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Abstract

Relationships of Sclerostin, a bone anti-anabolic protein, with biomarkers of mineral bone

disorders in chronic kidney disease are still unsettled, in particular in kidney transplant

(KTR). In 80 KTR patients (31F/49M, 54.7±10.3 years) we studied the relationships of

serum Sclerostin with eGFR, Calcium, Phosphate, Alkaline Phosphatase (AP), intact Para-

thyroid hormone (iPTH), soluble alpha-Klotho (sKlotho), intact Fibroblast Growth Factor 23

(iFGF23), 25-hydroxyvitamin D(25D) and 1,25-dihydroxyvitamin D (1,25D). Thirty healthy

subjects (35.0±12.4 years, eGFR 109.1±14.1 ml /min/1,73m2) served as control for Scleros-

tin, iFGF23 and sKlotho. With a median eGFR of 46.3 mL/min/1.73m2 (IQR, 36.2–58.3) our

KTR had median Sclerostin levels of 23.7 pmol/L (IQR: 20.8–32.8), not different from con-

trols (26.6 pmol/L, IQR: 22.0–32.2; p = n.s). Sclerostin correlated negatively with AP (r =

-.251; p = 0.023) and positively with iFGF23 (r = .227; p = 0.017) and 25D (r = .214; p =

0.025). Age-adjusted multiple regression analysis identified AP and 1,25D as negative and

25D and sKlotho as positive best predictors of Sclerostin. No correlation was evident with

eGFR. The negative correlation with AP confirms the direct anti-anabolic role of Sclerostin.

The associations either negative or positive with iFGF23, sKlotho, and vitamin D metabolites

suggest also a modulatory role in mineral homeostasis. In particular, the associations with

iFGF23 (positive) and 1,25D (negative) underline the relevant inhibitory action of Sclerostin

on vitamin D activation. In conclusion, Sclerostin levels in KTR are normal and influenced

more by bone turnover than by eGFR. Its involvement with other hormones of mineral

homeostasis (FGF23/Klotho and Vitamin D) is part of the sophisticated cross-talk between

bone and the kidney.

Introduction

Produced by osteocytes, Sclerostin is a powerful modulator of bone modeling and remodeling

and do this by inhibiting the canonical Wnt (Wingless-type mouse mammary tumor virus

integration site) pathway. Wnt receptor inhibition by Sclerostin reduces osteoblastogenesis
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and promotes osteoblast and osteocyte apoptosis thus exerting a powerful anti-anabolic effect.

Moreover, since Sclerostin also induces RANKL synthesis and thus stimulates osteoclastogen-

esis, its inhibition both increases osteoblast and reduces osteoclast activity, with an overall

increment of bone formation and mass [1,2] and eventual osteosclerosis [3]. Indeed, Sclerostin

gene (SOST) knock-out mice and SOST inactivating mutations in humans [4,5], are both char-

acterized by increased bone formation and sclerosis of the skeleton [6]. Recently, also indirect

effects of Sclerostin on mineral metabolism are envisaged, since Sclerostin can increase the

activity of Fibroblast growth Factor 23 (FGF23), a bone protein with powerful phosphate and

vitamin D regulating properties [7]. Thus, Sclerostin promises to become an important ele-

ment of the bone-kidney axis represented up to now by FGF23 and its kidney-produced co-

receptor Klotho [8]. For these reasons, recent clinical studies aim to evaluate Sclerostin as a

new biomarker of bone disease specifically in chronic kidney disease (CKD). In non-dialysis

CKD, observational studies show that serum levels of Sclerostin increase along with the stages

of renal failure [9,10] and correlate positively with serum FGF23 and phosphate [9,11]. Renal

function reduction does not seem to affect its serum levels since also tubular excretion increases

[12]. In dialysis patients (CKD-5D), Sclerostin levels are increased and similarly correlated posi-

tively with FGF23 and phosphate. Further in dialysis, negative relationships are described with

parathyroid hormone (PTH), alkaline phosphatase (AP) and bone turnover [13–16]. In renal

transplant patients (KTR), factors like immunosuppressive therapy, pre-existing bone lesion

and/or the presence of variable degrees of reduced renal function may affect mineral and bone

disorders (MBD). Thus, in these patients the diagnostic significance of Sclerostin serum levels

warrants specific evaluation. The few available studies describe a return to the normal range

early after transplantation [17] and, later on, the presence of a negative correlation with eGFR,

PTH and 1,25-dihydroxyvitaminD [18]. However, in post-menopausal KTR females, no corre-

lation has been found with biomarkers of bone resorption or formation [19].

