
RESEARCH ARTICLE

Dynamic changes in diffusion measures

improve sensitivity in identifying patients with

mild traumatic brain injury

Alexander W. Thomas1, Richard Watts2, Christopher G. Filippi3,4, Joshua P. Nickerson2,

Trevor Andrews2,5, Gregory Lieberman6,7, Magdalena R. Naylor6, Margaret J. Eppstein8,

Kalev Freeman1*

1 Department of Surgery, University of Vermont, Burlington, Vermont, United States of America,

2 Department of Radiology, University of Vermont, Burlington, Vermont, United States of America,

3 Department of Neurology, University of Vermont, Burlington, Vermont, United States of America, 4 Hofstra

North Shore LIJ School of Medicine; Hempstead, New York, United States of America, 5 Philips HealthTech,

Cleveland, Ohio, United States of America, 6 Department of Psychiatry, University of Vermont, Burlington,

Vermont, United States of America, 7 U.S. Army Research Laboratory, Human Research and Engineering

Directorate, Aberdeen Proving Ground, Aberdeen, Maryland, United States of America, 8 Department of

Computer Science, University of Vermont, Burlington, Vermont, United States of America

* Kalev.Freeman@med.uvm.edu

Abstract

The goal of this study was to investigate patterns of axonal injury in the first week after mild

traumatic brain injury (mTBI). We performed a prospective cohort study of 20 patients pre-

senting to the emergency department with mTBI, using 3.0T diffusion tensor MRI immedi-

ately after injury and again at 1 week post-injury. Corresponding data were acquired from 16

controls over a similar time interval. Fractional anisotropy (FA) and other diffusion measures

were calculated from 11 a priori selected axon tracts at each time-point, and the change

across time in each region was quantified for each subject. Clinical outcomes were deter-

mined by standardized neurocognitive assessment. We found that mTBI subjects were signif-

icantly more likely to have changes in FA in those 11 regions of interest across the one week

time period, compared to control subjects whose FA measurements were stable across time.

Longitudinal imaging was more sensitive to these subtle changes in white matter integrity

than cross-sectional assessments at either of two time points, alone. Analyzing the sources

of variance in our control population, we show that this increased sensitivity is likely due to the

smaller within-subject variability obtained by longitudinal analysis with each subject as their

own control. This is in contrast to the larger between-subject variability obtained by cross-sec-

tional analysis of each individual subject to normalized data from a control group. We also

demonstrated that inclusion of all a priori ROIs in an analytic model as opposed to measuring

individual ROIs improves detection of white matter changes by overcoming issues of injury

heterogeneity. Finally, we employed genetic programming (a bio-inspired computational

method for model estimation) to demonstrate that longitudinal changes in FA have utility in

predicting the symptomatology of patients with mTBI. We conclude concussive brain injury

caused acute, measurable changes in the FA of white matter tracts consistent with evolving

axonal injury and/or edema, which may contribute to post-concussive symptoms.
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Introduction

Traumatic brain injury (TBI) is a significant medical problem worldwide. In the United States,

visits to emergency departments (ED) for TBI increased more than 8-fold compared to the

total increase in ED visits between 2006–2010, likely reflecting a combination of increased TBI

exposure, awareness, and diagnosis [1]. Of all ED visits for concussions or TBI, approximately

75% of individuals are treated and released with diagnoses of mild TBI (mTBI) [2]. mTBI fre-

quently results in cognitive deficits, motor dysfunction and emotional dysregulation [3]. Sever-

ity of axonal injury is a determinant of recovery following severe TBI [4], and diffusion tensor

imaging (DTI) has emerged as an imaging modality for mTBI that can quantify white matter

damage using DTI metrics such as fractional anisotropy (FA), radial, axial, and mean diffusiv-

ity (RD, AD, MD) [5–7]. However, both increases and decreases in FA may occur at different

time points after TBI, and this, coupled with normal variability in DTI metrics in the popula-

tion at large, represents a substantial challenge for the diagnostic use of DTI in mTBI [8–11].

If large enough, studies comparing mTBI to control subjects may average out between-sub-

ject variability in DTI metrics and show group differences, but natural variation in DTI mea-

sures limits the diagnostic value for detecting relatively subtle effects of mTBI in individual

patients [12, 13]. Animal studies suggest that reductions in FA occur late (7 days) after injury

and not in the first 24 hours [14]. A recent meta-analysis of human subjects suggested that

increases in FA occur early and drops in FA take longer to evolve, but this observation is based

on a composite analysis of multiple separate studies [15]. There are not yet studies of longitudi-

nal studies of DTI metrics at multiple time points during the first week after injury.

