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Abstract

Considering that metro network expansion brings us with more alternative routes, it is attrac-

tive to integrate the impacts of routes set and the interdependency among alternative routes

on route choice probability into route choice modeling. Therefore, the formulation, estima-

tion and application of a constrained multinomial probit (CMNP) route choice model in the

metro network are carried out in this paper. The utility function is formulated as three compo-

nents: the compensatory component is a function of influencing factors; the non-compensa-

tory component measures the impacts of routes set on utility; following a multivariate normal

distribution, the covariance of error component is structured into three parts, representing

the correlation among routes, the transfer variance of route, and the unobserved variance

respectively. Considering multidimensional integrals of the multivariate normal probability

density function, the CMNP model is rewritten as Hierarchical Bayes formula and M-H sam-

pling algorithm based Monte Carlo Markov Chain approach is constructed to estimate all

parameters. Based on Guangzhou Metro data, reliable estimation results are gained. Fur-

thermore, the proposed CMNP model also shows a good forecasting performance for the

route choice probabilities calculation and a good application performance for transfer flow

volume prediction.

Introduction

With new lines put into operation almost every year, the large scaled metro system has formed

in some major cities in China, such as Beijing, Shanghai, Guangzhou and Shenzhen. Taking

Guangzhou Metro for instance, up to the year of 2014, it is the sixth busiest metro system in

the world and the third largest metro network in China with 9 lines, 164 stations including 21

transfer stations, and 260.5 km of tracks. In a large scaled metro network, the large number

of transfer stations which brings plenty of routes for some origin-destination (OD) pairs

increases the complexity of route choice modeling. Usually, according to a specific scheme, an
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individual chooses the best route among many alternative routes with comprehensive consid-

eration of multiple factors, including the variables denoting the level of service of metro sys-

tem, such as in-vehicle travel time, number of transfers, transfer time, congestion level, etc.

and the variables describing the influence of topological structure of the metro network and

route direction on passengers’ route choice preferences, such as angular cost [1–2].

The complex nature of route choice process responses to a large scaled metro system has

brought challenges in establishing route choice model to reveal realistic behavioral decisions

in the actual route choice process. Traditionally, with respect to route choice in a large scaled

metro network, a route is chosen from a route set which is derived from attributes’ limitations,

such as travel time and number of transfers. For example, for an OD pair, if the shortest travel

time of one route is 30min, it is a common sense that passengers will not consider the route

with more than 60min travel time. In this case, the 60min travel time is the limitation and the

routes with less than 60min travel time constitutes the routes set. However, route choice and

routes set steps are usually carried out separately and independently in the metro system

which leads to losing the consistence between the two steps. For the two steps, the route choice

step is a compensatory choice process which focuses on calculating the trade-offs among mul-

tiple influencing factors and the routes set generation step is a non-compensatory process

which pays attention to the cut-offs associated with the attributes’ limitations. The non-com-

pensatory behavior has been proved in the choice process [3–5]. And semi-compensatory

route choice modelling which combines the routes set generation and route choice steps has

attracted much more attention. The relationships between semi-compensatory, compensatory

and non-compensatory choice processes are shown in Fig 1.

Meanwhile, route over-lapping problem in the large scaled metro network has already been

figured out by Yai et al. [6]. Especially for some OD pairs with long direct distance, the fact

that some alternative routes will share some links brings the correlation among the routes.

Although most Logit-based models were satisfactory in representing route choice behavior

associated with route over-lapping problem, they were still the approximate responses to the

real behavior. In order to exactly express the interdependency among alternatives, Probit

model [7] is more suitable though its estimation is a little harder than Logit models. Faced

with elaborative operational requirements and services, the operational department is looking

forward to a more advanced route choice model to reveal passengers’ actual route choice

behaviors so as to support personalized travel service and travel demand prediction.

Therefore, it is necessary to establish a semi-compensatory Probit route choice model and

design an easier estimation approach for practice. In this paper, a constrained multinomial

Fig 1. The relationships of different choice processes. In the figure, ‘A+B = C’ means C is the combination of A and B. The arrow

displays the one-to-one match.

https://doi.org/10.1371/journal.pone.0178789.g001
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Probit route choice model is proposed to reveal the realistic route choice process along with

the estimation approach, focusing on analyzing the semi-compensatory choice behavior and

representing the interdependency among alternative routes.

Literature review

Route choice model based on random utility maximization (RUM) theory [8] mainly consists

of two types, including Logit and Probit models. Among various models, Multinomial Logit

(MNL) model [9] is the most widely used due to its easy estimation and application. Ramming,

Raveau et al., Zhang et al. and Liu et al. successfully analyzed route choice behavior with the

consideration of level of service, social demographics, travel purpose and route direction based

on MNL model [1, 2, 10–11]. But the assumption that the error component follows an identi-

cal and independent (IID) Gumbel distribution induces many weaknesses. In order to alleviate

one of the weakness, known as route over-lapping problem which is caused by the interdepen-

dency among routes, many extended Logit models are developed, such as C-Logit [12], Path

Sized Logit (PSL) [13–14], Paired Combinatorial Logit (PCL) [15–16], Cross Nested Logit

(CNL) [17], Generalized Nested Logit (GNL) [18], Mixed Logit [19], etc. For the application in

the metro network, Raveau et al. applied successfully C-Logit model to analyze passengers’

route choice preferences [20]. However, Logit models cannot avoid IID distribution assump-

tion to formulate probability equation with closed form, weakening the interdependency

among alternative routes, while Probit model [7] can reflect deeply the interdependency by

covariance, closer to passenger’s actual route choice behavior. Yai et al. proposed a Probit

model with structured variance to analyze route choice behavior in the railway network, saving

the computational time to an extent [6].