Notably, the pathophysiologic links of Sclerostin with MBD in CKD have been recently

claimed to explain the association with vascular calcification, cardiovascular disease and mor-

tality [14,18,20], thus further increasing the clinical interest for this new biomarker.

Since clinical data in KTR are still limited, we considered useful to evaluate the relationship

of Sclerostin serum levels with renal function and the hormonal systems that are potentially

involved with its activity, namely FGF23/Klotho and vitamin D.

Materials and methods

Patients

We enrolled in a cross-sectional study, 80 renal transplant patients from our outpatient unit.

Inclusion criteria were: age 18–80 years, estimated GFR (eGFR) > 15 mL/min/1.73m2, time

since transplant�1 year, no evidence of acute underlying illness.

Exclusion criteria were: comorbid conditions such as cancer, liver disease or any severe sys-

temic disease that might affect data interpretation. If any, treatment with native or active vita-

min D was withhold for 3 months prior to the study. Further none of the patients required

therapy with calcimimetic or phosphate binders.

Fasting blood samples were obtained for the measurement of creatinine (Cr), Calcium

(Ca), Phosphate (P), total alkaline phosphatase (AP), serum collagen type 1 cross-linked

C-telopeptide (CTX), intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25D),

1,25-dihydroxyvitamin D (1,25D), intact FGF23 (iFGF23), soluble alpha-Klotho (sKlotho) and

Sclerostin. We also collected fasting spot urine samples from all participants at the time of

blood sampling to measure creatinine, phosphate, and calcium. In each patient, we recorded

clinical parameters and prescribed therapies.

Sclerostin in renal transplantation
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Thirty healthy subjects (mean age 35.0 ± 12.4 years, eGFR 109.1±14.1 ml /min/1,73m2)

served as control to obtain local reference values for non-routinely assayed Sclerostin, sKlotho

and iFGF23.

The present study is a subanalysis of the "Studio 25051954—EudraCT 2010-021041-42",

approved by the Ethical Committee of the Azienda Policlinico Umberto I, and was performed

in accordance with the declaration of Helsinky. Written informed consent was obtained from

all patients. None of the transplant donors were from a vulnerable population and all donors

or next of kin provided written informed consent that was freely given.

Assays

Routine blood analytes (creatinine, Ca, P and AP) were immediately assayed. Samples for

non-routine assay of iPTH, Sclerostin, iFGF23, sKlotho, 25D and 1,25D were immediately fro-

zen and stored at -30˚C until measurement.

Standard colorimetric or enzymatic techniques were kinetic alkaline picrate (creatinine),

cresolphthalein-complexone (Ca), ammonium molybdate (P) and p-nitrophenylphosphate

(AP). The reference range of AP values is within 80 and 270 IU/ml.

iPTH was an immunoradiometric technique (DiaSorin, Stillwater, MN, USA) based on a

double antibody against the intact molecule; our normal values are within 10–55 pg/mL, with

intra- and inter-assay variations of 6.5% and 9.8%, respectively.

Serum 25Dwas assayed with a commercial kit (DiaSorin, Stillwater, MN, USA) that

included sample purification with acetonitrile followed by a 125I-based radioimmunoassay.

Intra- and inter-assay coefficients of variation are10.8% and 9.4%, respectively.