We hypothesized that longitudinal imaging at multiple times during the first week after

concussion would overcome the limitation of anatomic and mechanistic heterogeneity, and

provide increased sensitivity for detection of white matter injuries. The purpose of this study

was to quantify the acute changes that occur in DTI metrics in human mTBI subjects across

the first week of injury. In addition, we sought to test the hypothesis that acquiring DTI data

from mTBI patients at two time points within the first week of injury could improve identifica-

tion of mTBI subjects compared to controls and delineate injury in mTBI subjects when focus-

ing on the axonal regions of interest most commonly reported as abnormal in the mTBI-DTI

literature [16]. The utility of genetic programming in the analysis of DTI metrics was explored

as a novel way to diagnose patients who have suffered a mTBI and to predict future clinical

outcome.

Materials and methods

Study design and setting

This was an Institutional Review Board approved study. All participants provided written

informed consent prior to participation in this study and no verbal consent was obtained.

We performed a prospective, controlled cohort study of adult patients with mTBI patients

and healthy controls recruited from the emergency department at a single tertiary care aca-

demic medical center. Controls included both trauma patients with isolated extremity injuries

without head trauma, as well as healthy, normal subjects. MRI of the brain was performed

within 3 days of injury and again between 5 and 10 days post-injury, with a target interval of 7

days.

Study population

Between June 2011 and December 2012 patients coming to the emergency department were

screened for eligibility by research staff. Eligible patients were those aged 18–60 years old who
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were diagnosed with mTBI, defined as an isolated head injury with an injury severity score

(ISS) for any other organ system <2 and with two or more concussive symptoms including

headache, loss of consciousness, blurred vision, confusion, dizziness, memory problems or

poor balance. Patients were excluded if they: 1) did not have two or more concussive symp-

toms; 2) had severe TBI or past history of severe TBI (i.e., requiring surgery or rehabilitation);

3) were unable to complete initial MRI within 72 hours of injury; 4) had a pre-existing neuro-

logical disorder; 5) had a psychiatric condition (including depression or anxiety) requiring

medical treatment within the past year; 6) had a history of substance abuse; 7) had any contra-

indications to MRI scanning. The control group was comprised of normal volunteers without

acute injury who responded to flier advertisements and non-head injured extremity trauma

patients who presented to the emergency department without head trauma or TBI-associated

symptoms. All controls were subject to the same exclusion criteria as mTBI patients, aside

from those pertaining to acute head injury.

Clinical data collection

Initial clinical data were prospectively extracted in the emergency department by research

staff, through discussion with the patients’ healthcare providers, structured patient evaluations

and interviews, and reviews of medical records. Additional research-specific details were also

collected from questionnaires and the Immediate Post-Concussion Assessment and Cognitive

Testing (ImPACT) testing battery [17]. Follow-up data collection was performed by research

staff at the time of repeat MRI. All study data were double-entered and compared for accuracy

using the Research Electronic Data Capture (REDCap) tools hosted by UVM [18]

MRI acquisition

Brain MRI was performed at the earliest possible time point after injury and again approxi-

mately one week later. All initial scans were completed <72hrs after injury and the period of

7–10 days following injury for the follow up scan was selected in order to cover the time period

when most patients are maximally symptomatic after concussion [19]. MRI data were acquired

on a Philips Achieva TX 3.0 Tesla (Philips Healthcare, Best, Netherlands) MRI scanner using

an 8-channel brain coil with dual quasar gradients (maximum gradient strength 80 mT/m,

slew rate 100 T/m/s). T1-weighted images were acquired using a 3D inversion recovery spoiled

gradient echo technique (TE/TR/TI/flip angle = 3.7ms/8.1ms/1008ms/8˚ with a SENSE factor

of 1.5). A sagittal acquisition matrix of 240x240x160 provided whole-brain coverage with an

isotropic 1mm spatial resolution and a scan time of less than 8 minutes. Diffusion-weighted

images were acquired using a single-shot, spin-echo EPI acquisition with b = 1000 s/mm2 with

46 uniformly distributed, non-collinear directions. An additional 6 images were acquired with

no diffusion weighting (b = 0 s/mm2). The acquisition matrix was 120x120 with a field of view

of 240x240mm2 using a SENSE factor of 2. 59 contiguous 2mm-thick slices were acquired,

aligned AC-PC. TE/TR = 68ms/10000ms with a scan time of 9 minutes.

