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Abstract

An automated approach based on routinely-processed, whole-slide immunohistochemistry

(IHC) was implemented to study co-localized protein expression in tissue samples. Expres-

sion of two markers was chosen to represent stromal (CD31) and epithelial (Ki-67) compart-

ments in prostate cancer. IHC was performed on whole-slide sections representing low-,

intermediate-, and high-grade disease from 15 patients. The automated workflow was

developed using a training set of regions-of-interest in sequential tissue sections. Protein

expression was studied on digital representations of IHC images across entire slides re-

presenting formalin-fixed paraffin embedded blocks. Using the training-set, the known as-

sociation between Ki-67 and Gleason grade was confirmed. CD31 expression was more

heterogeneous across samples and remained invariant with grade in this cohort. Interest-

ingly, the Ki-67/CD31 ratio was significantly increased in high (Gleason� 8) versus low/

intermediate (Gleason�7) samples when assessed in the training-set and the whole-tissue

block images. Further, the feasibility of the automated approach to process Tissue Microar-

ray (TMA) samples in high throughput was evaluated. This work establishes an initial frame-

work for automated analysis of co-localized protein expression and distribution in high-

resolution digital microscopy images based on standard IHC techniques. Applied to a larger

sample population, the approach may help to elucidate the biologic basis for the Gleason

grade, which is the strongest, single factor distinguishing clinically aggressive from indolent

prostate cancer.

Introduction

Prostate cancer is the second most common form of cancer for men in the United States, with

an incidence of over 180,000 and annual mortality of 26,000 deaths expected for 2016 [1].

From the time of diagnosis, treatment modalities vary widely and may include surgery (com-

plete removal of the prostate), radiation (delivered to the prostate with or without adjacent

lymph nodes), or conservative therapy (surveillance without any form of active therapy).
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Similarly, the prognosis for newly diagnosed patients varies widely. Some patients are diag-

nosed with low-risk disease, unlikely to progress or require treatment within the individual’s

lifetime, while other patients are diagnosed with aggressive, high-risk disease which may entail

significant morbidity and mortality in a relatively short time. It is critical to accurately assess a

patient’s risk of morbidity or mortality during the individual’s expected lifetime. Standard fea-

tures incorporated into prognostic algorithms include clinical T-stage and prostate specific

antigen (PSA) level in addition to pathologic criteria. As most patients are diagnosed with clin-

ically non-palpable (T1) disease with relatively low PSA values (generally < 10 ng/dl), patho-

logic features factor heavily in risk prognostication.

Histologic grade (Gleason grade) is the major pathologic factor clinically employed to

determine risk prognostication. In typical practice, the Gleason grade is based on histologic

patterns of neoplastic glandular growth; e.g., the growth of discrete glandular units in and

amongst non-neoplastic acini is termed pattern 3, ill-defined glands with poorly formed

lumina or cribiform structures are termed pattern 4, and a solid nest of cancer cells or single

cells is termed pattern 5 [2]. The Gleason score is then derived by adding the patterns observed

in different areas to produce a sum typically ranging from 6 to 10. The score is the single most

important clinical variable in many risk prognostication systems [3–7] and has even been

found to add independent information to prognostic nomograms for recurrent prostate cancer

occurring long after an initial diagnostic biopsy [8].

Various studies have shown that microvessel density or epithelial proliferation may aug-

ment conventional Gleason grading. CD31 (a.k.a. platelet-endothelial cell adhesion molecule

type 1) is an immunohistochemical stain that indicates presence of endothelial cells, granulo-

cytes, monocytes, and platelets. Microvessel index, defined by an arrangement of CD31+ endo-

thelial cells, has been associated with tumor aggressiveness and metastasis in patients with

prostate cancer [9, 10]. Ki-67 is a nuclear non-histone protein that is present in all stages of the

cell cycle except G0. As proliferating cells express Ki-67, it can be used to estimate the growth

fraction of both benign and malignant tissue. In prostate cancer, Ki-67 expression has been

correlated with Gleason grade and poor clinical outcomes [11]. Thus, while vascularity and

proliferation have independently been shown to contribute to risk prognostication, no previ-

ous study, to our knowledge, has examined how these factors may interact or contribute to the

underlying biology associated with aggressive prostate cancer.