Those models mainly focus on the process that an individual chooses the best route from a

given routes set. The consistence between the routes set generation and route choice processes

is usually neglected for metro passengers. Considering the interplay between the two sub-pro-

cesses, Zhang et al. [21] successfully introduced constrained multinomial logit (CMNL) model

[22–23] into route choice modeling in the metro network to analyze passengers’ semi-com-

pensatory choice behavior. Semi-compensatory models combining compensatory and non-

compensatory behaviors have been paid more and more attention [24–26]. As one of two

major approaches, the two-stage approach is widely used, consisting of two stages: generating

all possible consideration routes sets and then choosing routes from the generated routes sets

[27]. The consideration routes set is a subset of master routes set which is limited by some

specific attributes. The two-stage approach is attractive that different models are allowed to

explain each stage and many successful applications have already been found in the literature

[28–30]. However, it leads to computational complex because too many consideration routes

sets need to be constructed from master routes set [31]. And it also would have no sufficient

robustness of choice prediction at the level of individual sets [32]. In order to avoid such a

complex combinatorial number of choice sets, a kink called non-compensatory component is

added to utility function, known as the second semi-compensatory choice modeling approach

[33–34]. The non-compensatory component won’t affect the utility when the attribute value

lies in the domain, while it will negatively and significantly affect the utility when the attribute

value exceeds the threshold. The non-compensatory component simplifies the structure of

semi-compensatory choice model and saves the computational time by avoiding huge number

of consideration choice sets compared with the two-stage approach. However, in those

researches, kinks in the utility function make it non-differentiable at the cut-off, which is diffi-

cult to be applied in equilibrium and optimization processes.

CMNP model formulation, estimation and application
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To solve this problem, a constrained multinomial logit (CMNL) route choice model [21] is

developed where the non-compensatory component is a continuous function, making utility

function differentiable at the cutoff. However, its error component still follows (IID) Gumbel

distribution and the route over-lapping problem in the route choice context still needs to be

solved. Moreover, compared with the Gumbel distribution, the normal distribution is more

approximate to the actual distribution of error component. To address the aforementioned

problems, a study for developing a constrained multinomial probit (CMNP) route choice

model for metro passengers is proposed in the paper. In this model, the error component fol-

lows the normal distribution instead of the IID Gumbel distribution to avoid the weaknesses.

The correlations among alternative routes are measured by the covariance matrix.

The following sections of this paper are organized as follows: Section 3 introduces the

CMNP route choice modeling methodology; Section 4 is about the estimation approach which

is carried out based on MCMC method after transforming the CMNP model into Bayesian

formulation; in Section 5, the CMNP model is estimated by the proposed estimation approach

based on surveyed RP data in Guangzhou Metro and applied in forecasting the transfer pas-

sengers volumes; Section 6 is the conclusions.

Modeling methodology

Based on random utility theory, the utility function with constrained characteristic attributes

mainly consists of three parts: compensatory, non-compensatory and error components.

Urs
n;k ¼ V

rs
n;k þ C

rs
n;k þ ε

rs
n;k ð1Þ

where with respect to route k for OD pair rs, Urs
n;k is the generalized utility perceived by passen-

ger n; Vrs
n;k is the compensatory component; Crsn;k is non-compensatory component; εrsn;k is the

random error component.

The compensatory component Vrs
n;k is a trade-off function of characteristic attributes,

including level of service variables, network topology, etc. This function represents the com-

pensatory trade-offs among attributes. For simplicity, the compensatory component is defined

as a linear function of attributes as shown below.

Vrs
n;k ¼

XH

h¼1

yn;hXk;h ð2Þ

whereH is the number of characteristic attributes; Xk,h denotes the attributes; θn,h is the corre-

sponding parameters needed to be estimated.

The non-compensatory component Crsn;k is a cut-off function which should satisfy below

conditions:

1. It should be a continuous function which guarantees the application in traffic equilibrium

and optimization process.

2. If a constrained attribute value of one route exceeds threshold, non-compensatory compo-

nent will let the route utility tend to be negative infinity. Otherwise, non-compensatory

component tends to be zero.

