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Abstract

Gait speed is a powerful clinical marker for mobility impairment in patients suffering from

neurological disorders. However, assessment of gait speed in coordination with delivery

of comprehensive care is usually constrained to clinical environments and is often limited

due to mounting demands on the availability of trained clinical staff. These limitations in

assessment design could give rise to poor ecological validity and limited ability to tailor

interventions to individual patients. Recent advances in wearable sensor technologies

have fostered the development of new methods for monitoring parameters that character-

ize mobility impairment, such as gait speed, outside the clinic, and therefore address

many of the limitations associated with clinical assessments. However, these methods

are often validated using normal gait patterns; and extending their utility to subjects with

gait impairments continues to be a challenge. In this paper, we present a machine learn-

ing method for estimating gait speed using a configurable array of skin-mounted, confor-

mal accelerometers. We establish the accuracy of this technique on treadmill walking

data from subjects with normal gait patterns and subjects with multiple sclerosis-induced

gait impairments. For subjects with normal gait, the best performing model systematically

overestimates speed by only 0.01 m/s, detects changes in speed to within less than 1%,

and achieves a root-mean-square-error of 0.12 m/s. Extending these models trained on

normal gait to subjects with gait impairments yields only minor changes in model perfor-

mance. For example, for subjects with gait impairments, the best performing model sys-

tematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%,

and achieves a root-mean-square-error of 0.14 m/s. Additional analyses demonstrate

that there is no correlation between gait speed estimation error and impairment severity,

and that the estimated speeds maintain the clinical significance of ground truth speed in

this population. These results support the use of wearable accelerometer arrays for
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estimating walking speed in normal subjects and their extension to MS patient cohorts

with gait impairment.

Introduction

Gait impairment is a common phenotype prevalent in patients suffering from a variety of neu-

rological disorders including multiple sclerosis (MS). In MS, inflammation in the brain and

chronic demyelination cause a degeneration in axon conduction which manifests as the pro-

gressive clinical disability characteristic of the disorder [1]. One such group of symptoms result

in mobility (i.e. gait) impairment [2], which has been identified by altered spatio-temporal gait

parameters including slower gait speed [3]. Mobility impairments have been strongly corre-

lated with progression of MS [4–6] and risk for adverse outcomes including falls [7], reduced

quality of life [8], and increased caregiver burden [8]. For example, 41% of MS patients report

some form of walking impairment, and 13% report that they are unable to walk beyond 2 days

per week [8]. These mobility impairments have been shown to negatively affect both patient

and caregiver quality of life [8]. Walking impairment has been observed early in the disease

course of MS, and even in the absence of other, pyramidal, indicators of the disease [4]. For

example, a study of 20 minimally impaired MS patients (Expanded Disability Status Scale—

EDSS = 0.0–2.5: N = 10 Pyramidal Functional Systems—PFS = 0.0, N = 10 PFS = 1.0) and 20

age- and gender-matched controls revealed a significant reduction in walking speed with MS

diagnosis [4]. This trend continues with disease progression, as MS patients in the PFS = 1.0

group demonstrated significantly reduced walking speed and stride length when compared

with the PFS = 0.0 group [4]. These results extend beyond this minimally impaired MS popula-

tion, with cross-sectional studies demonstrating that increases in MS-related disability are neg-

atively correlated with walking speed [9] and endurance [5,10] across the spectrum of mobility

impairment levels (EDSS 0.0–6.5).

This evidence points toward the importance of walking speed as a parameter for character-

izing mobility impairments in the MS population. However, typical clinic-based assessments

of walking speed (i.e., 6 minute walk test, timed 25 foot walk, etc.) might not accurately repre-

sent a patient’s walking performance outside the clinic [11]. Moreover, even if these functional

tests were administered at every visit, a measurement frequency of 3–6 months does not pro-

vide sufficient granularity to track intervention efficacy, nor does it enable rapid tailoring of

intervention course to an individual to yield optimal response. One potential solution to this

problem is to instrument MS patients with wearable motion tracking devices outside of the

clinic to better understand their natural walking speed patterns, and how they change over

more granular timescales.

A number of recent studies have applied wearable inertial sensors, including accelerometers

and/or angular rate gyroscopes, for tracking walking speed outside of the clinical setting [12].

These techniques can be categorized as i) direct integration [13–17], ii) human gait model

[18–22], or iii) machine learning (ML) models [23–26]. The direct integration and human gait

model techniques are capable of providing excellent results (root-mean-square-error (RMSE)

of 0.06 m/s [22]), but they require an angular rate gyroscope, which increases the cost of the

wearable device and significantly reduces battery life. While these limitations do not affect

deployment during constrained clinical tests, they do hinder translation to estimating walking

speed during ambulation outside the clinic.