Here, a methodology was developed for automated quantitative analysis of protein expres-

sion in digital microscopy images based on routinely processed immunohistochemistry (IHC)

slides, and it was used to preliminarily explore a putative connection between proliferation

and vascularity in the context of Gleason scores in prostate cancer. The results of the auto-

mated approach were compared with manually segmented images based on Ki-67 and CD31

protein expression. A pilot set of prostatectomy specimens (15 subjects) stained for Ki-67 and

CD31 was evaluated to represent a mix of Gleason scores 6, 7, and greater than 7. Each slide

was digitally scanned in high resolution format that enabled distinguishing individual cells

within whole tissue sections. Three high-powered fields were chosen from each slide, and

manually aligned across blocks for co-localized analysis of Ki-67 and CD31. The whole sec-

tions were then evaluated and the results compared to those obtained from individual sections.

The results suggest that proliferative vascular index (PVI, defined as the ratio of Ki-67 to CD31

expression) is increased in sections representing high-grade prostate cancer. This association

persists even when the automated image processing approach is applied to whole blocks repre-

senting highly heterogeneous sections of prostate cancer as commonly encountered in clinical

practice. Further, an algorithm is developed to automatically extract data from Tissue Microar-

ray (TMA) samples into rows and columns of a matrix, and test the capability of the automated

approach to process TMA image samples in high throughput.

Automated analysis of co-localized protein expression in histologic sections of prostate cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0178362 May 26, 2017 2 / 20

Institute U54CA143907. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0178362


Previous work regarding automated histology and IHC analysis

Computer aided analysis of digitally processed histologic images has been of increased interest

over the past two decades [12]. The focus has been development and application of increas-

ingly complex image analysis algorithms applied to routinely-processed hematoxylin and

eosin (H&E) stained-sections to help pathological diagnosis and grading of various cancers. In

particular, a variety of approaches such as Markov random field algorithms [13], color and

structural morphometry [14], and graphing algorithms [15] have been proposed to improve

prostate cancer assessment.

CRImage is a prime example of an automated digital pathology workflow developed to

quantify epithelial, stromal, and immune cells on H&E sections [16]. This method was devel-

oped to refine results of genomic studies commonly based on analysis of an admixture of tissue

elements, and has been applied to improve the resolution of breast [16] and ovarian cancer

[17] studies. CRImage is capable of classifying cells, segmenting samples, and calculating

tumor cellularity, in addition to native statistical analysis capabilities provided by the underly-

ing programming language R. Although CRImage is capable of image segmentation and sam-

ple classification without requiring user input, commands must be entered for every desired

process on the image, and each image must be processed individually. Further, CRImage is

limited to samples stained for H&E.

Computer-aided techniques (e.g., implemented using MATLAB) have been extensively

used for cell counting [18–20]. These techniques tend to have more limited application that

CRImage, providing information mainly on how many cells are present and not necessarily

analyzing the characteristics of these cells. The techniques are often intended for use with

either dark field microscopy or grayscale images that have high contrast between the items of

interest and the background, simplifying separation of cells from the background. Many of the

techniques currently do not support processing DAB-stained images.

Computer-aided image quantitation has also been combined with immuno-detection tech-

nologies to study the spatial arrangement of cells and protein expression in various forms of

cancer. A common application of these automated technologies has been for quantitation of

Ki-67 positive nuclei in manually defined regions of interest [21, 22]. Other approaches

broaden this strategy by applying machine learning algorithms to automate feature extraction

of digital images annotated by a trained human expert. The Genie Pro software algorithm is an

example of this approach, originally developed for analysis of satellite imagery but later applied

to automate feature extraction from digital histologic images [23]. A commercial implementa-

tion of the algorithm (Genie Histology Pattern Recognition System; Leica Biosystems) has

been used to quantify and correlate expression of multiple protein markers in relation to clini-

cal outcome in prostate cancer [24, 25]. While the approach has been successful in analysis of

multiple markers in tissue microarray cores, the system is not fully automated as it may require

a pathologist to identify tumor regions. As Genie Pro is a stochastic learning algorithm, indi-

vidual results with the same training set may vary, and the nature and weightings of features

used by the algorithm may not be readily discernible to the user. There exist other approaches

to quantify protein expression in tissue (such as automated quantitative analysis (AQUA)

[26]), which rely on immuno-fluorescent detection that is not commonly used in clinical

settings.