Therefore, the non-compensatory component Crsn;k is formulated in this paper as follows:

Crsn;k ¼ ln�rsn;k ð3Þ

where �
rs
n;k is a continuous function limited in (0, 1). The part �

rs
n;k can be formulated as a
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probability function which represents the probability that route k is considered after the com-

parison between the constrained attributes of route k and the corresponding thresholds. Usu-

ally, more than one attribute is the constraint, according to conjunctive screen rule [35], �
rs
n;k

can be defined as follows:

�
rs
n;k ¼

YIn

i¼1

φrsn;kðX
rs
k;iÞ ð4Þ

where for OD pair r-s, Xrs
k;i is the constrained attribute i of route k; In is the number of attributes

constrained by individual n; the function φrsn;kðX
rs
k;iÞmeasures the considered probability influ-

enced only by characteristic attribute Xrs
k;i. To specify this function, we can assume a scenario

that a constrained attribute Xrs
k;i with perceived error C1 has an upper bound brsn;i with perceived

error C2 (if it is a lower bound, the sign will reverse), then the function φrsn;kðX
rs
k;iÞ can be calcu-

lated by

φrsn;kðX
rs
k;iÞ ¼ PðX

rs
k;i þ c1 � brsn;i þ c2Þ

¼ Pðc1 � c2 � brsn;i � X
rs
k;iÞ

ð5Þ

where for OD pair r-s, brsn;i is the threshold of attribute i constrained for individual n.

In this paper, we assume that the perception errors of the constrained attribute and thresh-

old both follow the normal distributions and are independent from each other. Further, the

errors C1 and C2 respectively follow normal distributions c1 � Nð0; s2
1
Þ and c2 � Nðgi; s2

2
Þ,

where s2
1

and s2
2

are the variances, and γi is the mean denoting the location parameter. Accord-

ing to the property of normal distribution, C1-C2 still follows normal distribution, that is C1-

C2 ~N(−γi, σ2), where s2 ¼ s2
1
þs2

2
. And the function φrsn;kðX

rs
k;iÞ is equal to

φrsn;kðX
rs
k;iÞ ¼ F½

brsn;i � X
rs
k;i þ gi

s
�

¼ F½oi � ðbrsn;i � X
rs
k;i þ giÞ�

ð6Þ

where ωi is the scale parameter related to the variance (ωi>0, if brsn;i is the upper bound of Xrs
k;i;

else, ωi<0) which affects the changing speed of the probability from 0 to 1; F(�) is the cumula-

tive probability function of standard normal distribution. On account of the location parame-

ter γi, even if the constrained characteristic attribute value is equal to the threshold, the

considered probability may not be 0.5, depending on individual preference. The impacts of

these parameters (e.g. the scale parameter ωi and location parameter γi) on the function are

shown in Fig 2.

Usually, in the metro system, the spatiotemporal constraints, referring to travel time and

number of transfers, are taken as the constrained characteristic attributes. The fact that the

passengers generally prefer to the route with smaller values of the two attributes leads to the

result that both of the two constraints only have the upper bounds. In the route choice context

for metro passengers, the thresholds to a specific attribute vary with OD pairs. The determin-

istic parts of the thresholds of constrained travel time and number of transfers are shown

below respectively.

brsn;t ¼ an � lnðT
rs
minþ1Þ þ Trsmin ð7Þ

brsn;t ¼ bnþM
rs
min ð8Þ

where brsn;t is the bound of travel time (including in-vehicle time and transfer time) of

CMNP model formulation, estimation and application
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Fig 2. The impacts of scale and location parameters. The impacts of scale and location parameters on

considered probability function are displayed separately by changing the values.

https://doi.org/10.1371/journal.pone.0178789.g002
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individual n for OD pair rs, h; brsn;t is the bound of number of transfers; Trsmin is the shortest travel

time for OD pair rs, h;Mrs
min is the minimum number of transfers; αn and βn are the bound

parameters needed to be calibrated.

Assuming that error component εrsn;k follows the multivariate normal distribution, that is

εrsn;k � MVNð0;S
rs
n Þ, where Srs

n is the covariance matrix associated with the correlation among

alternative routes, together with the constraints on route availability in the utility function, it is

called CMNP (constrained multinomial probit) model. With respect to the route choice sce-

nario, the route over-lapping problem in the railway network has been identified by Yai et al.

[6] which is similar to metro network. This paper rewrites the covariance matrix into three

parts, where the first part depends on the correlation among routes, the second one denotes

the transfer variance of the route, and the last one denotes the unobserved variance. The latter

two parts distribute independently by route.

Srs
n ¼ s2

L

d
rs
11

d
rs
12
� � � d

rs
1m

d
rs
21

d
rs
22 � � � d

rs
2m

� � � � � � � � � � � �

d
rs
m1

d
rs
m2
� � � d

rs
mm

0

B
B
B
B
@

1

C
C
C
C
A
þ s2

N

Xrs
12

0 � � � 0

0 Xrs
22
� � � 0

� � � � � � � � � � � �

0 0 � � � Xrs
m2

0

B
B
B
B
@

1

C
C
C
C
A
þ s2

0
I ð9Þ

d
rs
kj ¼

X

i2Gk

kikjli ð10Þ

wherem is the number of alternatives in the routes set; s2
L is the unit variance which is inde-

pendent from each other; s2
N is the variance of transfer 1time; s2

0 is constant and identical to all

routes; d
rs
kj is the over-lapping length between route k and j for OD pair rs; Xrs

m2
is the number of

transfers of routem; I is the identity matrix; li is the length of link i; Γk is the links set of route

k; if link i is shared by route k and j, kikj = 1, otherwise, kikj = 0. There are only three parameters

in this covariance matrix, but we just need to estimate the ratio λ1 of s2
L to s2

0 and the ratio λ2

of s2
N to s2

0.