Outcome measures

Following the first MRI, research staff administered the ImPACT neurocognitive testing bat-

tery version 2.0. The ImPACT test measures attention span, working memory, sustained and

selective attention, response variability, non-verbal problem solving, and reaction time; each

of which is sensitive to mild cognitive impairment. ImPACT also includes a 22-item symptom

score based on patient self-rating on a Likert scale ranging from 0 (the symptom was not expe-

rienced at all) to 6 (the symptom was the worst they had ever experienced). The 22 ImPACT

symptoms include: headache, nausea, vomiting, balance problems, dizziness, fatigue, trouble
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falling, sleeping more than usual, drowsiness, sensitivity to light, sensitivity to noise, feeling

dazed or stunned, irritability, sadness, nervousness, feeling more emotional than normal,

numbness or tingling, feeling slowed down, feeling mentally foggy, difficulty concentrating,

difficulty remembering, and visual problems. Repeat ImPACT testing was done at 7–10 days

following injury to determine the primary clinical outcome of the total number of post-con-

cussive symptoms (ranging from 1–22). All ImPACT tests were administered in a quiet confer-

ence room directly outside the emergency department.

DTI data processing

The diffusion-weighted volumes were manually examined by a single research associate to

ensure fit for artifacts due to, for example, cardiac pulsatility and subject motion. Corrupted

volumes were excluded from the subsequent analysis or subjects were removed from analysis

if more than 4 of the 46 volumes required exclusion. The remaining volumes were coregistered

using an affine transformation to correct for both head motion and eddy current-induced dis-

tortions. The data were then fit to the diffusion tensor model using FSL4 [20] to generate FA

maps. FA maps were spatially normalized using the tract-based spatial statistics [20] (TBSS)

processing stream built into FSL, see supplemental methods for the step-by-step processing

stream. FA maps were transformed and resampled to 1mm isotropic resolution in the template

MNI 152 space. Eleven a priori regions of interest (ROIs) were selected as those most com-

monly reported in the mTBI-DTI literature [16]: the splenium, body and genu of the corpus

callosum (CC); and the left and right posterior limbs of the internal capsule (PLIC), uncinate

fasciculus (UF), corona radiata (CR), and corticospinal tract (CST). ROIs were pre-defined in

MNI 152 space using the Johns Hopkins white matter anatomical atlas [21–23], and were of

uniform size (Splenium: 12729 mm3, Body: 13711 mm3, Genu: 8851 mm3, PLIC R: 3754 mm3,

PLIC L: 3752 mm3, UF R: 380 mm3, UF L: 376 mm3, CR L: 18077 mm3, CR R: 18074 mm3,

CST R: 1362 mm3, CST L: 1370 mm3) for all control and mTBI subjects. All regions were veri-

fied (by a neuroradiologist) for anatomic accuracy for each scan from each subject. Mean FA,

RD, AD and MD were then extracted for each ROI for both mTBI and control subjects.

Cross-sectional data analysis

We first performed cross-sectional comparisons of DTI metrics from each ROI for both time-

points between mTBI and control, using the Mann-Whitney U test, to determine if there were

any time-points or regions that might differentiate the groups. We anticipated either no signif-

icant differences or differences that were significantly diluted due to noise generated by

between-subject variability and injury heterogeneity. Specifically, between-subject variability

introduces noise because the normal distribution of DTI metrics, including FA, for a given

region is much larger than the magnitude of change attributed to TBI that has been observed

in prior human and animal studies [8, 14], and is likely more problematic in mTBI. Further,

injury heterogeneity due to different mechanisms, directionality and magnitude of concussive

forces likely leads to different white matter tract injuries [15], making it unlikely that changes

within a specific ROI would be significant. We do acknowledge that specific regions appear

more susceptible to injury and are likely affected by multiple types of injuries, but differences

via cross-sectional analysis would regardless be subjected to the noise of injury heterogeneity,

albeit to a lesser extent. To control for injury heterogeneity in the cross-sectional analysis, we

employed a method reported by MacDonald et al. [8] where we used control subjects to create

means and standard deviations for each ROI, which were used to identify the number of

abnormal regions in mTBI subjects. We looked for significant differences across all 11 regions

for abnormalities rather than each region individually, thus avoiding noise created by regional
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injury heterogeneity. Abnormal regions were defined as having a DTI metric (FA, MD, RD

or AD) >2 standard deviations above or below the mean of controls. When calculating the

number of subjects who would be expected by chance to have DTI metrics >2 standard devia-

tions above or below the mean, based on a binomial distribution with n = 11 regions and

assuming regions are independent, the difference between groups reaches statistical signifi-

cance (p<0.05). When we compared the number of mTBI subjects with more than one abnor-

mal region to the number expected by chance based on a binomial distribution, for n = 20

subjects, the difference between groups was not statistically significant (p = 0.0867).

