
mal distribution via Cholesky Decomposition to the covariance matrix and other substitutions
[37-38]. By this means, the integral domain is referred to as transforming the m-variate inte-
gral into one over the (m-1)-dimensional hypercube.

Based on Cholesky Decomposition, the covariance matrix can be written as

S=DxD" (17)

where D is a lower triangular matrix and D'isits conjugate transpose. We set
£ =Dxq" (18)

where " = [q7, 45, - - -, q7] is a vector substituting random error vector €. Then the Eq (11)
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can be transformed as

v, , v, ,
p=n? [ep-D) [ ep- T (19)

k i-1
/ (dedqj FVEHCG V-G = Zdi,jqj)/di.i , i£k
bi = j=1 j=1 (20)

+o0o ) i=k
where b/ is the upper limit of the i-th layer’s integration; d; ; is the element in D. We assume
q; = (I)_l(vi) (21)

where v = [v¥, v, - - - v"] is a vector substituting vector q'*; @ '(-) is the inverse cumulative
probability function of standard normal distribution, that is v; = ®(g;). Meanwhile, we suppose

v; = wie;. Thus, we get the equation
ek em
. / . / v
0 0
1

el
rs
Pk_/
0

(22)
1 1 m
= / / e / Heidw
0 0 [U——
k i-1
o — (I)((de‘jq)il(wj ’ ej) +VE+CE-VE-CF — Zdi‘jq)il(wj ’ ej))/di‘i) , iFk (23)
P = =1 =1

1 , i=k

where w = (w1, w,,. . .,w,,,) denotes the parameters vector.

When i =k, e; = 1, the m-dimensional integration declines into (m-1)-dimensional integra-
tion. And quasi-Monte Carlo method can be used to calculate the probability of multivariate
normal distribution given all unknown parameters.

The parameter identification problem

With respect to the constrained multinomial logit model, Castro et al. discussed the parameter
identification problem derived from the fact that one attribute exists both in the compensatory
and non-compensatory components [23]. This problem has been avoided in this paper via the
process that the threshold is regarded as a function whose value varies with the change of the
OD scale. By this means, the parameters associated with the same attribute both in the com-
pensatory and non-compensatory components are identifiable. Another parameter identifica-
tion problem arises when the threshold parameter plus directly location parameter. In this
paper, the constraint of number of transfers suffers this problem as S+y,, where £ is the thresh-
old parameter and ¥, is the location parameter. The two parameters cannot be identified, but
we can estimate the sum of them without influence on other parameters. For simplicity, we
can assume the location parameter is equal to 0, and then we can get the value of the threshold
parameter.
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Probability calculation based on Monte Carlo simulation

With respect to the solution to Eq (11) associated with the probit probability, the quasi-Monte
Carlo method is carried out. Supposing that every element in w follows the uniform distribu-
tion w; ~ U(0, 1) and the elements in w are independent from each other, we use Halton
sequence to generate random data. The vector w; = (Wyj. . .Wj;,. . .W,,;). contains the random
values generated by the Halton sequence in the j-th iteration. We can get the approximate solu-
tion to Eq (11) given unknown parameters 0, w, v, z, A, that is,

Pr = ﬁe

(24)

where E(-) denotes the expected value.

Estimation algorithm

The Metropolis-Hastings (M-H) algorithm [39-40] which is known as one of the MCMC
approach is widely used to generate samples of the parameter from a prior distribution without
the prior knowledge. In order to generate the final samples, candidates are drawn iteratively
and they will be accepted as current samples with a certain probability in every iteration. With
the increase of the number of iterations, Markov Chain ensures that we will gain a stationary
posterior distribution of the parameter. In order to improve estimating efficiency, the variable-
at-a-time Metropolis sampling scheme [39] is used to generate candidate for every parameter
in turn in the parameters’ set. The estimation process is organized as follows.

Step 1: Generate randomly initial values from pre-defined prior distribution, that is
g0 = (.. (9. £, where NP denotes the number of parameters. And generate

routes sets A™ for OD pairs based on physical length. Set iteration t=1and i= 1.
Step 2: Draw a candidate {* = (C o Cl LG ST 4 un 1)) from a jumping distribution

i1
J.(C]¢7Y) based on the Gaussian random walk Metropolis sampling method. This method
suggests that the jumping distribution is supposed to be a normal distribution which is a sym-
metric distribution satisfying the equation J,({;|{"™") = J,(""V|¢7). Here we set the jumping
distribution as ], ({7 7) ~ N({", &%), where & is the proposal variance for the i-th

parameter.
Step 3: Calculate the acceptance ratio 3 = min{1, %} mm{l ’((; oy
where
ﬂ:/(é’j) = n<c(1t)’ U Ct 1 Cl ? Cz+1 y T CE\;;l)'Y)
t—1) = (1) 1 (t-1) * (25)
oc [TPHIE, -0 6 0, ™) - Tr@) - T ™) - ()]
keY j=1 =i+l
n/(CEtil)) = n((gt)a o 7(, 17€ ey é’fiql [ (t Y |Y)
(1) (t-1) (t— 1) 1 [ 1 (,(tfl) (26)
OCH[P(k‘é‘] i aC, 11C 7£,+1 s ) HTC HTE i )]
key =1 j=itl
where P(k|(\", -+, (4") = Pg, referring to Eq (11). The same parts can be canceled out and
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the ratio is