Levels of 1,25D were measured with a radioimmunoassay according to the manufacturer’s

protocol (IDS Ltd, Bolton, UK) including a monoclonal immune-extraction, followed by

quantitation with a standard 125I-based radioimmunoassay. Intra- and inter-assay coefficients

of variation are <12% and<14%, respectively. The normal range observed in our laboratory

was between 19.5 and 67.0 pg/mL.

iFGF23 was assayed with a commercially available kit (Kainos Lab. Inc. Tokyo, Japan) that

utilizes a two-site ELISA for the full-length molecule. Two specific murine monoclonal anti-

bodies recognized the biologically active FGF23, with a lower limit of detection of 3 pg/ml, and

inter- and intra-assay coefficients of variation of<5%.

Serum levels of soluble alpha-Klotho were assayed with an enzyme-linked immunosorbent

assay (ELISA) method that utilizes a monoclonal antibody with strong affinity for Klotho pro-

tein, recognizing with high selectivity the tertiary protein structure of its extracellular domain

(Immuno-Biological Laboratories Co., Ltd.). Within- and between-run variation of the alpha-

Klotho IBL was <5 and<8%, respectively.

Serum Sclerostin was a commercially available kit (Biomedica gruppe, Vienna, Austria)

that utilizes a sandwich ELISA for the quantitative determination of human Sclerostin as previ-

ously reported [21]. Inter- and intra-assay variation coefficients were<10% and<7% respec-

tively. The detection limit of the Sclerostin ELISA was 3.2 pmol/L.

Serum Collagen type 1 cross-linked C-telopeptide (CTX) was a commercially available kit

(Immunodiagnostic systems, Boldon, UK) employing an ELISA test with monoclonal murine

antibody specific for degradation products of C-terminal telopeptides of Type I collagen.

Inter- and Intra-assay coefficients of variation were <10.9% and<3.0%.

Glomerular filtration rate (GFR) was estimated according to the Chronic Kidney Disease

Epidemiology Collaboration (CKD-EPI) equation (eGFR = 141 x min (Scr/κ, 1)α x max

(Scr/κ,1)-1.209 x 0.993Age x 1.018 [if female] x 1.159 [if black]) [22].

Sclerostin in renal transplantation
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Statistical analysis

Data are expressed as mean±SD for Gaussian variables or median and IQR when normality

was not tenable. We used Kolmogorov-Smirnov test to evaluate normality of continuous mea-

surements and Pearson correlation to assess linear covariation of Gaussian measurements.

Log-measurements were confirmed to be normally distributed and were used as outcomes in

multivariate regression models. The final multivariate model was obtained by minimizing the

Akaike information criterion via a forward stepwise regression. All tests are two tailed and

(adjusted)-values <0.05 were considered as statistically significant. Analyses were performed

using the open source software package R version 3.1.2.

Results

Main clinical and biochemical data of our population of patients, which included 31 women

and 49 men aged 54.7±10.3 (M±SD) years, are shown in Table 1. Median eGFR was 46.3 mL/

min/1.73m2 (IQR, 36.2–58.3) with CKD stages ranging within 2 and 4, while median time

since transplantation was 77.6 (IQR, 37.6–119.5) months (range 12–268 months).

Median serum levels of calcium (10.1 mg/dl, IQR: 9.7–10.5), phosphate (2.9 mg/dl, IQR:

2.5–3.5), alkaline phosphatase (187.0 U/L; IQR: 139.1–221.0), CTX 0.553 ng/ml (IQR: 0.310–

0.816) and iPTH (43.1 pg/ml, IQR: 25.4–70.6) were all within the normal ranges. Serum level

of 1,25D (41.9 pg/ml, IQR: 30.1–53.1) averaged normal values, in front of mildly reduced 25D

levels (25.1 ng/ml, IQR: 16.9–35.1). Median calcium/creatinine ratio (Cau/Cru) and fractional

excretion of phosphate (FE PO4) were, respectively, 0,050 (IQR: 0,027–0,098 and 28.9% (IQR:

20.0–40.7).

Table 1. Clinical and biochemical characteristics of the population under study.