Then based on the random utility maximization, given the values of all parameters, the cho-

sen probability of route k is equal to

Prsk ¼ P½V
rs
n;k þ C

rs
n;k þ ε

rs
n;k � maxðVrs

n;j þ C
rs
n;j þ ε

rs
n;j; j 6¼ k; j 2 A

rs
n Þ� ð11Þ

where A
rs
n is the routes set between OD pair rs for passenger n. With respect to current scale of

the metro network, the largest size of the routes set A
rs
n can be set as 10.

Model estimation

The Bayesian formulation to the CMNP model

Faced with multidimensional integrals of the multivariate normal densities especially for large

routes set, MNP model is usually estimated by Bayesian formulation and Monte Carlo Markov

Chain (MCMC) approach [36]. This paper mainly wants to exhibit how to transform CMNP

model with structured covariance into Bayesian formula and introduce Cholesky Decomposi-

tion to descend the dimension of integral so that the computational time can be saved. After

the dimension reduction process and integral domain transformation, the calculation of multi-

dimensional integrals of the multivariate normal densities given the parameters can be carried

out based on quasi-Monte Carlo method.

Here, we construct a vector ζ = μ[σ[S = θ[ω[γ[z[λ including all unknown parameters,

where θ contains the parameters in the compensatory component; ω is the vector with the

CMNP model formulation, estimation and application

PLOS ONE | https://doi.org/10.1371/journal.pone.0178789 June 7, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0178789


scale parameters; γ is the vector with the location parameters; z contains the parameters in the

threshold function, that is αn and βn in this paper; λ covers the parameters in the covariance

matrix. Meanwhile, the vector Y denotes the indicators of the observations referring to the

chosen routes. Compared with the traditional probit model and the proposed CMNP model,

the non-compensatory component in the CMNP model leads to the difference between the

two models. However, the value of the non-compensatory component can be easily calculated

given the unknown parameters, benefiting from the independent bivariate normal distribution

assumption. Based on Bayes’ theorem, the posterior distribution π(ζ|Y) is proportional to the

priors on all unknown parameters, that is, the joint posterior distribution for the Hierarchical

Bayes model is as follows.

pðζjYÞ / PðYjθ;ω; γ; z; lÞ � pðθ;ω; γ; z; λjζÞ � pðζÞ ð12Þ

where π(�) is the probability density function; P(Y|θ, ω, γ, z, λ) is the probability of observation

Y given all unknown parameters which is equal to Eq (11). Supposing that all parameters are

independent from each other, we can get the below equations.

pðθ;ω; γ; z; λjζÞ ¼ pðθjμθ;σθÞ � pðωjμω;σωÞ � pðγjμγ;σγÞ � pðzjμz;σzÞ � pðλjmλ; sλÞ ð13Þ

pðζÞ ¼ pðμθÞ � pðσθÞ � pðμωÞ � pðσωÞ � pðμγÞ � pðσγÞ � pðμzÞ � pðσzÞ � pðmλÞ � pðsλÞ ð14Þ

Probit model is hard to be calculated even if all the unknown parameters are given because

of the multivariate normal distribution. The Eq (11) can be rewritten into the D-dimensional

integrals of the multivariate normal density as follows.

Prsk ¼
Zεrsk þV

rs
k þC

rs
k � V

rs
1
� Crs

1

εrs
1
¼� 1

� � �

Zþ1

εrsk ¼� 1

� � �

Zεrsk þV
rs
k þC

rs
k � V

rs
m � C

rs
m

εrsm¼� 1

OðεrsÞdεrsm � � � dε
rs
1

ð15Þ

OðεrsÞ ¼ ð2pÞ
� m
2 jSj

� 1
2 exp½�

1

2
εrsS� 1ðεrsÞT � ð16Þ

where εrs ¼ ½εrs
1
; εrs

2
; � � � ; εrsm� is the random error vector.

Considering that the covariance matrix is a Hermitian, positive-definite matrix, the integral

of the general multivariate normal distribution can be transformed into that of standard nor-

mal distribution via Cholesky Decomposition to the covariance matrix and other substitutions

[37–38]. By this means, the integral domain is referred to as transforming them-variate inte-

gral into one over the (m-1)-dimensional hypercube.