Longitudinal data analysis

Next, we employed the use of longitudinal data so that within-subjects comparisons could be

performed in order to assess changes in DTI metrics across time. By using the changes in DTI

metrics to then compare controls and mTBI subjects, we avoided the noise introduced by

between-subject variability. When evaluating the longitudinal data, we analyzed the absolute

change in the DTI metrics so that both increases and decreases were included, as opposed to

just looking unidirectionally or analyzing each separately. We analyzed bidirectional changes

because there is no consensus on how DTI metrics change following mTBI, especially longitu-

dinally during the acute post-injury time period, but there is however consensus that these

changes likely indicate injury associated with mTBI [15, 16]. There are currently human and

animal studies independently showing increases [4, 7] [24] [25] and decreases [26] [8] [27]

[28] [29] in FA and other DTI metrics following mTBI, as well as a few showing both increases

and decreases [30] [31] [15]. Additionally, there are no longitudinal studies of human mTBI

patients, which acquire multiple images, within the first week of injury to suggest how DTI

metrics may change in the acute to sub-acute period. Animal studies with longitudinal data

acquired during the acute/subacute period following TBI have shown both increases [25] and

decreases [27] in FA among white matter tracts following the initial FA changes immediately

following injury. While more human [15] and animal studies have found that FA tends to

decrease early following injury, they neither account for nor explain why others find contra-

dictory results. Even four of the most recent animal studies using DTI to assess mTBI in the

acute period found contradictory changes in FA and other DTI metrics in various white matter

regions [24, 27, 28, 30]. Therefore, because both human and animal studies report increases

and decreases in FA and other DTI metrics following TBI, we felt that it was important not

to limit our study and risk false negative results that could occur with only a unidirectional

analysis.

Since current studies suggest increases and decreases occur following TBI, we performed

another analysis considering any change in DTI metrics (either increase or decrease) as ab-

normal. To do this, longitudinal changes in DTI metrics between mTBI and control groups

were first calculated across each individual ROI, using the Mann-Whitney U test. Using this

method, comparisons between subject variability, but not injury heterogeneity could be ac-

counted for. We predicted that results might reach significance if a specific region was com-

monly injured or sensitive to injury, or may not reach significance at all if no particular region

was injured with high enough frequency. To avoid noise created by injury heterogeneity

within the longitudinal data, we again employed a similar approach to MacDonald et al., as

we had with the cross-sectional data, by identifying the number of abnormal regions among

mTBI subjects. Similarly, abnormal regions were defined as having a DTI metric (FA, MD, RD

or AD) >2 standard deviations above or below the mean of controls. Statistical significance

was determined by first calculating the number of subjects that would be expected by chance

to have DTI metrics >2 standard deviations above or below the mean, based on a binomial
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distribution of n = 11 regions of interest, assuming regions are independent. Then the number

of mTBI subjects with more than one abnormal region were compared to the number expected

by chance based on a binomial distribution with n = 20 subjects. Next, we performed the Wil-

coxon rank test to compare mean changes in DTI metrics across all 11 ROIs between mTBIs

and controls. This allowed for direct comparison between mTBI and controls, while avoiding

the noise created by between-subject variability and injury heterogeneity.

Data reproducibility

To determine the reproducibility of FA measures, both between-subject and within-subject

coefficients of variation (CVs) were calculated for the control subjects. The processing stream

employs single step resampling of 2mm resolution subject data to 1mm resolution MNI space.

Such resampling of data is unlikely to introduce substantial additional smoothness. However,

to verify that resampling did not introduce such smoothing, coefficients of variation were cal-

culated for controls a second time by transforming the mask images into the individual space

for comparison without resampling of the diffusion data.

Software

All statistical calculations were performed in SPSS (PASW Statistics 18, release 18.0.2). Matlab

was used to analyze the results of genetic programming.

Genetic programming

Symbolic regression was performed using the genetic programming (GP) package Eureqa

[32] to see if we could predict recovery in mTBI patients. This powerful method implicitly

combines feature selection, model identification, and parameter estimation, and has been suc-

cessfully applied in various application domains [33], including identification of nonlinear

relationships in BOLD time-series fMRI data between ROIs in the human brain [34]. GP is a

population-based algorithm in which sets of candidate solutions (symbolic expressions) are

allowed to evolve based on the principles of Darwinian evolution (reproduction with heritable

variation, alternating with fitness-based selection). Eureqa is a bi-objective GP that seeks to

simultaneously minimize model prediction error and model complexity, and each run returns

a set of solutions that are non-dominated with respect to these two objectives. The user can

then select solutions that appear to appropriately balance prediction accuracy and parsimony

(to minimize the risk of over-fitting). GP is a “white box” optimization algorithm, in that the

resultant predictive expressions may provide domain-specific insights. For this study, we

sought to evolve functions capable of predicting the sum of post-concussive symptoms at time