Skin-worn conformal sensors for estimating gait speed in healthy controls and individuals with MS
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The ML model technique for estimating walking speed utilizes supervised learning to train a

statistical model relating measurements of walking kinematics with speed. In practice, walking

kinematics are often measured by one (or several) body-worn accelerometer(s) and decom-

posed into a series of parameters (features) that summarize the kinematics. These parameters

are also sometimes combined with anthropometric information including subject height,

weight, and leg segment lengths. A model that relates these kinematic and anthropometric

parameters to walking speed is then ‘learned’ from a series of training examples collected at a

variety of walking speeds and from a variety of subjects. The hypothesis is that larger ‘training

sets’ yield models that more accurately capture the true relationship between the measured

kinematics (and anthropometric characteristics) and speed. Several studies have employed this

technique to translate data from accelerometer-only and accelerometer and gyro based wear-

able devices into estimates of walking speed [23–26]. One study, that employs a belt-worn accel-

erometer, found that a support vector regression model produced superior results to output

from human gait model based approaches that exploit relationships between stride frequency

and step length [23]. They reported a coverage probability (95% confidence interval), relative to

a gold standard perambulator, of 0.46 (0.12–0.70) at the 0.1 m/s error level from a study of 17

normative subjects walking over ground at 4 self selected speeds [23]. However, 8 subjects from

their training set were included in their testing set, which could artificially improve this level of

agreement. Another study utilized treadmill walking data collected from 20 subjects walking at

speeds ranging from 0.7 to 1.7 m/s to assess a mobile phone (located in the subject’s pocket)

based algorithm for estimating walking speed [25]. The authors report an RMS error of 0.12 m/

s for an accelerometer-only feature set and a leave-one-subject-out error estimation approach.

While existing studies demonstrate that the accuracy of the direct integration and human gait

model techniques is superior to that of the ML model technique, the accelerometer-only mea-

surement requirements drastically reduce the barrier to deployment outside of the clinic.

Accordingly, it is important to understand if there are device locations, or combinations of loca-

tions, that can further improve walking speed estimation accuracy using this approach.

Walking speed is a primary indicator of outcome in clinical research and practice involving

MS patients [27]. New wearable technology, and the ML model based approaches described

above, could provide a means for characterizing walking speed in more naturalistic environ-

ments. Traditionally, an ML model for estimating walking speed in patients with MS would

require a training dataset sampled from a population of patients with varying levels of MS-

induced gait impairments walking at a variety of speeds. However, collection of these data puts

patients at heightened risk for falls which could yield significant physical and emotional injury,

negatively impacting ambulation (and therefore quality of life [8]) for weeks, months, and

years following the accident. One potential solution, which would obviate the need for collec-

tion of training data on patients with MS-induced gait impairment, is to train ML models for

walking speed on data from healthy subjects. However, it is then important to explore how

these models developed on normal subjects generalize to populations with gait impairments,

and in the case of MS, how the model performs as a function of impairment severity. For

example, one study explored the performance of walking speed estimations provided by a belt-

worn commercial activity tracking device, and their model trained on subjects without neuro-

logical disorders, in a sample of 51 MS patients spanning the disability spectrum (EDSS 2.0–

6.5) [28]. They found that estimations were accurate for subjects with mild impairment (EDSS

2.0–3.5), but the accuracy degraded considerably for moderately (EDSS 4.0–5.5) and severely

(EDSS 6.0–6.5) impaired subjects.

Here we develop a ML-based technique for estimating walking speed using a new, confor-

mal wearable device. We utilize accelerometers from multiple body locations to characterize

gait speeds during treadmill walking in normative subjects (control), and during treadmill

Skin-worn conformal sensors for estimating gait speed in healthy controls and individuals with MS
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walking for a population of subjects diagnosed with multiple sclerosis (MS). We further inves-

tigate how different combinations of device locations influence estimation accuracy, and if

estimated speeds maintain the clinical relevance of the ground truth speed values.

Methods

Research conducted at the University of Illinois at Urbana-Champaign (UIUC) was approved

by the UIUC Institutional Review Board (IRB Protocol Number: 15853). Research at MC10,

Inc. and UIUC were conducted according to the principles expressed in the Declaration of

Helsinki. Written, informed consent was obtained from each subject prior to participation.

A. Study design

The BioStamp Research Connect™ system (BioStampRC—MC10, Inc., Lexington, MA) was

used to design two experimental protocols, one for a sample of normative subjects (Protocol

A) and one for a sample of MS patients and healthy controls (Protocol B). Protocol A included

a series of 6-minute treadmill walking tests executed at 5 predefined speeds (0.5, 0.75, 1.0, 1.25,

and 1.5 m/s). Protocol B included a variety of tests employed during clinical assessments of

mobility for MS patients including a Postural Control Test (PCT) (two repeated bouts of eyes

open, eyes closed, and eyes open standing on a foam pad), and the Six Minute Walk Test

(6MWT) completed at three self-selected speeds (slow, comfortable, fast). Speeds for the

6MWT were determined for each subject from a test of comfortable walking over a Zeno

Walkway (ProtoKinetics, Havertown, PA). The BioStampRC™ Investigator Application was

utilized to log the total duration and average walking speed for each activity, where applicable.