Based on Cholesky Decomposition, the covariance matrix can be written as

S ¼ D� DT ð17Þ

where D is a lower triangular matrix and DT is its conjugate transpose. We set

εrs ¼ D� qrs ð18Þ

where qrs ¼ ½qrs
1
; qrs

2
; � � � ; qrsm� is a vector substituting random error vector εrs. Then the Eq (11)

CMNP model formulation, estimation and application
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can be transformed as

Prsk ¼ ð2pÞ
� m
2

Zb
0
1

� 1

expð�
q2

1

2
Þ � � �

Zb
0
m

� 1

expð�
q2
m

2
Þdqrs ð19Þ

b0i ¼
ð
Xk

j¼1

dk;jqj þ Vrs
k þ C

rs
k � V

rs
i � C

rs
i �

Xi� 1

j¼1

di;jqjÞ=di;i ; i 6¼ k

þ1 ; i ¼ k

8
><

>:
ð20Þ

where b0i is the upper limit of the i-th layer’s integration; di,i is the element in D. We assume

qi ¼ F� 1ðviÞ ð21Þ

where vrs ¼ ½vrs
1
; vrs

2
; � � � ; vrsm� is a vector substituting vector qrs; F−1(�) is the inverse cumulative

probability function of standard normal distribution, that is vi = F(qi). Meanwhile, we suppose

vi = wiei. Thus, we get the equation

Prsk ¼
Ze1

0

� � �

Zek

0

� � �

Zem

0

dvrs

¼

Z 1

0

Z 1

0
� � �

Z 1

0

Ym

i¼1

eidw

ð22Þ

ei ¼
Fðð
Xk

j¼1

dk;jF
� 1ðwj � ejÞ þ Vrs

k þ C
rs
k � V

rs
i � C

rs
i �

Xi� 1

j¼1

di;jF
� 1ðwj � ejÞÞ=di;iÞ ; i 6¼ k

1 ; i ¼ k

8
><

>:
ð23Þ

where w = (w1, w2,. . .,wm) denotes the parameters vector.

When i = k, ei = 1, them-dimensional integration declines into (m-1)-dimensional integra-

tion. And quasi-Monte Carlo method can be used to calculate the probability of multivariate

normal distribution given all unknown parameters.

The parameter identification problem

With respect to the constrained multinomial logit model, Castro et al. discussed the parameter

identification problem derived from the fact that one attribute exists both in the compensatory

and non-compensatory components [23]. This problem has been avoided in this paper via the

process that the threshold is regarded as a function whose value varies with the change of the

OD scale. By this means, the parameters associated with the same attribute both in the com-

pensatory and non-compensatory components are identifiable. Another parameter identifica-

tion problem arises when the threshold parameter plus directly location parameter. In this

paper, the constraint of number of transfers suffers this problem as β+γτ, where β is the thresh-

old parameter and γτ is the location parameter. The two parameters cannot be identified, but

we can estimate the sum of them without influence on other parameters. For simplicity, we

can assume the location parameter is equal to 0, and then we can get the value of the threshold

parameter.
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Probability calculation based on Monte Carlo simulation

With respect to the solution to Eq (11) associated with the probit probability, the quasi-Monte

Carlo method is carried out. Supposing that every element in w follows the uniform distribu-

tion wi ~ U(0, 1) and the elements in w are independent from each other, we use Halton

sequence to generate random data. The vector wj = (w1j,. . .wij,. . .wmj). contains the random

values generated by the Halton sequence in the j-th iteration. We can get the approximate solu-

tion to Eq (11) given unknown parameters θ, ω, γ, z, λ, that is,

Prsk ¼ Eð
Ym

i¼1

eiðwÞÞ

�
1

J

XJ

j¼1

ð
Ym

i¼1

eiðwjÞÞ

ð24Þ

where E(�) denotes the expected value.

Estimation algorithm

The Metropolis-Hastings (M-H) algorithm [39–40] which is known as one of the MCMC

approach is widely used to generate samples of the parameter from a prior distribution without

the prior knowledge. In order to generate the final samples, candidates are drawn iteratively

and they will be accepted as current samples with a certain probability in every iteration. With

the increase of the number of iterations, Markov Chain ensures that we will gain a stationary

posterior distribution of the parameter. In order to improve estimating efficiency, the variable-

at-a-time Metropolis sampling scheme [39] is used to generate candidate for every parameter

in turn in the parameters’ set. The estimation process is organized as follows.

Step 1: Generate randomly initial values from pre-defined prior distribution, that is

ζð0Þ ¼ ðzð0Þ
1
; � � � ; z

ð0Þ

i ; � � � z
ð0Þ

NPÞ, where NP denotes the number of parameters. And generate

routes sets Ars for OD pairs based on physical length. Set iteration t = 1 and i = 1.

Step 2: Draw a candidate ζ� ¼ ðzðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
�

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP Þ from a jumping distribution

Jtðz
�

i jz
ðt� 1Þ

i Þ based on the Gaussian random walk Metropolis sampling method. This method

suggests that the jumping distribution is supposed to be a normal distribution which is a sym-

metric distribution satisfying the equation Jtðz
�

i jz
ðt� 1Þ

i Þ ¼ Jtðz
ðt� 1Þ

i jz
�

i Þ. Here we set the jumping

distribution as Jmðz
�

i jz
ðm� 1Þ

i Þ � Nðzðm� 1Þ

i ; x
2
Þ, where ξ2 is the proposal variance for the i-th

parameter.