Accurate detection of cores in TMA samples has been previously explored using various

gridding methods. Some techniques may not detect weak signal cores [27], or only work for

cores regularly arranged in columns and rows [28]. For example, the technique in [29] does

not account for geometric transformations and rotations often exhibited by TMA samples.

Other techniques are not fully automated [29–31]. Recently, an automated technique for
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accurate detection and localization of tissue cores based on geometric restoration of the core

shapes was presented in [32], without making assumptions about the grid geometry. The tech-

nique uses hierarchical clustering combined with the Davies-Bouldin index for cluster valida-

tion to estimate the number of cores, from which the core radius is estimated and refined

using morphological granulometry.

Methods

Patient derived samples

A correlative science protocol for acquisition of clinical data and pathologic specimens for a

prostate cancer databank was approved by the Institutional Review Board at the University of

Southern California. Written informed consent was obtained from all patients prior to radical

prostatectomy. Subjects were selected into 3 groups (5 subjects per group) to represent Glea-

son scores 6, 7, and 8 or 9. Representative tissue blocks (1–2 per subject) were selected for anal-

ysis from each subject. In total, 23 whole tissue blocks from 15 subjects were analyzed for this

study. The demographics are summarized in Table 1.

Immunohistochemistry

Formalin-fixed paraffin-embedded 5 μm sections cut sequentially were obtained from each

block, mounted on slides, and baked at 60 C for 1 hour. Slides were loaded into Leica Auto-

mated Bond III system and stained using ready to use dilutions of antibodies against Ki-67

(MIB1) or CD31 (PECAM-1) and Novocastra Bond Polymer System (Leica Biosystems). Slides

were stained with these antibodies in consecutive (parallel) pairs in order to evaluate the pro-

tein expression in close spatial proximity. Specimens were de-hydrated, cover slipped with per-

mount, and scanned using the ScanScope CS system (Aperio/Leica Biosystems) to obtain

digital microscopy image files at 40X magnification (0.249 μ/pixel). Lower resolution regions

of interest (ROIs) were selected from the whole block images using ImageScope (version

11.2.0.780) from Aperio Technologies for initial analysis and training. ROIs were chosen to

represent predominant Gleason patterns present for each block (3 fields per slide) and

Table 1. Patient demographics of the samples evaluated in this study.

Gleason Grade

Subject # PSA (ng/ml) Age (yr) T Stage Primary Secondary Score

1 3.36 50.2 pT2a 3 3 6

2 3.27 50.2 pT2c 3 3 6

3 5.30 54.9 pT2c 3 3 6

4 7.40 64.0 pT2c 3 3 6

5 11.80 69.0 pT2c 3 3 6

6 7.2 59.0 pT3a 3 4 7

7 9.13 63.7 pT3a 3 4 7

8 7.00 58.3 pT2c 3 4 7

9 18.20 64.2 pT2a 3 4 7

10 13.25 62.6 pT2c 3 4 7

11 14.9 67.7 pT3b 3 5 8

12 6 57.9 pT2c 3 5 8

13 7 65.8 pT2a 4 4 8

14 5.5 61.9 pT2c 4 5 9

15 2.4 63.3 pT3b 4 5 9

https://doi.org/10.1371/journal.pone.0178362.t001
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exported as uncompressed, down-sampled TIFF files at 10X equivalent magnification (1652 x

992 pixels, 24 bit depth, 0.79 μ/pixel) from each whole block image.

Automated image processing

The overall program workflow is summarized in Fig 1. The program was implemented using

Matlab version 8.3 (R2014a) on a laptop computer running Windows 8.1 (64 bit). The laptop

had an Intel 1.80 GHz Core i7-4500u CPU and 8 gigabytes of physical memory.