Age (y) 55.7 (47.9–62.1)

Gender (male/female) 49 (61.2%)/31(38.8%)

B.M.I. 24.1(22.2–27.3)

Time from transplantation (months) 77.6 (37.6–119.5)

eGFR (ml/min/1.73m2) 46.3 (36.2–58.3)

Calcium (mg/dl) 10.1 (9.7–10.5)

Phosphate (mg/dl) 2.9 (2.5–3.5)

iPTH (pg/ml) 43.1(25.4–70.6)

25-hydroxyvitaminD (ng/ml) 25.1 (16.9–35.1)

1,25-dihydroxyvitaminD (pg/ml) 41.9 (30.1–53.1)

Alkaline phosphatase (U/L) [NV 80–270] 187.0 (139.1–221.0)

CTX, ng/ml 0.553 (0.310–0.816)

Cau/Cru, mg/mg 0.050 (0.027–0.098)

FE PO4, % 28.9 (20.0–40.7)

Therapies

Steroids 59 (73.75%)

Calcineurin inhibitors 73 (91.25%)

Proliferationsignalinhibitors 5 (6.25%)

Anti-metabolite 65 (81.25%)

Note: Data are expressed as median (interquartile range). Categorical data are presented as numbers

(percentages).

Abbreviations: BMI, body mass index; eGFR, estimated glomerular filtration rate; iPTH, intact parathyroid

hormone; CTX,collagen type 1 cross-linked C-telopeptide; Cau/Cru, calcium/creatinine ratio; FE PO4,

fractional excretion of phosphate.

https://doi.org/10.1371/journal.pone.0178637.t001
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In this population, as shown in Table 2, circulating levels of Sclerostin (23.7 pmol/L, IQR:

20.8–32.8) were not significantly different from the control group (26.6 pmol/L, IQR: 22.0–

32.2; p = n.s.). Further, we analyzed Sclerostin levels according to CKD stages but did not find

differences (CKD stage 2 = 24.9±11.4; CKD stage 3 = 28.8±10.2; CKD stage 4 = 25.7±9.3; p =

.351). No differences were observed between diabetic and non-diabetic patients (respectively

25.9±10.0 vs 28.2 ± 11.0; p = .596). There was however a gender difference, with higher values

in males (28.7, IQR:16.4–56.6 vs 21.7, IQR:12.7–44.7 pmol/l; p = 0.004) (Fig 1).

Compared to the control group, serum levels of iFGF23 and sKlotho were, respectively,

significantly increased (40.5, IQR: 25.0–59.0 vs 33,6, IQR: 28.1–44.2pg/ml; p = 0.003), and sig-

nificantly decreased (449.3, IQR: 387.7–533.9 vs 794.9, IQR: 619.4–900.5 pg/ml; p = .001)

(Table 2).

Correlation tests showed that Sclerostin correlated negatively with AP (r = -.251; p = 0.023)

and positively with iFGF23 (r = .227; p = 0.017) and 25D (r = .214; p = 0.025) (Fig 2A, 2B and

2C), while no correlation was evident with age and eGFR. However, the age-adjusted multi-

regression analysis identified AP and 1,25D as negative and 25-D and sKlotho as positive best

predictors of Sclerostin (Table 3).

Discussion

In our KTR population serum Sclerostin levels were not different from the control group and

averaged values similar to what has been already published in healthy/general populations

[21,23] or in other cohorts of long-term transplant patients [18,19]. Also, the gender difference

in our patients (higher values in males) matches the available data in the general population

[23] and in renal transplant patients [18] and can be explained by the larger total-body skeletal

mass of men [24] and/or by the inhibitory effect of oestrogens on Sclerostin synthesis [24,25].