Step 3: Calculate the acceptance ratio W ¼ minf1; p0ðz�i ÞJmðz
ðm� 1Þ

i jz�i Þ

p0ðz
ðm� 1Þ

i ÞJmðz
�
i jz
ðm� 1Þ

i Þ
g ¼ minf1; p0ðz�i Þ

p0ðz
ðm� 1Þ

i Þ
g,

where

p0ðz
�

i Þ ¼ pðz
ðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
�

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP jYÞ

/
Y

k2Y

½PðkjzðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
�

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP Þ �
Yi� 1

j¼1

pðz
ðtÞ
j Þ �

YNP

j¼iþ1

pðz
ðt� 1Þ

j Þ � pðz
�

i Þ�
ð25Þ

p0ðz
ðt� 1Þ

i Þ ¼ pðz
ðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
ðt� 1Þ

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP jYÞ

/
Y

k2Y

½PðkjzðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
ðt� 1Þ

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP Þ �
Yi� 1

j¼1

pðz
ðtÞ
j Þ �

YNP

j¼iþ1

pðz
ðt� 1Þ

j Þ � pðz
ðt� 1Þ

i Þ�
ð26Þ

where PðkjzðtÞ
1
; � � � ; z

ðt� 1Þ

NP Þ ¼ P
rs
k , referring to Eq (11). The same parts can be canceled out and
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the ratio is

W ¼ minf1;

Y

k2Y

½PðkjzðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
�

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP Þ � pðz
�

i Þ�

Y

k2Y

½PðkjzðtÞ
1
; � � � ; z

ðtÞ
i� 1
; z
ðt� 1Þ

i ; z
ðt� 1Þ

iþ1
; � � � z

ðt� 1Þ

NP Þ � pðz
ðm� 1Þ

i Þ�
g ð27Þ

Step 4: Draw a value u from the uniform distribution U(0, 1). If u�ϑ, ζ(m) = ζ�; otherwise,

ζ(m) = ζ(m−1).

Step 5: If i<NP, i = i+1, repeat Step 2—Step4; otherwise, continue Step 6.

Step 6: Ifm<M,m =m+1, i = 1, repeat Step 2—Step 5; otherwise, stop sampling.

Results and discussions

Data

All data are available in the supporting information file (S1_Dataset.).

With new lines put into operation ceaselessly, Guangzhou Metro becomes the sixth busiest

metro system in the world and the third largest metro system in China. Up to July 2014, there

are 8 lines and 136 stations (including 19 transfer stations) in operation, forming 256.6km

operating length and carrying about 6.2 million daily ridership, except the APM Line. The

APM Line isn’t in our consideration, because it belongs to a unique system which needs to

swipe through again although you were in other lines. The metro system covers the major

urban areas of the city, reaches into some large suburban area and connects Guangzhou city

and Foshan city. Through statistical analysis, there are 3721 OD pairs for which the routes

with the shortest travel times are not the routes with the minimum number of transfers. It pro-

vides the possibility that more than one route will be considered by passengers with compre-

hensive consideration of multiple factors. The large scaled metro network increases the

complexity of route choice analysis.

In July 2014, Guangzhou Metro Corporation organized a survey in the metro stations to

collect passengers’ travel characteristics, such as respondents’ actual travel routes. Totally, the

effective sample size is 14142. Based on the survey data, Fig 3(a) shows the relationship

between the difference (namely the threshold minus the shortest travel time) and the shortest

travel time. It can be seen that the difference increases logarithmically with the increase of the

shortest travel time which demonstrates that the travel time threshold formula in Eq (7) is suit-

able. By data fitting, when αn = 0.446, the mean absolute percentage error (MAPE) is the mini-

mum 3.657%. Fig 3(b) shows that when the minimum number of transfers is 0, the weighted

mean value of the threshold of number of transfers is 1.951, that is, βn can be assumed as 1.951.

Estimations

In the compensatory component, the in-vehicle travel time (Xrs
k;1, h), number of transfers (Xrs

k;2,

time), transfer time (Xrs
k;3, h), comfort degree (Xrs

k;4, 0–1 variable) and revised angular cost (Xrs
k;5,

km) are considered with the corresponding parameters θ1, θ2, θ3, θ4 and θ5, where revised

angular cost Xrs
k;5 measures the deviation degree of a route by transforming sin() into tan() and

comfort degree Xrs
k;4 represents the congestion level in the train whose value is Xrs

k;4 ¼ 1 when

average load factor of one route is smaller than 20%, otherwise, Xrs
k;4 ¼ 0. In the non-compen-

satory component, the travel time (Xrs
k;0 ¼ X

rs
k;1 þ X

rs
k;3X

rs
k;3, h) and number of transfers Xrs

k;2 are

considered with the threshold parameters α and β, scale parameters ωt and ωm as well as loca-

tion parameters γt and γm respectively. In case of the parameter identification problem in the

CMNP model formulation, estimation and application

PLOS ONE | https://doi.org/10.1371/journal.pone.0178789 June 7, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0178789


threshold of number of transfers, the location parameter is assumed to be 0, that is γm = 0.

Moreover, the parameter λ1 and λ2 in the covariance matrix needs to be estimated.