B. Participants

For Protocol A, a sample of 10 subjects (sex: 4F/6M, age: 22–35 yrs, height: 1.6–1.8 m, weight:

61.2–99.3 kg) was recruited from a population of subjects with no known gait impairments.

For Protocol B, a sample of 37 subjects, 30 diagnosed with MS (sex: 21F/9M, age: 29–74 yrs,

height: 1.5–1.8 m, weight: 43.1–136.0 kg, EDSSSR: 0.0–7.0, MSWS: 0.20–0.95) and 7 healthy

controls (sex: 3F/4M, age: 37–71 yrs, height: 1.6–1.8 m, weight: 64.4–102.5 kg), was recruited

from the community surrounding the University of Illinois at Urbana-Champaign. Informed

written consent was collected from each subject prior to participation in either protocol.

C. Protocol

Following collection of informed consents, subjects in Protocol A were instrumented with

BioStampRC Sensors and instructed to walk on a treadmill. The treadmill speed was ramped

until the desired walking speed was achieved for a given test (see S1 Appendix for validation of

treadmill reported speeds). Once the treadmill had reached steady state, the study administra-

tor used the BioStampRC Investigator Application to indicate the beginning and end of the

walking test, and to record the walking speed. This sequence was repeated until tests for the

five walking speeds had been completed.

For Protocol B, subjects completed a verbal health history and physical activity readiness

questionnaire (PAR-Q) during a phone screen and, if found to meet the inclusion criteria,

were scheduled for an onsite visit at the Motor Control Research Laboratory at the University

of Illinois at Urbana-Champaign. During the onsite visit, subjects provided written informed

consent, and completed questionnaires including a Patient Demographics Survey, the Twelve

Item MS Walking Scale (MSWS), the Self-Reported Expanded Disability Status Scale

(EDSSSR), and the Fall, Trips, and Slips 6 Month Survey. Subjects were then instrumented with

Skin-worn conformal sensors for estimating gait speed in healthy controls and individuals with MS
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BioStampRC Sensors and completed a series of functional tests designed to assess balance and

mobility impairments in MS patients including the PCT, the Timed 25 Foot Walk Test, the

Timed Up and Go, and the 6MWT. Herein, we consider data from the PCT and the 6MWT in

particular. For the PCT, subjects were tested twice in each of three conditions (eyes open, eyes

closed, and eyes open standing on a foam pad) for 30 seconds. The study administrator used

the BioStampRC Investigator Application to indicate the beginning and end of each PCT, dur-

ing which the subject’s speed was assumed to be 0 m/s. For the 6MWT, subjects were tested at

three different speeds (comfortable, 20% above comfortable and 20% below comfortable). The

study administrator used the BioStampRC Investigator Application to indicate the beginning

and end of each 6MWT. Immediately after indicating the beginning of the test, subjects began

to walk on the treadmill while the administrator increased the speed until the desired walking

speed was achieved. The steady-state treadmill speed for each test was recorded on a test data-

sheet, copies of which were provided for each subject for analysis.

D. Instrumentation

Subjects in Protocols A and B were instrumented with five BioStampRC Sensors (See Fig 1A),

affixed to the skin at the locations illustrated in Fig 1B (sacrum, bilateral thigh, bilateral shank).

Each sensor was configured to log accelerometer (measurement range—Protocol A: +/- 8G,

Protocol B: +/- 4G) data to onboard flash memory at a rate of 50 Hz. Each accelerometer sam-

ple, from each device, was recorded with a corresponding absolute time stamp thus allowing

direct comparison of data across devices. Following the completion of all data collection activi-

ties for each subject, data were downloaded from the sensors using the Investigator Application,

and uploaded to the BioStampRC Investigator Portal in the MC10 cloud for further analysis.

E. Pre-processing and feature extraction

BioStampRC Sensors were secured to the body such that the axis orthogonal to the plane of

the device (Z) was directed roughly in the anterior (thigh, shank) or posterior (sacrum) direc-

tions. The accelerometer data from each axis is low-pass (12 Hz cutoff [29]) and band-pass

(0.25–12 Hz cutoff) filtered, yielding a total of six time series, from each device, for analysis.