Determination of sample vs. background pixels

The images consist of background tissue that appears various shades of blue and stained tissue

that has a reddish-brown appearance. To determine where the sample is in an image, the pro-

gram determines where the background is not present. The program evaluates each pixel’s

RGB color values to make this decision, e.g., a perfect white would have 255 for all three RGB

values, while a perfect black would have 0 for all three. The image backgrounds are not

Fig 1. Overview of program workflow.

https://doi.org/10.1371/journal.pone.0178362.g001
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perfectly white, but have values typically >230. The samples have lower pixel values for red

and/or blue based on whether or not the associated pixels have taken up the stain, since sam-

ples will usually be darker in that location. The program examines each RGB value stored for

each pixel and evaluates whether the value is relatively high and whether the values are consis-

tent for R, G, and B. If these conditions hold then the pixel is determined to be background;

otherwise, it is part of the sample.

Determination of positive vs. negative stain

Determination of positive stain is done with pixels identified to belong to the sample. Both

the stained and unstained areas can vary drastically in terms of darkness (darker being asso-

ciated with lower RGB values). Thus, one cannot, for example, simply compare B values for

two different pixels to determine which one is "blue-er" because a darker stained area may

actually have a lower blue value than a lighter non-stained area (e.g., Pixel 1 has (R,G,B) =

(175,175,125), yielding blue as dominant color, while Pixel 2 has (R,G,B) = (75,175,100), yield-

ing red as dominant color). To determine if a pixel is part of a stained area of the sample, the

program evaluates the RGB values relative to each other. All parts of the sample typically have

a considerable amount of blue present, so the criterion is how the red and green values com-

pare to the blue value. If red and green are relatively higher than blue (i.e., blue is the dominant

color), then the pixel is considered "unstained," and if they are lower (particularly the red

value), then the pixel is considered "stained."’

Specifically, the program checks each R, G, and B value to ensure that at least one of them is

below 125, and then it compares the B value to αR and to βG, were (α, β) was set to (1.00,1.25).

If blue is the dominant color, then the pixel is determined to be normal tissue; otherwise, it is

considered to be stained.

Processing of region of interest images

The program allows for the continuous processing of multiple images provided that they are

all located within the same folder. The program collects size information about the image to

create a blank composite image of duplicate height and width. The first step is to analyze the

image to separate background from the sample. As the program runs through the ROI pixel by

pixel, it sets the corresponding pixel in the composite image to either black if it is background

or white if it is sample. The sum total of all the white pixels is taken to determine the area occu-

pied by the sample. The program runs over the original image again to separate pixels with

stain from the rest of the image. If the program determines a pixel to have stain, it will leave

the corresponding location in the composite image white, while turning the location black if

without stain. The total number of white pixels in the composite image is then calculated to

find the area occupied by the stain. To evaluate the accuracy of the program, regions of interest

were manually evaluated using Gimp software to extract the percent of tissue stained, and the

results were compared to those obtained with the program.

Processing of whole block images

The processing begins by saving the whole block images in the.SVS file format. In order for the

program to process a series of images, the user must set up a folder including all of the desired

images. The program reads that image and collects its height and width. Due to potential

memory limitations associated with the size of the images, the program segments each image

of the whole tissue block using a four by four grid, creating sixteen segments equal in size. The

program then creates a separate image of size equal to that of the sixteen segments to be used

during the analysis.
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The program first analyzes each pixel within a segment by categorizing it to either be sam-

ple or background. The corresponding pixel location in the composite image is then changed

to black or white, respectively. Next, each pixel of the segment is categorized to either contain

brown stain or not in a method similar to the sample/background categorization. The number

of white pixels present in the composite image is then counted to be representative of the

amount of stained sample in this segment. The amount of non-stained sample is calculated by

subtracting the amount of stained sample from the amount of total sample for the segment.

This process continues for each of the remaining segments, adding the values found for each

segment to the cumulative totals being tracked.

Processing of tissue microarray (TMA) images

A scaled down version of the TMA image is first loaded into the program to extract necessary

information while conserving system memory. Information regarding the size of this image is

gathered in order to create an all-black image of the same size. The first step of segmenting the

cores on the TMA’s is to remove the background. If a pixel is determined to be part of the

background, then the corresponding pixel on the black image is changed to white. Some cores

can be fragmented; therefore, it is necessary to manipulate the image to merge those sections.