TPk, 80 ) m(E)]

9 = min{1, =" } (27)
TTPKIEY, - 0, 0,80, D) - ()]

keY

Step 4: Draw a value u from the uniform distribution U(0, 1). If u<9, ¢ = £*; otherwise,
(;(m) — Q(m—l).

Step 5: If i<NP, i = i+1, repeat Step 2—Step4; otherwise, continue Step 6.

Step 6: If m<M, m = m+1, i = 1, repeat Step 2—Step 5; otherwise, stop sampling.

Results and discussions
Data

All data are available in the supporting information file (S1_Dataset.).

With new lines put into operation ceaselessly, Guangzhou Metro becomes the sixth busiest
metro system in the world and the third largest metro system in China. Up to July 2014, there
are 8 lines and 136 stations (including 19 transfer stations) in operation, forming 256.6km
operating length and carrying about 6.2 million daily ridership, except the APM Line. The
APM Line isn’t in our consideration, because it belongs to a unique system which needs to
swipe through again although you were in other lines. The metro system covers the major
urban areas of the city, reaches into some large suburban area and connects Guangzhou city
and Foshan city. Through statistical analysis, there are 3721 OD pairs for which the routes
with the shortest travel times are not the routes with the minimum number of transfers. It pro-
vides the possibility that more than one route will be considered by passengers with compre-
hensive consideration of multiple factors. The large scaled metro network increases the
complexity of route choice analysis.

In July 2014, Guangzhou Metro Corporation organized a survey in the metro stations to
collect passengers’ travel characteristics, such as respondents’ actual travel routes. Totally, the
effective sample size is 14142. Based on the survey data, Fig 3(a) shows the relationship
between the difference (namely the threshold minus the shortest travel time) and the shortest
travel time. It can be seen that the difference increases logarithmically with the increase of the
shortest travel time which demonstrates that the travel time threshold formula in Eq (7) is suit-
able. By data fitting, when ¢, = 0.446, the mean absolute percentage error (MAPE) is the mini-
mum 3.657%. Fig 3(b) shows that when the minimum number of transfers is 0, the weighted
mean value of the threshold of number of transfers is 1.951, that is, 8, can be assumed as 1.951.

Estimations

In the compensatory component, the in-vehicle travel time (X;*}, h), number of transfers (X}’,,
time), transfer time (X}, h), comfort degree (X},, 0-1 variable) and revised angular cost (X}’;,

km) are considered with the corresponding parameters 0y, 6, 65 0, and 05, where revised
angular cost X}°, measures the deviation degree of a route by transforming sin() into tan() and

comfort degree X;*, represents the congestion level in the train whose value is X;, = 1 when
average load factor of one route is smaller than 20%, otherwise, X;*, = 0. In the non-compen-
satory component, the travel time (X5, = X¢*, + X%, X}";, h) and number of transfers X, are
considered with the threshold parameters o and 3, scale parameters w; and w,, as well as loca-
tion parameters ¥, and y,, respectively. In case of the parameter identification problem in the
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Fig 3. The thresholds of travel time and number of transfers. The figure displays the survey data
associated with thresholds. By fitting, the parameters in the thresholds can be estimated.

https://doi.org/10.1371/journal.pone.0178789.9003

threshold of number of transfers, the location parameter is assumed to be 0, that is ,,, = 0.
Moreover, the parameter A; and A, in the covariance matrix needs to be estimated.

Based on the surveyed data, the proposed model, MNP model, MNL model and CMNL
model are estimated respectively. The latter two models are estimated based on the
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Frequency

maximization likelihood estimation method, while the proposed model and MNP model are
estimated based on the estimation approach proposed by this paper. Under the non-informa-
tive condition, the prior distributions for all parameters are assumed to follow uniform distri-
bution. Totally, what parameters we need to estimate are 8, 8,, 83, 04, 65, o, B, w;, W, ¥, A1 and
A,. Considering the signs of the parameters, we assume that 6;, 6,, 65 and 85 follow U(-20, 0);
04, o, B, w,,, A, and A, follow U(0, 20); w; follows U(60, 200); y; follows U(-1, 1). The proposal
variance & is 0.05. The surveyed RP data is divided into two parts, referring to the 12039 data
for estimation and 2103 data for examination. The scheme to screen the data will be described
later. Based on MCMC approach, we tried 10000 iterations to estimate all parameters in the
CMNP model, where the fore 5000 samples for each parameter are abandoned as burn-in
period and the left 5000 effective samples for each parameter are drawn. The distribution of
the effective samples for 0, is taken as an example shown in Fig 4. Based on the samples, we
can get the mean and 95% Bayesian conference interval (CI) shown in Table 1, as well as the
estimations of MNL, MNP and CMNL models.