The prescribed device placement constrains the direction of the Z-axis, but the remaining axes

(X,Y) are largely arbitrary. To remove further dependence on device orientation, we take the

vector magnitude of accelerometer signals in the X and Y directions (XY = sqrt(X2 + Y2)),

yielding two time series, Z and XY, for each filtering approach (band-pass, low-pass), for fur-

ther analysis. These time series are segmented into 5-second non-overlapping windows. Each

window represents one sample or observation. Thus, a single 6MWT yields 72 samples or

observations for model training. Data from each window are parameterized by a set of time

and frequency domain features [30] to inform estimates of walking speed. Time domain fea-

tures include mean value, range, kurtosis, signal entropy, range of auto-covariance and corre-

lation coefficient (XY with Z). Frequency domain features include spectral entropy, value and

magnitude of dominant frequency, and ratio of energy in the dominant frequency to the

band-limited frequency spectrum. A total of 32 features are extracted from each window of

data, for each device location.

F. Model training and performance evaluation

To estimate walking speed from these accelerometer-based features, we define support vector

regression models [23] (f) of the form

s ¼ f ð~aÞ ð1Þ

Skin-worn conformal sensors for estimating gait speed in healthy controls and individuals with MS
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Fig 1. BiostampRC sensors are skin-mounted, conformal devices that can be adhered at multiple

locations on the body. (A) BioStampRC skin-mounted, conformal motion sensor. (B) Anatomical locations

where devices were adhered to the skin.

https://doi.org/10.1371/journal.pone.0178366.g001
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where s is the average walking speed during a 5-second period of time and~a is an M-element

vector composed of 32 time and frequency domain features extracted from the corresponding

5-second window of accelerometer data, from each of the desired sensor locations. We train

models for seven combinations of the sacrum, right thigh, and right shank locations in Python

using Scikit-Learn [31] and a supervised-learning approach. The training dataset consists of

data from the subjects of Protocol A (N = 10) and the control subjects of Protocol B (N = 7),

which together yield a total of 17 normal subjects for model development and analysis (data

for each device location combination available in S1 File). The treadmill speeds from these

tests provide ground-truth speed values (s) that enable training of walking speed models (f).
To establish the accuracy of these models on normal subjects, we employ a leave-one-subject-

out approach, where a walking speed model is trained on 16 subjects, and used to estimate

speed during tests completed by the remaining subject. This process is repeated until all sub-

jects have been left out of the training set. To establish model performance on impaired sub-

jects, we train walking speed models using all 17 normal training subjects and estimate speed

during the 6MWTs completed by each of the 30 subjects diagnosed with MS (data for each

device location combination from each MS subject available in S2 File). For both the normal

and impaired tests, we compute the median of the estimated speeds for comparison to the

ground-truth values reported by the treadmill. This approach yields a total of 114 observations

(5 tests from each subject in Protocol A, 9 tests from each control subject in Protocol B, and

one extra 6MWT completed by a subject in Protocol B) for the analysis of performance on nor-

mal gait, and 91 observations (one subject completed an extra 6MWT) for the analysis of per-

formance on impaired gait (data for each device location combination available in S3 File).

To analyze the performance of the walking speed estimations for normal and impaired sub-

jects, we report the root-mean-squared-error (RMSE), the Bland-Altman limits of agreement

(LOA), and the slope (m) and intercept (b) of the following linear model

y ¼ m � ŷ þ b ð2Þ

where y corresponds to the truth values, and ŷ corresponds to the associated estimates (median

speed from each walking test). The Bland-Altman limits of agreement describe the 95% confi-

dence interval for the difference between measurement techniques which provides an indica-

tion of the minimal detectable difference in the estimated speed [32]. The intercept (b)

indicates the systematic difference between measurement techniques, and the slope (m) indi-

cates how closely one measurement technique is able to detect changes in the other.

We examine error in the walking speed estimates as a function of impairment level in two

ways. First we examine the relationship between error and MSWS and EDSSSR scores for each

subject by considering the Pearson product moment correlation coefficient (r). We then divide

the MS patients into Mild (N = 14), Moderate (N = 10), and Severe (N = 6) impairment groups

and compare the error in estimated speed within each group. Subjects were assigned to groups

based on their comfortable walking speed during the Timed 25 Foot Walk Test: Mild—speed

> = 1.1 m/s, Moderate– 0.7 m/s< speed < 1.1 m/s, and Severe—speed < = 0.7 m/s [33].

Finally, we establish concurrent validity in the context of MS, by examining the relationship

between estimated and ground truth walking speeds sampled from the comfortable 6MWT of

Protocol B and indicators of mobility impairment and fall risk. Specifically, the Pearson prod-

uct moment correlation coefficient is used to characterize the relationship between walking

speed and MSWS and EDSSSR scores, and the Mann-Whitney U test is used to test for a signif-

icant difference in walking speed between subjects who reported a fall in the six months prior

to the test and those who did not. For all statistical analyses, significance is assessed at the α =

0.05 level.