This is accomplished by creating a structuring element, using it to erode/dilate the image, cre-

ating a perimeter around the outside of the object, and filling all of the holes within the object

to leave one whole area representing the location of the core. In order to remove unwanted

objects as well as cores that may have merged together, the areas of the objects are analyzed,

turning all areas that are either exceedingly small or large back to all black (Fig 2).

Fig 2. Example of processing of TMA images to identify core samples.

https://doi.org/10.1371/journal.pone.0178362.g002
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Centroid locations of all the remaining white objects are collected and exported to a matrix

with each row representing a different core, the first column representing the horizontal posi-

tion of the centroid, and the second column representing the vertical position of the centroid.

A third column is then created and filled with the value equal to the sum of the first two col-

umns and the entire matrix is sorted by the third column to find the core likely nearest to the

image origin, i.e., the top left corner of the image, assuming uniform placement of cores in the

TMA.

A separate location matrix is created with size equal to that of the grid of cores present on

the TMA. The program references the centroid location of the original core to search for adja-

cent cores, focusing first on completing the first column by searching the centroid matrix for

entries with similar horizontal position to the previous core and vertical positions within a spec-

ified range away from the previous core. If a centroid is found to be in this expected location

then that core is referenced in the location matrix by filling its relative position with the row

number of its entry in the centroid matrix and the process is repeated to find the next core

along the column. If no core is found for an expected area, then the search is expanded to look

for a centroid that would be located two places on the grid away from the previous core, and the

search is expanded in this manner until the next core is found. Once the first column is com-

plete, the program checks that a proper amount of samples were found to create a baseline for

the row information off that column. If the amount of samples is found to be insufficient, the

program will instead attempt to create a baseline from the first row rather than the first column.

Once the baseline row/column is established, the program will fill in the columns/rows by simi-

lar means to the previous method, using the baseline row/column as the original reference.

Two columns are added to the centroid matrix when the location matrix is complete, which

are filled with the row and column information for where that sample was placed in the loca-

tion matrix. This results in the assigning of a core to both a column and row for future refer-

ence. Since the TMA images used in this study were oriented opposite of the conventional

numbering system being used for the rows and columns of the samples, the value of the row

and column assigned to each sample is inverted so that samples assigned to the first row or col-

umn are now labeled as being in the last row or column and vice versa. The large scale TMA

image is then read into the program so that the cores can be analyzed at higher resolution.

Since location information gathered for the centroid locations does not correspond to their

locations on the larger image, the pixel locations are scaled according to the image sizes.

The data are read from a spreadsheet consisting of the row location, column location, and

Gleason scores of the cores on the TMA as graded by a pathologist. This data is used to assign

the proper Gleason score to each core that is found by the program. The scaled location data

from the centroid matrix is used to identify the centroid locations on the large scale image.

From the area surrounding the centroid location, a composite image is generated that consists

of only one sample. Another image of the same size as the single core image is created to docu-

ment the analysis of the core. First, the core is analyzed pixel by pixel to determine whether

each pixel is part of the background or the sample in question. If it is background, then the

pixel is set to black, whereas if the pixel is sample, it is set to white. The program takes the total

of all the black pixels in the analysis image to document how much of the image is background

and the sum total of all the white pixels to determine how much of the image is sample. Next,

the core is analyzed pixel by pixel to determine if brown stain present, in which case the corre-

sponding pixel is set to black, otherwise the corresponding location is set to white. From here,

the percent of the core that is stained is found, and the whole process is repeated on the next

core until all cores have been analyzed. Finally, the centroid matrix, consisting of core centroid

locations, row and column of the core, Gleason score, and the percentage that had brown

stain, are exported to an excel file.
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Statistical analysis

Analyses used the two-tailed Student’s t-test with a significance level of 0.05. Statistically signif-

icant results are illustrated with an asterisk (�) in the Results.

Results

Representative ROI histology images for low grade and high grade prostate cancer are shown

in Fig 3. Staining is shown for CD31 (vascularization), Ki-67 (cell proliferation), and H&E (cell

morphology) for consecutive slides. Representative whole tissue block images for low grade

and high grade prostate cancer with the same staining types and consecutive to each other are

presented in Fig 4.