2 (S2). We specified mean absolute prediction error as the primary objective, and model com-

plexity was defined as the sum of the number of operators, constants, and variables (input fea-

tures) in each evolved expression. Specifically, we allowed the GP to select and combine: 1)

arithmetic operators from the set [18]; 2) co-evolved numerical coefficients; and 3) variables

from sets of 1 to 12 possible input features, depending on the particular experiment. Following

Eureqa’s recommendations for small data sets, we performed each symbolic regression on all

n = 36 data points. We considered a total of 34 possible input features: the sum of post-concus-

sive symptoms at time 1 (S1) and 3 types of FA data for each of the 11 ROIs. Nine distinct

types of experiments were performed using Eureqa (Version 1.24.0), each using a set of 1–12

of these as input features, as detailed in Table 1. For each of the 9 types of experiments, we per-

formed 5 independent de novo runs of Eureqa, each starting from random initial populations,

to assess consistency of the evolved non-dominated sets of solutions. Each run of Eureqa was

manually terminated after Eureqa’s “percent converged” heuristic (based on time since last
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significant improvement) had reached 100%, which required on the order of 109 function eval-

uations per run. Running on an 8-core Intel i7-3770 CPU @ 3.40GHz desktop computer, this

was usually achieved within 3–5 minutes for the experiments in which the lowest error solu-

tions were achieved. However, in some experiments where there was little or no useful signal

in the input feature set, this could take significantly longer (nearly all of the experiments termi-

nated within 30 minutes or less, however one run of experiment 1, which allowed only FAs at

time period 1 as input features, required over 2 hours to converge).

Results

Demographics, neurocognitive outcomes and symptoms scores

Subjects included 20 mild TBI patients: 11 male and 9 female, age range 18–57 years, mean age

30.6 years; 16 controls (9 trauma and 7 healthy): 7 male and 9 female, age range 20–57 years,

mean age 28.1 years (Table 2). There were no demographic parameters that differed signifi-

cantly between mTBI and controls. mTBI and extremity trauma control subjects were enrolled

in the study and imaged within 72 hours of injury, with a mean time of 46.5±22 hours for

mTBI and 57.6±12 hours for the controls. All subjects from the mTBI and control groups

returned for follow-up imaging one week later, at a mean of 6.7±1.1 days for mTBI and 6.9

±1.7 days for all controls. All mTBI subjects were symptomatic at the time of first imaging.

There were no differences in head motion between mTBI and controls groups. mTBI subjects

reported significantly more symptoms at time-points 1 and 2 compared to controls. We ob-

served a wide variation in reaction time, working memory and other neurocognitive testing

results among both the injured groups and controls, but differences in functional measure-

ments between groups were not significant (Table 3).

Table 1. The 9 types of experiments performed with Eureqa were characterized by subsets of the 34 possible input features considered, as out-

lined here.

Expt # Experiment Label Set of Allowable Input Features Presented to Eureqa # of Input Features

1 FA1 FA for all 11 ROI at time1 11

2 ΔFA FA1 –FA2 (longitudinal changes) for all 11 ROI 11

3 ΔFA (permuted) FA1 –FA2 for all 11 ROI, with subjects’ FA randomly permuted relative to S1 and S2 11

4 |ΔFA | |FA1 –FA2| (absolute value of longitudinal changes) for all 11 ROI 11

5 S1 Sum of concussive symptoms at time 1 1

6 S1, FA1 S1 in addition to FA for all 11 ROI at time 1 12

7 S1, ΔFA S1 in addition to FA1 –FA2 for all 11 ROI 12

8 S1, ΔFA (permuted) S1 in addition to FA1 –FA2 for all 11 ROI, with subjects’ FA randomly permuted relative to S1 and S2 12

9 S1, |ΔFA | S1 in addition to |FA1 –FA2| for all 11 ROI 12

https://doi.org/10.1371/journal.pone.0178360.t001

Table 2. Demographics. The control group included 9 extremity injured patients and 7 healthy controls. *Injury to time of MRI 1 and 2 is only applicable to

the 9 extremity injured patients.

mTBI (n = 20) Control (n = 16) Difference (95% CI)

Gender (n (%) male) 11 (55%) 7 (44%)

Handedness (n (%) right handed) 17 (85%) 13 (81%)

Age (years) 30.6 28.1 2.5 (-5.5,10.5)

Education (years) 14.7 15.7 -0.8 (-2.3,0.7)

Injury to MRI 1 (days) 1.9 2.4 -0.5 (-1.2,0.2)

Injury to MRI 2 (days) 8.6 9.3 -0.7(-1.9,0.4)

MRI 1 to MRI 2 (days) 6.7 6.9 -0.2(-1.3,0.9)

https://doi.org/10.1371/journal.pone.0178360.t002
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Reproducibility of diffusion measures

DTI measurements of white matter in healthy individuals across time were remarkably stable.