Skin-worn conformal sensors for estimating gait speed in healthy controls and individuals with MS
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Results

We trained support vector regression [23] models to estimate walking speeds based on feature

sets extracted from a combination of devices secured to the sacrum, thigh and shank. The 17

subjects with normal gait exhibited speeds ranging from 0.0 to 1.7 m/s (0.0 m/s speeds from

the PCT tests of Protocol B). Results from the leave-one-subject-out error estimation for each

of the seven possible device location combinations are shown in Table 1. For each device loca-

tion combination, we report the RMSE, LOA, and the regression analysis of Eq (2).

Table 1. Error metrics for treadmill walking data from healthy subjects for 7 device location

combinations.

Device Locations RMSE (m/s) LOA (m/s) Best Fit Line

Sacrum 0.15 (-0.31, 0.29) y = 0.97 ŷ^+0.03

Thigh 0.15 (-0.30, 0.27) y = 0.96 ŷ^+0.04

Shank 0.13 (-0.26, 0.25) y = 0.98 ŷ^+0.02

Sacrum, Thigh 0.16 (-0.34, 0.29) y = 0.98 ŷ^+0.04

Sacrum, Shank 0.13 (-0.26, 0.25) y = 1.01 ŷ^+0.00

Thigh, Shank 0.11 (-0.23, 0.21) y = 0.98 ŷ^+0.03

Sacrum, Thigh, Shank 0.12 (-0.25, 0.22) y = 1.00 ŷ^+0.01

Metrics include root-mean-squared-error (RMSE), Bland-Altman limits of agreement (LOA), and best fits

from the regression analysis.

https://doi.org/10.1371/journal.pone.0178366.t001

Fig 2. Performance of model using sacrum, thigh, and shank device locations on treadmill data from healthy subjects. Bland-

Altman (A) and regression (B) plots illustrating the performance of the accelerometer-based model for estimating walking speed on a

treadmill. As illustrated in the plots, the model produces unbiased estimates of speed with homoscedastic error.

https://doi.org/10.1371/journal.pone.0178366.g002
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We also considered the Bland-Altman and regression plots for the Sacrum, Thigh, Shank

model of Table 1 in Fig 2A and 2B, respectively. Each point of the Bland-Altman plot repre-

sents a single walking speed test, where the y-coordinate is the error in the speed estimate and

the x-coordinate is the average between the estimated and true speed. The solid black line indi-

cates mean error in the speed estimate, and the dashed red lines indicate the limits of agree-

ment (95% confidence interval). Similarly, each point of the regression plot represents a single

walking speed test, where the y-coordinate is the estimated speed and the x-coordinate is the

true speed. The line of best fit is plotted as a solid black line, the 95% confidence region for the

regression is shaded in grey (estimated via bootstrap), and a dashed red line with unit slope

and zero intercept, is shown for reference.

We now assess the accuracy of walking speed estimations for patients with gait impairments

from models trained on 17 subjects without gait impairments. Table 2 reports error metrics

for models trained on data from each of the seven device location combinations for 30 MS

patients, with varying levels of gait impairment. Actual walking speeds during these tests ran-

ged from 0.13 to 1.88 m/s.

We further examine the error in walking speed estimates for the Sacrum, Thigh, Shank

model of Table 2 by considering the Bland-Altman and regression plots shown in Fig 3A and

3B, respectively.

To better understand the relationship between accuracy and impairment level, we report

the RMSE and LOA for the Mild, Moderate, and Severe subject groups, and the Pearson prod-

uct moment correlation coefficient between estimation error and EDSSSR and MSWS scores,

for each of the seven device location combinations, in Table 3.

We further examine the accuracy of walking speed estimations across impairment levels

with the Sacrum, Thigh, Shank model in Fig 4A and 4B, where we plot speed estimation error

versus MSWS and EDSSSR scores, respectively. Each point in Fig 4A/4B, where the y coordi-

nate is the speed estimation error and the x coordinate is the MSWS/EDSSSR score, represents

a single 6MWT. In each plot, the red dashed line is the best-fit line for the data.

Finally, we quantify the ability of each model to preserve the clinical relevance of the

ground truth data by correlating estimated and ground truth walking speeds with MSWS

and EDSSSR scores. We also test for differences in speed between groups of subjects who

reported a fall in the 6 months prior to the study (Fall) and those who did not (No Fall, none

of the differences were statistically significant). Subjects in the Fall group are expected to

have slower comfortable walking speeds than those in the No Fall group [7]. Results are pre-

sented in Table 4.

Table 2. Error metrics for treadmill 6MWT data from MS patients for 7 device location combinations.