At variance with previous data in CKD [10] and long term KTR [17, 18], we found no

correlation of Sclerostin with eGFR. Nonetheless, our results agree with the hypothesis of

increased renal excretion of Sclerostin along with GRF reduction, as described in conservative

CKD [10, 12]. Further, the interaction between Sclerostin and eGFR could be masked by dif-

ferences in bone turnover. In fact, a negative relationship with bone turnover markers has

been described both in the general population [21] and in CKD-5D [14,15]. Indeed, also in

our KTR serum Sclerostin correlated negatively with AP, an association in agreement with

the undisputed inhibitory role on osteoblasts activity. This anti-anabolic role is confirmed by

the inverse association with bone specific alkaline phosphatase (bALP) and other markers of

bone turnover in non-renal elderly women with presumably limited reduction in GFR and in

patients with no residual renal function like hemodialysis patients [21,14,15]. Further, serum

Sclerostin has been shown to correlate negatively with osteoblast number and histologic

parameters of bone turnover in CKD-5D [13]. To our knowledge, only one paper shows no

Table 2. Serum levels of Sclerostin, FGF23 and Klotho in our control group and renal transplant

population.

KTR Control Group P values

Sclerostin (pmol/L) 23.7 (20.8–32.8) 26.6 (22.0–32.2) 0.804

iFGF23 (pg/ml) 40.5 (25.0–59.0) 33.6 (28.1–44.1) 0.003

sKlotho (pg/ml) 449.3 (387.7–533.9) 794.9 (619.4–900.5) 0.001

Note: Data are expressed as median (interquartile range).

Abbreviations: KTR, renal transplant patients; iFGF23, intact Fibroblast Growth Factor 23; sKlotho, soluble

alpha Klotho.

https://doi.org/10.1371/journal.pone.0178637.t002
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correlation of Sclerostin with bone resorption and bone formation biomarkers, but in a low

number (only 19 cases) of post-menopausal KTR women. Apparently then, the absence of

correlation between Sclerostin and eGFR in our study could be explained by possible clinical

differences in the enrolled populations. Also, Sclerostin is suggested as a potentially useful bio-

marker of bone turnover, with no difference between renal and non-renal patients.

Further associations of Sclerostin in our study included the positive linear relationships

with iFGF23 and 25D, and the age-adjusted multiple regression analysis indicating AP and

1,25D as negative, and 25D and sKlotho as positive best predictors of Sclerostin.

A positive correlation of Sclerostin with FGF23 has been already described in conservative

renal insufficiency [10,11,16] and is confirmatory of the experimental evidence suggesting that

Sclerostin increases FGF23 by inhibiting PHEX (a protein encoded by the Phosphate regulat-

ing gene with Homologies to Endopeptidases on the X chromosome) [7]. In fact, PHEX pro-

tein stimulates FGF23 degradation [26] thus reducing its activity. By interacting with its co-

receptor Klotho, FGF23 increases tubular phosphate excretion and inhibits 1,25D synthesis

[27,28] with eventual well described clinical effects [8,29]. As a confirmation, Sclerostin

knock-out mice have decreased FGF23 with elevated inorganic phosphate concentrations and

increased 1,25D levels [26]. Clinical studies, both in pre-dialysis CKD and in dialysis patients,

confirm the positive correlation between Sclerostin and FGF23 [18], and a direct correlation

has been demonstrated also as bone expression, in a study involving pediatric patients with

Fig 1. Gender differences in Sclerostin serum levels in renal transplantation. Indicated are medians,

first and third quartiles, minimal and maximal values. Males versus Females p < .05.

https://doi.org/10.1371/journal.pone.0178637.g001
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different types of solid organ allografts (22 patients in total, only 8 KTR) [30]. In adult KTR

data are scanty and we are among the few to contemporarily assay serum levels of FGF23 and

of Sclerostin. Our results are confirmatory of the physiologic regulatory role of Sclerostin on

FGF23 synthesis.

Fig 2. Correlation tests of Sclerostin. Correlation tests with (a) AP, Alkaline Phosphatase; (b) iFGF23, intact Fibroblast Growth Factor 23; (c) 25D,

25-hydroxyvitaminD.

https://doi.org/10.1371/journal.pone.0178637.g002

Table 3. Age adjusted multivariate analysis with Sclerostin as predicted variable.