The ROI for the Left Uncinate Fasciculus did not anatomically fit one control subject, so that

region was therefore excluded from analysis for that individual.

FA measurements across the 11 regions of interest showed that the between-subject varia-

tion (CV range 2.3% to 7.3%) was far greater than within-subject variation (CV range 0.4% to

4%). Through the use of longitudinal data, a 70–97% reduction in variance can be achieved

(Table 4). CVs calculated in the native space of the control subjects showed negligible differ-

ences compared to the CVs calculated from the resampled control data used for analysis (S6

Table 3. Neurocognitive and symptom outcomes for the mTBI subjects and trauma controls. Outcomes were measured in those controls subjects

with extremity injuries only. Values given as mean ± standard deviation.

Total Symptom Score mTBI (n = 20) Controls* (n = 9) Difference (95% CI)

# Symptoms (Time 1) 20.9 ± 18.4 3.3 ± 5.7 17.6 (8.2,27.0)

# Symptoms (Time 2) 10.3 ± 15.1 2.1 ± 3.4 8.2 (0.8,15.6)

Neurocognitive Testing Score

Verbal Memory (Time 1) 84.6 ± 11.7 80.4 ± 12.7 4.3 (-6.1,14.6)

Visual Memory (Time 1) 69.7 ± 18.7 67.3 ± 15.0 2.5 (-11.9,17.0)

Visual Motor Speed (Time 1) 41.4 ±10.2 36.6 ± 8.2 4.8 (-3.1,12.7)

Reaction Time (Time 1) 0.63 ± 0.16 0.58 ± 0.11 0.05 (-0.06,0.17)

Impulse Control (Time 1) 3.9 ± 3.2 14.9 ± 28.4 -11.0 (-34.8,12.8)

Cognitive Efficiency Index (Time 1) 0.27 ± 0.21 0.21 ± 0.20 0.06 (-0.12,0.25)

Verbal Memory (Time 2) 91.5 ± 8.2 81.0 ± 16.5 10.5 (-2.5,23.4)

Visual Memory (Time 2) 68.7 ± 14.2 70.9 ± 16.5 -2.2 (-15.9,11.5)

Visual Motor Speed (Time 2) 41.8 ± 10.4 39.2 ± 8.3 2.6 (-5.0,10.2)

Reaction Time (Time 2) 0.59 ± 0.11 0.58 ± 0.15 0.01 (-0.11,0.14)

Impulse Control (Time 2) 5.2 ± 4.6 15.2 ± 33.0 -10.1 (-35.5,15.3)

Cognitive Efficiency Index (Time 2) 0.36 ±0.20 0.34 ± 0.21 0.02 (-0.16,0.20)

https://doi.org/10.1371/journal.pone.0178360.t003

Table 4. Within- and between-subject variation in FA seen in control subjects across 1 week. For control subjects, the standard deviation of FA values

for each ROI at time point 1 and 2, along with the standard deviation of change within subjects across the two time points is shown. The final column shows

the percent reduction in variation achieved through the use of longitudinal opposed cross-sectional data for each ROI.

Region Mean FA Between-Subject Within-Subject Proportion of variance due to between-subject variability (%)

Scan 1 Scan 2

Std Dev CV (%) Std Dev CV (%) Std Dev CV (%)

Splenium CC 0.69 0.016 2.3 0.017 2.5 0.003 0.4 96.8

Body CC 0.56 0.026 4.6 0.028 5.0 0.006 1.0 95.5

Genu CC 0.52 0.015 2.9 0.016 3.1 0.005 1.0 89.7

PLIC (right) 0.57 0.017 3.0 0.016 2.8 0.008 1.4 79.4

PLIC (left) 0.58 0.016 2.8 0.016 2.8 0.006 1.0 88.0

UF (right) 0.43 0.027 6.3 0.025 5.8 0.011 2.6 82.3

UF (left) 0.40 0.027 6.8 0.029 7.3 0.016 4.0 70.2

CR (right) 0.42 0.013 3.1 0.015 3.6 0.004 1.0 92.6

CR (left) 0.42 0.017 4.0 0.018 4.2 0.004 1.0 93.6

CST (right) 0.52 0.033 6.3 0.034 6.5 0.011 2.1 88.0

CST (left) 0.52 0.032 6.3 0.033 6.3 0.012 2.3 87.0

Corpus callosum (CC), posterior limbs of the internal capsule (PLIC), uncinate fasciculus (UF), corona radiata (CR) and corticospinal tract (CST).

https://doi.org/10.1371/journal.pone.0178360.t004
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Table). Large white mater regions with higher FA values were also found to have lower levels

of within-subject variation. Within our control population, we found a high degree of repro-

ducibility across 1 week (for individual subjects at two time points R2 = 0.971).