Device Locations RMSE (m/s) LOA (m/s) Best Fit Line

Sacrum 0.12 (-0.25, 0.22) y = 0.96 ŷ^+0.05

Thigh 0.16 (-0.36, 0.23) y = 1.93 ŷ^+0.12

Shank 0.16 (-0.32, 0.31) y = 0.89 ŷ^+0.10

Sacrum, Thigh 0.13 (-0.25, 0.26) y = 1.02 ŷ^-0.02

Sacrum, Shank 0.14 (-0.26, 0.27) y = 0.94 ŷ^-0.05

Thigh, Shank 0.14 (-0.3, 0.25) y = 0.95 ŷ^+0.06

Sacrum, Thigh, Shank 0.14 (-0.27, 0.27) y = 0.99 ŷ^+0.01

Metrics include the root-mean-squared-error (RMSE), Bland-Altman limits of agreement (LOA), and the best

fit line from the regression analysis.

https://doi.org/10.1371/journal.pone.0178366.t002
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Discussion

We present a technique for estimating walking speed based on data from an array of wearable

accelerometers, and conduct a detailed analysis of the influence of device placement combina-

tions on estimation accuracy in a sample of subjects without gait impairments. We further

Table 3. Error metrics by MS impairment groups and Pearson product moment correlation between error and EDSSSR and MSWS scores.

Device Locations Mild Moderate Severe Correlation of error with

EDSSSR

Correlation of error with

MSWSRMSE (m/

s)

LOA (m/s) RMSE (m/

s)

LOA (m/s) RMSE (m/

s)

LOA (m/s)

Sacrum 0.13 (-0.24,

0.25)

0.12 (-0.27,

0.20)

0.11 (-0.24,

0.17)

-0.32 -0.28

Thigh 0.17 (-0.37,

0.26)

0.14 (-0.31,

0.18)

0.18 (-0.40,

0.22)

-0.23 -0.12

Shank 0.16 (-0.29,

0.33)

0.14 (-0.23,

0.30)

0.21 (-0.45,

0.19)

-0.38+ -0.29

Sacrum, Thigh 0.12 (-0.24,

0.22)

0.12 (-0.20,

0.27)

0.16 (-0.32,

0.32)

0.02 0.19

Sacrum, Shank 0.14 (-0.23,

0.29)

0.10 (-0.12,

0.22)

0.19 (-0.39,

0.12)

-0.39+ -0.20

Thigh, Shank 0.14 (-0.29,

0.27)

0.11 (-0.21,

0.23)

0.18 (-0.40,

0.18)

-0.35 -0.18

Sacrum, Thigh,

Shank

0.14 (-0.28,

0.28)

0.10 (-0.13,

0.22)

0.17 (-0.37,

0.18)

-0.28 -0.05

Error metrics include RMSE and LOA. Statistical significance at the α = 0.05 level indicated with +.

https://doi.org/10.1371/journal.pone.0178366.t003

Fig 3. Performance of model using sacrum, thigh, and shank device locations on treadmill data from MS patients. Bland-Altman (A)

and regression (B) plots illustrating the performance of the accelerometer-based model for estimating walking speed in MS patients. As

illustrated in the plots, the model produces unbiased estimates of speed with slightly higher variance at slower speeds, despite being trained

on data from subjects with normal gait.

https://doi.org/10.1371/journal.pone.0178366.g003
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explore how models trained on subjects without gait impairments perform in a sample of

patients diagnosed with MS-induced gait abnormalities. In so doing we characterize estima-

tion accuracy across impairment levels and device placement combinations. Finally, we estab-

lish clinical utility by comparing ground truth and estimated walking speeds to clinical

assessments of impairment levels as quantified by the EDSSSR and MSWS scales and if the sub-

ject has reported falling in the six months prior to their visit.

The results presented in Table 1 show high accuracy of the proposed technique for estimat-

ing walking speed in subjects without gait impairments across a variety of device location com-

binations. Generally, performance improves with both distal device locations and additional

Fig 4. Scatter plots showing the relationship between speed estimation error and MSWS and EDSSSR. Speed estimation error vs.

MSWS score (A) and EDSSSR score (B) from the sacrum, thigh, shank model. The dashed red line is a line of best fit, correlations between

error and EDSSSR/MSWS scores are not significant.

https://doi.org/10.1371/journal.pone.0178366.g004

Table 4. Relationship between walking speed and MSWS score, EDSSSR score, and fall history.

Device Locations Correlation of speed with EDSSSR

score

Correlation of speed with MSWS

score

Mean speed difference (m/s) between

Fall and No Fall groups

Estimated Ground Truth Estimated Ground Truth Estimated Ground Truth

Sacrum -0.75 -0.79 -0.84 -0.87 -0.20 -0.22

Thigh -0.75 -0.79 -0.86 -0.87 -0.19 -0.22

Shank -0.77 -0.79 -0.89 -0.87 -0.21 -0.22

Sacrum, Thigh -0.76 -0.79 -0.88 -0.87 -0.21 -0.22

Sacrum, Shank -0.72 -0.79 -0.87 -0.87 -0.24 -0.22

Thigh, Shank -0.74 -0.79 -0.88 -0.87 -0.23 -0.22

Sacrum, Thigh, Shank -0.73 -0.79 -0.88 -0.87 -0.25 -0.22

Pearson product moment correlation coefficient was used to relate walking speed to MSWS and EDSSSR scores. The difference in comfortable walking

speed between fall groups in estimated and ground truth data is shown to relate speed with fall history. Statistical significance at the α = 0.01 level is

indicated in bold.