Comparison of manual to automated program results

The process of creating an automated program began with designing a system that could repli-

cate results from the manual analysis. The manual evaluation was initially used to analyze vari-

ous ROIs from existing tissue slices, and these were chosen as a benchmark. The program ran

analysis for these regions having both Ki-67 and CD31 stains, and calculated the ratio of the

two for each region. For both stains the program underreported in comparison to the manual

method but followed a similar proportional difference between samples (Figs 5 and 6). This

resulted in the ratio of the Ki-67 stain to the CD31 stain being consistent with the data col-

lected manually (Fig 7). Each figure shows the results in two separate panels to allow for con-

sistent comparison of each method between patients.

In order to further evaluate whether the program could obtain results similar to the manual

process, the data were normalized with respect to its method. The reported average stain con-

centrations and the corresponding standard deviations for each sample were normalized by

the sample reported to have the highest stain concentration. The resulting data were plotted to

visualize the comparison (Fig 8). The results indicate that the program mostly reported similar

relative results as the manual method, showing that 30 out of 44 data points (68%) were not

significantly different between the two methods.

Analysis of epithelial and stromal protein expression

The program was applied to automatically analyze the region-of-interest samples as well as

the whole block specimens. For each sample within the data set there was an image possessing

Ki-67 (proliferative) stain and a separate image possessing CD31 (vascularity) stain for con-

secutive regions within the tissue. Once every sample had been analyzed, the samples were sep-

arated into low (6 or 7) and high (8 or 9) Gleason categories. The results showed that the

difference between the categories in the presence of the Ki-67 stain was significant for the ROI

samples but not for the CD31 stain (Fig 9).

Analysis of ratio of epithelial to stromal protein expression

The ratio of Ki-67 (proliferative) stain to CD31 (vascularity) stain observed by the program in

the ROI samples as well as the whole block specimens was calculated. The results showed that

there was a statistically significant difference for the Ki-67/CD31 ratio in both image categories

(Fig 10), with the ratio being higher for the more advanced disease (Gleason 8 and 9).

Evaluation of capability to analyze TMA images

The program’s ability to process TMA images was evaluated in high throughput, being aware

that these samples were not used for the patient cancer staging and thus the results were not
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comparable to the ROI or whole slide data analysis. The difference in Ki-67 stain between the

two categories was not found to be significant but the difference in CD31 stain was significant

(Fig 11).

Fig 3. Representative ROI histology images for (A Column) low grade (Gleason score 7) and (B Column) high grade (Gleason score 8) prostate

cancer. Staining is shown for CD31 (vascularization), Ki-67 (cell proliferation), and H&E (cell viability) for consecutive slides. Bar, 200 μm.

https://doi.org/10.1371/journal.pone.0178362.g003
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Discussion

A framework was developed for automated analysis of protein expression in high-resolution

digital microscopy images of whole tissue blocks processed with routine IHC reagents. A

variety of practical and technical factors have limited the adoption of tissue based protein

Fig 4. Representative whole tissue block images for (A Column) low grade (Gleason score 6) and (B Column) high grade (Gleason score 9)

prostate cancer. Staining is shown for CD31 (vascularization), Ki-67 (cell proliferation), and H&E (cell morphology) for consecutive slides. Bar, 6 mm.

https://doi.org/10.1371/journal.pone.0178362.g004
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expression biomarkers of most prior research studies for routine clinical practice. First,

immune-detection techniques are notoriously difficult to standardize across samples and labo-

ratories. Thus, it is difficult to quantitatively score any IHC marker for clinical diagnostics.

Further, intra-sample variability is a major issue in prostate cancer as even the Gleason grade

can vary in different parts of the sample surgical specimen. Many biomarker studies are based

on observations made using tissue microarrays (TMAs). While TMAs have inherent advan-

tages in minimizing variation in staining techniques and may offer lower costs, the results are

still subject to sampling effects as only a handful of small cores are usually obtained from each

tumor block/subject. Thus, findings based on TMAs may fail to validate when tested on whole

tissue blocks. Previous work has indicated that it is unclear to what extent TMAs are able to

represent whole sections, and whether TMA data can be reliably used for clinico-pathological

correlations and survival analysis [33].