Kolmogorov-Smirnov (KS) Test is used to determine whether the samples follow normal
distribution. Fig 4 shows the distribution of the effective samples for parameter 6, for an exam-
ple. Descriptive statistics show that the average value is -9.074 and the standard deviation is
0.366. By KS test, the p value is 0.433 which is greater than 0.05, proving that the samples

250

200 +

—_—

(9]

<
|

p—

S

=)
|

50 1

Fig 4. The distribution of effective samples for 6. The figure exhibits the frequency distribution of the samples to represent
the convergence directly.

https://doi.org/10.1371/journal.pone.0178789.9004
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Table 1. Estimations of MNL, CMNL and CMNP models.

Parameter MNL-value
(t-value)
64 -14.411
(-31.103)
6> -2.256
(-17.267)
63 -15.623
(-16.654)
64 0.005
(6.068)
Os -0.018
(-2.016)
a -
B .-
Wi --
W --
Yt -
A] -
A2 -
o? 0.442
Sample Size 10000

https://doi.org/10.1371/journal.pone.0178789.t001

MNP-mean CMNL-value CMNP-mean
(95% Cl) (t-value) (95% Cl)
-13.174 -10.224 -9.074
([-13.165, -13.184]) (-40.714) ([-9.065, -9.084])
-2.071 -1.641 -1.479
([-2.061, -2.081]) (-15.324) ([-1.468, -1.489])
-13.111 -11.712 -11.100
([-13.100, -13.121]) (-13.125) ([-11.088, -11.111])
0.008 0.004 0.008
([0.00799,0.00801]) (3.224) ([0.00799,0.00801])
-0.052 -0.061 -0.075
([-0.0520, -0.0523]) (-2.514) ([-0.0751, -0.0753])
-- 0.460 0.455
(3.412) ([0.450, 0.460])
-- 1.961 1.959([1.943, 1.975])
(2.121)
-- 65.012 177.392
(21.403) ([177.240, 177.548])
-- 6.051 7.431
(5.711) ([7.411, 7.452))
-- 0.001 0.001
(1.991) ([0.0009, 0.0011])
0.621([0.620, 0.622]) -- 0.675([0.674, 0.676])
0.544([0.542, 0.546]) -- 0.552([0.550, 0.554])
0.571 0.533 0.723
10000 10000 10000

follow normal distribution at 5% significance level. Thus, the sampling process converges.
Other parameters have the same characteristics. As shown in Table 1, the different results for
the parameters in MNP and CMNP models indicate that the MCMC approach can successfully
distinguished all parameters though some of them have the same initial values. And the CI for
every parameter ensures us to accept the means of the drawn samples. Meanwhile, coefficients
of in-vehicle time, number of transfers, transfer time and revised angular cost are negative,
meaning that the chosen probability of one route decreases along with the increase of in-vehi-
cle time, number of transfers, transfer time or revised angular cost. Coefficients of comfort
degree in both models are all positive, meaning that their increase will improve individual
preference to the route. It is consistent with the common sense. Furthermore, t-values of the
coefficients for MNL and CMNL models exceed 1.96, indicating that the null hypothesis that
the true values of the coefficients are zero can be rejected at the 0.05 significance level. And the
p” of all models are greater than 0.2, indicating that all models have a good goodness-of-fit.
Compared with the p?, CMNP model are the greatest, illustrating that the proposed CMNP
model is the best among all models.

In addition to the estimation performance, the forecasting performances of all models are
compared. In order to gain plenty of actual choice results which are drawn from the surveyed
data, the route choices between some similar OD pairs are aggregated. As shown in Fig 5, we
combine the origins as an identical origin R as well as the identical destination S, that is, R con-
tains Guangzhou South Railway Station (R1), Shibi (R2), Huijiang (R3), Nanpu (R4), Luoxi
(R5), Nanzhou (R6), Dongxiao South (R7) and Jiangtai Road (R8); S contains Jingxi Nanfang
Hospital (S1) and Meihuayuan (S2). The transfer stations are Haizhu Square (1), Gongyuan-
qian (m2), Jiahewanggang (m3), Yantang (m4), Guangzhou East Railway Station (m5) and
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Fig 5. A diagram of deleted OD pairs and routes. The origin stations are denoted as R; the destination stations are denoted as S; the
transfer stations are denoted as m. Other stations are omitted in the figure. It means transferring if the route passes by a transfer station.