https://doi.org/10.1371/journal.pone.0178366.t004

Skin-worn conformal sensors for estimating gait speed in healthy controls and individuals with MS

PLOS ONE | https://doi.org/10.1371/journal.pone.0178366 June 1, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0178366.g004
https://doi.org/10.1371/journal.pone.0178366.t004
https://doi.org/10.1371/journal.pone.0178366


devices. For example, walking speeds estimated by a model trained on data from just the sacrum

device has a RMSE of 0.15 m/s, with a 95% confidence interval for error of (-0.31, 0.29) m/s, the

ability to quantify changes in speed to within 3%, and a systematic bias of 0.03 m/s. In contrast,

the model trained on data from the shank device improves upon these error characteristics by

estimating walking speed with a reduced RMSE (0.13 m/s), smaller 95% confidence interval for

error (-0.26, 0.25) m/s, better ability to quantify changes in speed (within 2%), and a reduced

systematic bias (0.02 m/s). This increase in performance is achieved by simply placing the BioS-

tampRC Sensor to a different body location. The performance of these single-device models

compare well with the best single-device approach reported in the literature that is able to quan-

tify walking speed with an RMSE of 0.12 m/s (or 0.11 m/s after gps-based subject-specific cali-

bration) [25]. Adding additional devices can further improve these results, provided that care is

taken to avoid over-fitting. This is evidenced by the error characteristics for the model trained

on data from the sacrum, thigh, and shank locations, which yields a RMSE of 0.12 m/s, a 95%

confidence for the error of (-0.25, 0.22) m/s, is able to quantify changes in speed to within less

than 1%, and systematically overestimates speed by only 0.01 m/s. The Bland-Altman and

regression plots of Fig 2A and 2B, highlight the unbiased speed estimate provide by the three-

device model, and demonstrate the homoscedasticity of the variance.

The results of Table 2 establish how the proposed modeling approach for estimating walk-

ing speed generalizes to subjects with MS-induced gait impairments, and illustrates how

changes in the number and location of devices affects accuracy. Specifically, the results suggest

the opposite trend observed in the non-impaired sample, namely that error increases with dis-

tal device placements. For example, a model trained on data from the sacrum device yields a

RMSE of 0.12 m/s, 95% confidence interval for the error of (-0.25, 0.22) m/s, the ability quan-

tify changes in speed to within 4%, and systematically overestimates speed by 0.05 m/s. In con-

trast, a model trained on data from the shank yields larger RMSE (0.16 m/s), wider limits of

agreement (-0.32, 0.31), more limited ability to detected changes in speed (within 11%), and a

larger systematic bias (0.10 m/s). This could be due to gait impairments manifesting as larger

deviations in the kinematics of the distal body segments, where mass center (or sacral) kine-

matics need to be more tightly constrained to enable even severely impaired ambulation. Nev-

ertheless, the inclusion of distal device locations with the sacrum, acts to alter the bias-variance

characteristics of the estimation error. Namely, a model trained on data from the sacrum,

thigh, and shank devices yields slightly higher variance as evidenced by increased RMSE (0.14

m/s) and wider limits of agreement (-0.27, 0.27), but reduces bias with improvements in the

ability to quantify changes in speed (now within 1%) and the systematic bias (overestimate

speed by only 0.01 m/s). The Bland-Altman and regression plots of Fig 3A and 3B, respectively,

help to visualize the performance of this model across a wide range of walking speeds and the

associated gait impairment levels. This model seems to introduce a slight heteroscedasticity,

where the slowest speeds seem to elicit slightly larger error variance, however this could also be

due to our dataset, which contains fewer observations at faster speeds.

To this end, we examine error characteristics within each impairment level (mild, moderate,

severe) as a function of the device location combinations in Table 3. This analysis demonstrates

that the sacrum is the single best location for estimating walking speed across impairment levels

with very little difference between levels. Ultimately, this suggests that the proposed approach

for estimating walking speed is able to generalize across gait impairments. This compares favor-

ably to existing methods for estimating walking speed from accelerometer data. Specifically, a

validation study of the actibelt1, a belt-worn accelerometer-based device, in a sample of 51 MS

patients with gait impairments demonstrated that error in walking speed estimates differed sig-

nificantly across impairment levels. For subjects with mild, moderate, and severe impairments,

the reported mean (standard deviation) error in walking speed estimation was -0.02 (0.11),
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-0.10 (0.16), and -0.26 (0.12) m/s, respectively [28]. For comparison, the sacrum model pre-

sented herein yields mean (standard deviation) error in walking speed estimations of 0.01