Based on the surveyed data, the proposed model, MNP model, MNL model and CMNL

model are estimated respectively. The latter two models are estimated based on the

Fig 3. The thresholds of travel time and number of transfers. The figure displays the survey data

associated with thresholds. By fitting, the parameters in the thresholds can be estimated.

https://doi.org/10.1371/journal.pone.0178789.g003
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maximization likelihood estimation method, while the proposed model and MNP model are

estimated based on the estimation approach proposed by this paper. Under the non-informa-

tive condition, the prior distributions for all parameters are assumed to follow uniform distri-

bution. Totally, what parameters we need to estimate are θ1, θ2, θ3, θ4, θ5, α, β, ωt, ωm, γt, λ1 and

λ2. Considering the signs of the parameters, we assume that θ1, θ2, θ3 and θ5 follow U(-20, 0);

θ4, α, β, ωm, λ1 and λ2 follow U(0, 20); ωt follows U(60, 200); γt follows U(-1, 1). The proposal

variance ξ2 is 0.05. The surveyed RP data is divided into two parts, referring to the 12039 data

for estimation and 2103 data for examination. The scheme to screen the data will be described

later. Based on MCMC approach, we tried 10000 iterations to estimate all parameters in the

CMNP model, where the fore 5000 samples for each parameter are abandoned as burn-in

period and the left 5000 effective samples for each parameter are drawn. The distribution of

the effective samples for θ1 is taken as an example shown in Fig 4. Based on the samples, we

can get the mean and 95% Bayesian conference interval (CI) shown in Table 1, as well as the

estimations of MNL, MNP and CMNL models.

Kolmogorov-Smirnov (KS) Test is used to determine whether the samples follow normal

distribution. Fig 4 shows the distribution of the effective samples for parameter θ1 for an exam-

ple. Descriptive statistics show that the average value is -9.074 and the standard deviation is

0.366. By KS test, the p value is 0.433 which is greater than 0.05, proving that the samples

Fig 4. The distribution of effective samples for θ1. The figure exhibits the frequency distribution of the samples to represent

the convergence directly.

https://doi.org/10.1371/journal.pone.0178789.g004
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follow normal distribution at 5% significance level. Thus, the sampling process converges.

Other parameters have the same characteristics. As shown in Table 1, the different results for

the parameters in MNP and CMNP models indicate that the MCMC approach can successfully

distinguished all parameters though some of them have the same initial values. And the CI for

every parameter ensures us to accept the means of the drawn samples. Meanwhile, coefficients

of in-vehicle time, number of transfers, transfer time and revised angular cost are negative,

meaning that the chosen probability of one route decreases along with the increase of in-vehi-

cle time, number of transfers, transfer time or revised angular cost. Coefficients of comfort

degree in both models are all positive, meaning that their increase will improve individual

preference to the route. It is consistent with the common sense. Furthermore, t-values of the

coefficients for MNL and CMNL models exceed 1.96, indicating that the null hypothesis that

the true values of the coefficients are zero can be rejected at the 0.05 significance level. And the

ρ2 of all models are greater than 0.2, indicating that all models have a good goodness-of-fit.

Compared with the ρ2, CMNP model are the greatest, illustrating that the proposed CMNP

model is the best among all models.

In addition to the estimation performance, the forecasting performances of all models are

compared. In order to gain plenty of actual choice results which are drawn from the surveyed

data, the route choices between some similar OD pairs are aggregated. As shown in Fig 5, we

combine the origins as an identical origin R as well as the identical destination S, that is, R con-

tains Guangzhou South Railway Station (R1), Shibi (R2), Huijiang (R3), Nanpu (R4), Luoxi

(R5), Nanzhou (R6), Dongxiao South (R7) and Jiangtai Road (R8); S contains Jingxi Nanfang

Hospital (S1) and Meihuayuan (S2). The transfer stations are Haizhu Square (m1), Gongyuan-

qian (m2), Jiahewanggang (m3), Yantang (m4), Guangzhou East Railway Station (m5) and

Table 1. Estimations of MNL, CMNL and CMNP models.

Parameter MNL-value

(t-value)

MNP-mean

(95% CI)

CMNL-value

(t-value)

CMNP-mean

(95% CI)

θ1 -14.411

(-31.103)

-13.174

([-13.165, -13.184])

-10.224

(-40.714)

-9.074

([-9.065, -9.084])

θ2 -2.256

(-17.267)

-2.071

([-2.061, -2.081])

-1.641

(-15.324)

-1.479

([-1.468, -1.489])

θ3 -15.623

(-16.654)

-13.111

([-13.100, -13.121])

-11.712

(-13.125)

-11.100

([-11.088, -11.111])

θ4 0.005

(6.068)

0.008

([0.00799,0.00801])

0.004

(3.224)

0.008

([0.00799,0.00801])

θ5 -0.018

(-2.016)

-0.052

([-0.0520, -0.0523])

-0.061

(-2.514)

-0.075

([-0.0751, -0.0753])

α - - - - 0.460

(3.412)

0.455

([0.450, 0.460])

β - - - - 1.961

(2.121)

1.959([1.943, 1.975])

ωt - - - - 65.012

(21.403)

177.392

([177.240, 177.548])

ωm - - - - 6.051

(5.711)

7.431

([7.411, 7.452])

γt - - - - 0.001

(1.991)

0.001

([0.0009, 0.0011])

λ1 - - 0.621([0.620, 0.622]) - - 0.675([0.674, 0.676])

λ2 - - 0.544([0.542, 0.546]) - - 0.552([0.550, 0.554])

ρ2 0.442 0.571 0.533 0.723

Sample Size 10000 10000 10000 10000

https://doi.org/10.1371/journal.pone.0178789.t001
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Tiyu West Road (m6). Excluding the routes with chosen probabilities smaller than 0.0001, we

have four routes left in Table 2 along with the chosen probabilities according to different mod-

els. The number of the actual choices between the specific OD pairs in the surveyed data is

2103 and the absolute error is calculated to compare the forecasting performance as shown in

Table 2. We can see that CMNP model has the smallest MAE (Mean Absolute Error) which

demonstrates that the proposed CMNP model has the best forecasting performance.