The technique presented here was applied to explore protein expression patterns in relation

to Gleason grade in prostate cancer. It has been suggested that molecular factors play a critical

role in Gleason grade. In one seminal study, a transcriptional microarray was used to compare

Fig 5. Comparison of results of the ROI analysis between the manual method and the program in terms of Ki-67 stain.

https://doi.org/10.1371/journal.pone.0178362.g005
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expression of genes in Gleason 3 versus Gleason 4/5 tissue areas separated by laser capture

micro-dissection [34]. A significant correlation was observed between high levels of mono-

amine oxidase A (MAOA), defender against death (DAD1) protein, and HSD17β4 with Glea-

son grade. Other studies have shown expression of epithelial differentiation markers such as

androgen receptor and prostate specific membrane antigen [35, 36], hypoxia (carbonic anhy-

drase IX, hypoxia inducible factor 1α) [37], and PTEN pathway activation [38] are increased

in higher grade cancers. More recently, several molecular diagnostic or “genomic” assays have

been developed to supplement standard clinical and pathologic risk stratification based on

expression analysis [39]. Genes for analysis in this assay are chosen such that they do not

directly correlate with Gleason grade so as to provide independent prognostic information.

Furthermore, the targets in these assays are generally chosen based on technical factors such as

robust expression signatures across samples and statistical validity in multi-parametric models,

rather than because they impart independent biologic information concerning the cancer in a

specific patient.

This study chose to compare expression of proliferation and vascularization as biomarkers

particularly relevant to tumor grade in prostate cancer. Both proliferative index and vascularity

Fig 6. Comparison of results of the ROI analysis between the manual method and the program in terms of CD31 stain.

https://doi.org/10.1371/journal.pone.0178362.g006
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have been associated with poor outcomes in prostate cancer [9–11]. Although the number of

patient samples is small, the results suggest a biologic basis for how tumor and host factors

interact in relation to histologic grade. Proliferation is shown to be less dependent on vascular-

ity in higher grade prostate cancers. Thus, unregulated proliferation may be a key feature

which distinguishes high-grade from low-grade prostate cancer and we posit that constitutive

up-regulation of proliferative signals may be a key factor underlying the more aggressive clini-

cal course of higher-grade prostate cancers, which will be evaluated with larger populations in

future studies.

Overall, there is an opportunity to develop improved techniques to study spatial arrange-

ment of protein expression in relation to Gleason grade in prostate cancer, and the goal of this

work is to offer a first step in this direction. We recognize that a limitation of the study is that

the analyses are based on a limited set of samples, and that the similarity between manual and

program measurements could be higher. We plan to expand the analysis to a larger dataset in

the future, for which updates to the techniques will be included to increase accuracy.

In conclusion, an approach was developed for automated analysis of co-localized protein

expression in histologic sections of prostate cancer, and initially evaluated it with three types

Fig 7. Comparison of results of the ROI analysis between the manual method and the program in terms of Ki-67 to CD31 stain ratio.

https://doi.org/10.1371/journal.pone.0178362.g007
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of patient histology information. The underlying biological hypothesis is that the Gleason

grade is determined by the interaction between cancer and host factors. Examples of “host fac-

tors” include stromal reaction, immune status, and tissue stiffness. The analysis based on

region-of-interest and whole block slides preliminarily suggests that proliferation (Ki-67

expression) is relatively independent of vascularity (CD31 expression) in high-grade prostate

cancer. A higher number of cases than the 15 patients here will need to be evaluated in order

to support this analysis. Longer term, we aim to further develop an integrated experimental/

computational approach to model the epithelial and stromal compartments in prostate cancer,

as we have previously explored for lymph, brain, pancreatic, breast and cervical cancers [40–

48]. Such a system would enable characterization and modeling of the prostate tissue from the

cellular- to the organ-scale for the identification of biological characteristics that determine

histologic grade and that may ultimately drive patient prognosis.

Fig 8. Comparison between normalized manual and automated results of the ROI analysis for (a) Ki-67 stain and (b) CD31stain data sets.

https://doi.org/10.1371/journal.pone.0178362.g008
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