(0.12), -0.04 (0.12), and -0.04 (0.11) m/s for subjects with mild, moderate, and severe gait

impairments, respectively. This improvement in results across impairment groups could be due

to the conformal, skin-mounted nature of the BioStampRC sensor (vs. the belt-worn actibelt1),

or differences in the modeling approach and/or feature set employed for estimating speed. To

further confirm the lack of relationship between error in the walking speed estimations and gait

impairments, we correlate walking speed error with EDSSSR and MSWS scores for models

trained with each device location combination in Table 3. Estimation errors for none of the

walking speed models show significant (α = 0.05) correlations with MSWS scores, and only 2 of

the 7 models (Shank; Sacrum, Shank) show correlation with EDSSSR score. These results further

confirm the lack of relationship between error in the walking speed estimations and

impairment level for many of the device location combinations. This is an important result, as

it suggests that the proposed approach allows extension of models for estimating walking speed

developed on data from normal subjects to MS subjects with gait impairments without intro-

ducing additional error that could potentially confound interpretation of the results.

Finally, we examine the relationship between the ground truth and estimated walking

speeds during tests conducted at the comfortable walking speed, and clinical measures of

impairment and fall history to assess if the proposed technique is able to capture the clinical

significance of this important variable. Table 4 demonstrates that both ground truth and esti-

mated speeds are significantly, and similarly, correlated with MSWS scores (estimated: r�
−0.84,p< 0.01, ground truth: r = −0.87,p< 0.01) such that walking speed decreases as MSWS

score, and therefore walking impairment, increases. These results agree well with existing liter-

ature that reports a correlation between walking distance during the 6MWT and MSWS score

of r = −0.81. Similarly, both ground truth and estimated speeds are significantly, and similarly,

correlated with EDSSSR score (estimated: r� −0.72,p< 0.01, ground truth: r = −0.79,p< 0.01)

as well. These results also agree well with existing literature that reports a correlation between

walking distance during the 6MWT and EDSS score of r = −0.73 [5]. Lastly, there is a relation-

ship between speed and if the subject reports falling in the last 6 months. Specifically, the com-

fortable walking speeds for subjects who have fallen in the last six months are 0.22 m/s slower

than those who have not where models estimate differences between 0.19 and 0.25 m/s. The

directionality of these results agree well with existing literature examining the relationship

between walking speed and fall history [7]. These results clearly demonstrate that the proposed

technique for estimating walking speed is able to preserve the relationship between the true

speed and clinical assessments of MS symptom severity (EDSSSR and MSWS) and fall history.

The primary limitation of this study is that results are based on data collected during tread-

mill walking. As a result, the performance may not generalize to ambulation in naturalistic

environments. Future studies should explore changes in performance that result from employ-

ing the proposed technique for estimating walking speed during over-ground ambulation in

subjects with and without MS-induced gait impairments. The study presented herein explores

how models trained on subjects with unimpaired gait generalized to those with MS-induced

gait impairments. A future direction could also focus on developing methodologies for the

training of individualized models for each MS patient. This type of personalized approach,

enabled by the BioStampRC technology, could improve the reported results further.

Conclusion

In this study, we characterize the accuracy of walking speed estimations enabled by the combi-

nation of machine learning and the BioStampRC system, which includes a new skin-mounted,
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conformal wearable sensor, in subjects with and without MS-induced gait impairments.

Within each group, we analyze the relationship between estimation accuracy and device loca-

tion combinations. Finally, we assess the ability of the resulting walking speed estimations to

maintain the clinical relevance of the ground-truth values. Specifically, we establish the accu-

racy of this technique on treadmill walking data sampled from subjects with normal gait pat-

terns and find that accuracy improves with more distal device locations and the inclusion of

additional devices, with the best model systematically overestimating speed by only 0.01 m/s,

detecting changes in speed to within less than 1%, and achieving a root-mean-square-error of

0.12 m/s. We then assess the performance of models trained on normal subjects in a popula-

tion of subjects with MS-induced gait impairments, and find that accuracy improves with

proximal locations, and the inclusion of additional devices. The best performing model sys-

tematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%, and

achieves a root-mean-square-error of 0.14 m/s. We further demonstrate that the estimated

walking speed maintains the clinical significance of the ground truth speed in this population,

where the ground truth and estimated speeds during comfortable walking tests are highly cor-

related with impairment severity as quantified by EDSSSR (r� −0.72) and MSWS (r� −0.84)

scores. These results support the extension of accelerometer-based models for estimating walk-

ing speed developed on data from normal subjects to MS patients with gait impairments.

Based on the results presented herein, and the wearable nature of the BioStampRC devices,

this approach points toward the future ability to monitor parameters that characterize mobility

impairment, such as gait speed, outside the clinic.
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