Cross-sectional analysis

We did a cross-sectional analysis looking at the two time-points individually. We compared

DTI measures in the 11 ROIs between mTBI to control, and we also compared the total num-

ber of ROIs that were abnormal between mTBI and control.

mTBI vs control region of interest analysis. Of the 11 ROIs, no significant (p>0.05) dif-

ferences between mTBI and control subjects were found at either time-point 1 or 2 for any of

the quantifiable DTI measures (FA, MD, RD, AD) (S1–S4 Tables) (Fig 1A and 1B),

mTBI vs control analysis of number of abnormal regions analysis. The number of

abnormal ROIs for only one of the DTI measurements, AD, was significantly increased com-

pared to controls. This was only true for time-point 1 (p = 0.025), and not time-point 2 (S4A

and S4B Fig). No other DTI metrics showed significantly increased numbers of abnormal

regions at either time-point (S1A, S1B, S2A, S2B, S3A, S3B, S4A and S4B Figs).

Longitudinal analysis

We then looked at the change in DTI measures between the two time-points.

mTBI vs control region of interest analysis. When comparing the absolute change

between time 1 and time 2, we found the largest difference in the splenium of the CC in mTBI

subjects compared to controls (p<0.05) (Table 5) (Fig 1C). All ten remaining ROIs did not dif-

fer significantly compared to controls. When collectively comparing all eleven ROIs, the mean

FA change was significantly greater in the mTBI subjects than in the control group (p<0.05,

Wilcoxon signed rank test). Further, 16 out of the 20 mTBI subjects were found to have at least

one region, and as many as 7 regions, where the change in FA exceeded the changes seen

across all controls within specific regions. The quantitative diffusion measurements of MD,

RD, and AD comparing absolute changes across time-points are provided in supplemental

tables (S2–S4 Tables).

mTBI abnormal regions analysis. FA, RD and AD all showed significantly increased

abnormal changes in ROIs across time-points. When quantifying FA, 9/20 subjects were

found to have more than 1 region with abnormal changes (p<0.05). RD found 8/20 subjects

with more than 1 region with abnormal change (p<0.05), and AD found 5/20 subjects with

more than 1 region with abnormal change (p<0.05). MD did not show a significantly in-

creased number of abnormal changes among the 11 regions (Fig 2).

Genetic programming

Finally, we performed a post-hoc exploration of our data to identify correlations between DTI

measures and clinical outcome variables that may be tested in future studies. We computed

the Pearson correlation coefficient (r) between each of the 34 possible input features provided

to Eureqa and the outcome variable S2. Of these, only 9 had statistically significant correlations

(p� 0.05), as shown in Table 6 Not surprisingly, the strongest of these correlations was be-

tween S1 and S2. More interesting were the significant correlations we found between S2 and

(i) the FA of region UF (left) at time period 1, (ii) longitudinal changes in the FA of CR-L_All,

and (iii) absolute values of longitudinal changes in FA in 6 other ROIs.

However, Eureqa was able to evolve many expressions with interaction terms and/or

higher-order terms that exhibited much higher correlations with S2. Of the 561 possible pairs

of the 34 features, 98 of them had significant cross-correlations (p< 0.05); we hypothesized
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Fig 1. Longitudinal analysis of DTI metrics provides better discrimination of mTBI from controls than imaging at a single time-

point. For each ROI the controls and mTBIs are separated with the controls on the left and the mTBIs on the right. (A) FA values for time

point 1. (B) FA values for time point 2. (C) Absolute change in FA values.

https://doi.org/10.1371/journal.pone.0178360.g001
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that taking products of some of these features may have amplified the signal and provided com-

plementary information. Fig 3 shows the resulting non-dominated fronts of error vs. complexity

resulting from all 9 experiments, and the corresponding adjusted R2 values. In all experiments,

the simplest (complexity 1) expression on the left was always the constant expression S2 = 2,

which is simply the average S2. At the other extreme, the most complex and accurate solutions

at the right are the result of extreme over-fitting. Details on the 8 most promising expressions

along the non-dominated front shown in Fig 3B are given in Table 7, and for 4 of these expres-

sions we plot predicted vs. observed (Fig 4).

We first addressed the results of experiments 1–4 (Fig 3A and 3C) which used only FA data

for input features. In experiment 1, in which the only input feature was FA at time period 1

(blue lines), the very gradual decline in error with increasing complexity in the results indicate

that there is little or no useful signal in this data alone that is predictive of S2. On the other hand,

regressing on ΔFA values (green lines) gave a much sharper drop in error than regressing on the

same ΔFA values but with rows permuted (red lines), indicating that there is some useful signal

included in the ΔFA values that is predictive of S2. The models resulting from regressing on

|ΔFA| values (black lines) exhibited even lower errors and higher R2 values than when regressing

on ΔFA, and there was greater consistency between the 5 independent model runs using |ΔFA|,

with an apparent “knee” (change in slope) in both error and R2 at model complexity 9.