VAR COEF C.I. P

Alkaline Phosphatase -0.036 -0.069, -0.003 0.0337

25-hydroxyvitaminD 0.218 0.0118, 0.424 0.0386

1,25-dihydroxyvitaminD -0.182 -0.331, -0.034 0.0167

sKlotho 0.017 0.001, 0.032 0.0337

VAR: variable; COEF: coefficient of linear regression; CI: confidence interval; sKlotho, soluble alpha Klotho.

https://doi.org/10.1371/journal.pone.0178637.t003
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The negative correlation between Sclerostin and 1,25D observed in our study has been

already reported in long-term KTR [18] and can be explained with the down regulation of

renal 1-alpha-hydroxilase by Sclerostin through direct or indirect (PHEX inhibition and

FGF23 stimulation) effects [7]. On the other hand, the inconsistent association of Sclerostin

with the two vitamin D metabolites (positive with 25D and negative with 1,25D) is new and

needs special consideration. In fact, available clinical observations in healthy and renal patients

mostly describe no relationship with 25D [10,19,23,25,30,31], however, administration of 25D

increases Sclerostin levels both in healthy subjects [32] and in CKD-5D [33] while in vitro

experiments show that intracellular 1,25D stimulates Sclerostin production by osteocytes [34].

Therefore, in KTR, higher circulating 25D by allowing higher intracellular 1,25Dsynthesis

might, in turn, favor Sclerostin synthesis by osteocytes. Importantly, the eventual increment of

serum Sclerostin levels will exert a negative feed-back on 1,25D synthesis, in line with current

physiological concepts. Thus, the inconsistency of our data with other clinical observations

should be related to differences in ethnicity or therapies, including vitamin D supplementation

that is mostly not specified in the available papers [10,11,18,19] while were not prescribed or

timely withhold in our patients.

To our knowledge, also the positive relationship between Sclerostin and sKlotho observed

in multivariate analysis in our KTR is new. We know that sKlotho interacts with Wnt pathway

by either inhibiting Wnt ligands [35] or by upregulating Wnt inhibitors [36], thus allowing to

accept the present correlation, which reinforces the potential clinical significance of sKlotho in

renal patients as a marker of the dialogue between bone and the kidney.

The complex interactions of Sclerostin with other divalent-ion regulating systems emerging

from our results are tentatively illustrated in Fig 3. They deserve appreciation since they help

describe, at least in part, the complex endocrine link existing between bone and the kidney.

As a whole, our data suggest that Sclerostin is involved not only with bone turnover, but

also with the synthesis of other divalent ion regulating-hormones. Indeed, clinical observations

reporting on Sclerostin correlations in different types of renal patients are incomplete and pos-

sibly inconsistent, as schematically recapitulated in Table 4. This table shows, first of all, that

none of the available study contemporarily examines all the biomarkers we assayed. Second,

that when present, the correlations with AP and PTH are consistently negative both in healthy

and kidney patients. Third, that similarly consistent and of positive sign (when assayed and if

present), are the correlations with serum phosphate and FGF23 but in renal patients only.

Fourth, that the relationship with 25D (as a marker of vitamin D repletion) may vary in differ-

ent clinical conditions, while the negative association with the circulating active hormone

seems consistent in KTR. Importantly, this last association highlights the negative feed-back of

Sclerostin, whose bone synthesis is induced by vitamin D, on 1,25D synthesis.

In any case, our results highlights the complex role for Sclerostin in CKD-MBD in KTR

and indicate a significant contribution to mineral homeostasis. From a systemic point of

view, this complex involvement suggests potential links even with extra-skeletal calcification

processes. In fact, Sclerostin is currently regarded as a promising new player in CKD-MBD,

possibly implicated with the pathomechanisms of vascular calcification and cardiovascular

mortality [14,18,20].