https://doi.org/10.1371/journal.pone.0178789.9005

Tiyu West Road (m6). Excluding the routes with chosen probabilities smaller than 0.0001, we
have four routes left in Table 2 along with the chosen probabilities according to different mod-
els. The number of the actual choices between the specific OD pairs in the surveyed data is
2103 and the absolute error is calculated to compare the forecasting performance as shown in
Table 2. We can see that CMNP model has the smallest MAE (Mean Absolute Error) which
demonstrates that the proposed CMNP model has the best forecasting performance.

Application

The route choice model can be used to predict the transfer flow volume, section flow volume,
etc. which are the basis of scheduling the train plan, guiding individual travel route, etc. The
proposed CMNP route choice model determines the route choice probability for every OD
pair in the metro network. And then the flow volume on the route can be derived from the
product of the probability and the OD volume. By counting the number of passengers transfer-
ring between two different lines based on the train timetable, the transfer flow volume can be
calculated. All testing data are provided by Guangzhou Metro Corporation. The results are
shown in Fig 6 where testing data is on the horizontal axis, predicting data is on the vertical
axis, and the solid line is the basic line indicating that the predicting data is equal to the testing
data if the data spot is on the line. Every spot represents the flow volume transferring form one
running direction of one line to one running direction of another line. Usually, every line has

Table 2. The comparisons of all models.

Route Actual MNL MNP CMNL CMNP

Prob. Prob.(AE) Prob.(MAE) Prob.(AE) Prob.(AE)
K1:R->m2->m6->8 51% 45% (6%) 46% (5%) 58% (7%) 53% (2%)
K2:R->m2->m5->8 19% 38% (19%) 27% (8%) 23% (4%) 21% (2%)
K3:R->m3->8 21% 13% (8%) 16% (5%) 12% (9%) 20% (1%)
K4:R->m1->m4->8 9% 4% (5%) 11% (2%) 7% (2%) 6% (3%)
Sum 100% 100% (38%) 100% (20%) 100% (22%) 100% (8%)
https://doi.org/10.1371/journal.pone.0178789.t002
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Fig 6. The transfer flow volume forecasting performance. For each spot, it has two values, including the testing data corresponding
to horizontal axis and forecasting value corresponding to vertical axis.

https://doi.org/10.1371/journal.pone.0178789.9006

two running directions. The mean absolute percentage error (MAPE) is 4.91% which shows
that the proposed CMNP model has a good application prospect.

Conclusion

In a large scaled metro network, the complex nature of route choice process brings us a chal-
lenge to exactly figure out passengers’ actual decision rules. This paper focuses on integrating
the impacts of routes set and the interdependency among alternative routes on route choice
probability into route choice modeling in the metro network. The impact of routes set on
route choice probability expresses the semi-compensatory choice process which is a combina-
tion of routes set generation and route choice stages. Thereafter, a constrained multinomial
probit (CMNP) model is proposed by this paper, in which, the utility function consists of com-
pensatory, non-compensatory and error parts. The compensatory part is a linear function of
in-vehicle travel time, number of transfers, transfer time, congestion level and revised angular
cost. The non-compensatory part measures the impact of considered probability of one route
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on the route’s utility by a logarithm function, where considered probability is calculated by a
binary probit equation denoting the relationship between the constrained attributes (e.g. travel
time and number of transfers) and the corresponding thresholds proposed by this paper. The
error part follows a multivariate normal distribution, whose variance is structured into three
parts, including measuring the correlation among routes, representing the transfer variance of
the route, and denoting the unobserved variance.

With respect to the estimation, considering multidimensional integrals of the multivariate
normal probability density function, the CMNP model is rewritten as Bayesian formulation
and MCMC approach is constructed to estimate all parameters. As a key point to calculate the
acceptance rate, given the unknown parameters, the multidimensional integrals of the multi-
variate normal probability density function can be transformed into those of standard normal
distribution via Cholesky Decomposition to the covariance matrix and other substitutions.
Then the integrals can be easily simulated by quasi-Monte Carlo algorithm.

At last, the proposed model is estimated by the proposed estimation approach based on the
surveyed RP data in Guangzhou Metro. The estimations show that every parameter can be dis-
tinguished though they have the same initial values. And the Bayesian CI indicates the reliabil-
ity of the mean of the samples. Moreover, compared with MNL, MNP and CMNL models, the
proposed CMNP model shows the best forecasting performance with respect to the prediction
on the route choice probabilities and transfer flow volumes.

In the future, we will try to estimate the proposed model based on the smart card data and
the travel time reliability will also be considered in the model.
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