Application

The route choice model can be used to predict the transfer flow volume, section flow volume,

etc. which are the basis of scheduling the train plan, guiding individual travel route, etc. The

proposed CMNP route choice model determines the route choice probability for every OD

pair in the metro network. And then the flow volume on the route can be derived from the

product of the probability and the OD volume. By counting the number of passengers transfer-

ring between two different lines based on the train timetable, the transfer flow volume can be

calculated. All testing data are provided by Guangzhou Metro Corporation. The results are

shown in Fig 6 where testing data is on the horizontal axis, predicting data is on the vertical

axis, and the solid line is the basic line indicating that the predicting data is equal to the testing

data if the data spot is on the line. Every spot represents the flow volume transferring form one

running direction of one line to one running direction of another line. Usually, every line has

Fig 5. A diagram of deleted OD pairs and routes. The origin stations are denoted as R; the destination stations are denoted as S; the

transfer stations are denoted as m. Other stations are omitted in the figure. It means transferring if the route passes by a transfer station.

https://doi.org/10.1371/journal.pone.0178789.g005

Table 2. The comparisons of all models.

Route Actual

Prob.

MNL

Prob.(AE)

MNP

Prob.(MAE)

CMNL

Prob.(AE)

CMNP

Prob.(AE)

K1: R -> m2 -> m6 -> S 51% 45% (6%) 46% (5%) 58% (7%) 53% (2%)

K2: R -> m2 -> m5 -> S 19% 38% (19%) 27% (8%) 23% (4%) 21% (2%)

K3: R -> m3 -> S 21% 13% (8%) 16% (5%) 12% (9%) 20% (1%)

K4: R -> m1 -> m4 -> S 9% 4% (5%) 11% (2%) 7% (2%) 6% (3%)

Sum 100% 100% (38%) 100% (20%) 100% (22%) 100% (8%)

https://doi.org/10.1371/journal.pone.0178789.t002
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two running directions. The mean absolute percentage error (MAPE) is 4.91% which shows

that the proposed CMNP model has a good application prospect.

Conclusion

In a large scaled metro network, the complex nature of route choice process brings us a chal-

lenge to exactly figure out passengers’ actual decision rules. This paper focuses on integrating

the impacts of routes set and the interdependency among alternative routes on route choice

probability into route choice modeling in the metro network. The impact of routes set on

route choice probability expresses the semi-compensatory choice process which is a combina-

tion of routes set generation and route choice stages. Thereafter, a constrained multinomial

probit (CMNP) model is proposed by this paper, in which, the utility function consists of com-

pensatory, non-compensatory and error parts. The compensatory part is a linear function of

in-vehicle travel time, number of transfers, transfer time, congestion level and revised angular

cost. The non-compensatory part measures the impact of considered probability of one route

Fig 6. The transfer flow volume forecasting performance. For each spot, it has two values, including the testing data corresponding

to horizontal axis and forecasting value corresponding to vertical axis.

https://doi.org/10.1371/journal.pone.0178789.g006
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on the route’s utility by a logarithm function, where considered probability is calculated by a

binary probit equation denoting the relationship between the constrained attributes (e.g. travel

time and number of transfers) and the corresponding thresholds proposed by this paper. The

error part follows a multivariate normal distribution, whose variance is structured into three

parts, including measuring the correlation among routes, representing the transfer variance of

the route, and denoting the unobserved variance.

With respect to the estimation, considering multidimensional integrals of the multivariate

normal probability density function, the CMNP model is rewritten as Bayesian formulation

and MCMC approach is constructed to estimate all parameters. As a key point to calculate the

acceptance rate, given the unknown parameters, the multidimensional integrals of the multi-

variate normal probability density function can be transformed into those of standard normal

distribution via Cholesky Decomposition to the covariance matrix and other substitutions.

Then the integrals can be easily simulated by quasi-Monte Carlo algorithm.

At last, the proposed model is estimated by the proposed estimation approach based on the

surveyed RP data in Guangzhou Metro. The estimations show that every parameter can be dis-

tinguished though they have the same initial values. And the Bayesian CI indicates the reliabil-

ity of the mean of the samples. Moreover, compared with MNL, MNP and CMNL models, the

proposed CMNP model shows the best forecasting performance with respect to the prediction

on the route choice probabilities and transfer flow volumes.

In the future, we will try to estimate the proposed model based on the smart card data and

the travel time reliability will also be considered in the model.
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