Several limitations can be recognized in our study. First, an increased number of cases

would have reinforced the reliability of our results, however, our sample size is definitely ade-

quate to obtain convincing preliminary correlations. Second, a more precise assessment of

renal function (e.g. by inulin or iohexol clearance) would have strengthen our finding of no

correlation with eGFR. For the same reason if we measured urinary Sclerostin we could have

confirmed its increased secretion along with eGFR reduction. Third, reliability of commercial

sKlotho assays has been recently questioned [37]. However, in the present study we employed

Sclerostin in renal transplantation
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the most accredited commercial method which, in our hands, evidenced early reduction since

CKD stage 2 [38], in line with other published papers [39].

Strengths of our study are the contemporary assessment of a number of biomarkers and the

biological plausibility of the relationships described.

Conclusions

Serum Sclerostin levels in KTR are mostly normal and apparently influenced more by bone

turnover than by GFR reduction. Sclerostin can be regarded as a novel negative biomarker of

bone turnover, with complex interactions with other modulators of bone cells activity (FGF23/

Fig 3. Bone-kidney axis. Schematic of the possible pathophysiologic links of Sclerostin with FGF23-Klotho and vitamin D system in kidney transplant

patients. Intracellular 1,25D stimulates Sclerostin synthesis. Sclerostin, through inhibition of PHEX (an FGF23 inhibitor), indirectly increases FGF23

production. Also, Sclerostin inhibits 1,25D synthesis through direct (inhibition of renal 1-αOH-ase) and indirect (stimulation of FGF23) effects. S-Klotho could

be another positive local modulator of Sclerostin synthesis. Abbreviations: PHEX, a protein encoded by the phosphate regulating gene with homologies to

endopeptidases on the X chromosome; FGF23, Fibroblast growth factor 23; 1αOH-ase, 1alpha-hydroxylase; 25D, 25-hydroxyvitaminD; 1,25D, 1,25-

dihydroxyvitaminD; Arrows: Stimulation; End Lines: Inhibition.

https://doi.org/10.1371/journal.pone.0178637.g003
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Klotho and Vitamin D in particular). As such, its role as a new player in the field of bone-kid-

ney axis in CKD in general and in KTR in particular, is confirmed and seems to deserve fur-

ther appreciation.
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Table 4. Currently reported correlations (either linear or multivariate analysis) of serum Sclerostin levels in different clinical condition.

Correlations

Population Sample size eGFR Ca P PTH AP/ bALP 25D 1,25D FGF23 sKlotho CTX Ref.

Healthy subjects/ General

population

161 Neg* n.s. n.s. n.s. n.s. n.s. 23

40 n.s. n.s. Neg*^ n.s. n.s. n.s. n.s. 25

593 n.s. n.s. Neg* Neg* 21

ConservativeCKD 90 Neg*^ n.s. Pos*^ n.s. n.s. n.s. . 10

173 Neg* n.s. Pos*^ Pos* n.s. n.s. Pos^ 11

140§ n.s. Pos*^ n.s. n.s. n.s. Pos* 16

CKD-5D 673 Neg* Pos* Pos* Neg* Neg* 14

181 n.s. n.s. n.s. Neg* 15

60 Pos* n.s. Neg* 13

KTR 268 Neg*^ n.s. n.s. Neg^ n.s. Neg*^ 18

31 Neg^ n.s. Pos^ n.s. n.s. n.s. n.s. 19

80 n.s. n.s. n.s. n.s. Neg*^ Pos*^ Neg^ Pos* Pos^ n.s. Our

KTR

Abbreviations: eGFR, estimated glomerular filtration rate; Ca, calcium; P, phosphate; PTH, parathyroid hormone; AP, alkaline phosphatase; bALP, bone

alkaline phosphatase; 25D, 25-hydroxyvitaminD; 1,25D, 1,25-dihydroxyvitaminD; FGF23, Fibroblast Growth Factor 23; CKD-5D, dialysis patients; CTX,

collagen type 1 cross-linked C-telopeptide; KTR, kidney transplant recipients. Empty boxes indicate absence of data.

(*) Univariate analysis

(^) Multivariate analysis

(§) 46 patients with CKD-5D.

https://doi.org/10.1371/journal.pone.0178637.t004
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