Not surprisingly, the errors in models from experiments 5–9, which were all evolved using

S1 as an input feature (Fig 3B and 3D), were much lower than models of the same complexity

that were evolved without using S1 (Fig 3A), since S1 had the largest main effect (Table 6).

When S1 is the only input feature (Fig 3B, cyan lines), there is a sharp drop in error between

the constant model and the linear model (Eq 1 in Table 7), but adding in higher order terms

only reduces the error gradually, due to over-fitting. Similarly, including permuted ΔFA values

(experiment 6, red lines), where we had randomized the association between features and out-

comes, causes gradual decreases in error due to over-fitting. However, including FA1 (experi-

ment 7, blue lines) appears to provide a small amount of additional signal. In fact, the equation

numbered 2 actually dominates the linear model of the equation numbered 1 (Table 7). The

best models were achieved with using S1 in conjunction with either ΔFA (experiment 8, green

lines) or |ΔFA| (experiment 9, black lines), as shown with the non-dominated equations num-

bered 3–8 (Table 7). Interaction terms in these expressions appear to be boosting the useful

signal in these data. Again, the results were more consistent between runs when using |ΔFA|

Table 5. Distribution of absolute changes in FA (×10−3) between mTBI and control subjects over a one-week period. Values are given as

mean ± standard deviation.

Region of Interest mTBI Control Difference (95% CI) P-value (uncorrected)

Splenium CC 6.1 ± 4.9 2.6 ± 1.5 3.57 (1.16,5.98) 0.009

Body CC 5.9 ± 4.8 4.4 ± 3.5 1.46 (-1.35,4.26) 0.464

Genu CC 4.2 ± 4.1 4.2 ± 2.7 0.06 (-2.25,2.36) 0.588

PLIC (right) 8.2 ± 5.2 6.2 ± 4.1 2.00 (-1.16,5.10) 0.161

PLIC (left) 7.3 ± 6.4 4.3 ± 3.6 2.92 (-0.53,6.37) 0.340

UF (right) 8.1 ± 7.6 8.0 ± 7.0 0.08 (-4.87,5.03) 0.849

UF (left) 8.7 ± 5.0 5.9 ± 4.9 -2.78 (-6.20,0.64) 0.099

CR (right) 5.6 ± 4.8 3.3 ± 2.7 2.32 (-0.28,4.92) 0.181

CR (left) 5.5 ± 4.8 3.7 ± 2.5 1.81 (-0.70,4.35) 0.426

CST (right) 12.5 ± 9.4 8.7 ± 7.5 3.79 (-1.94,9.51) 0.152

CST (left) 10.5 ± 8.8 9.4 ± 7.1 1.10 (-4.30,6.50) 0.849

Corpus callosum (CC), posterior limbs of the internal capsule (PLIC), uncinate fasciculus (UF), corona radiata (CR) and corticospinal tract (CST).

https://doi.org/10.1371/journal.pone.0178360.t005
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Fig 2. Number of abnormal regions of interest in mild traumatic brain injury (mTBI) subjects. Abnormal

regions are defined as having DTI metrics more than 2 standard deviations above or below the mean for the

control group. Blue bars indicate the number of mTBI subjects with a given number of abnormal regions. Pink

bars indicate the number of subjects that would be expected by chance, based on a binomial distribution with

n = 11 regions, p = 0.0455. Regions are assumed to be independent. Dashed boxes indicates metrics in which
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and, for the more parsimonious models (of complexity� 13), the R2 values were also higher

when using |ΔFA|, indicating that there is more useful signal in these data.

Discussion

This neuroimaging study of emergency department patients with acute head injury, with

imaging immediately after injury and one week later, has several important implications. First,

we show that longitudinal analysis of changes in FA in each ROI, using each individual subject

as their own control, discriminated between mTBI subjects compared to controls, identifying

abnormalities which would have not been detected using standard cross-sectional and whole

brain analysis approaches. This corroborates prior findings of diffusion changes occurring

across time following TBI, which have been described in human subject studies that have used

longitudinal imaging, but over a longer time period [11, 26, 35]. Our study is significant be-

cause it is the first to have employed multiple timepoint imaging for both mTBI and control

subjects within the first week after injury. We validate previous studies showing that ROI-

based analysis of FA measurements provides the highest sensitivtiy for detection of axonal

injury in mTBI. We also demonstrated that inclusion of all a priori ROIs in an analytic model

as opposed to measuring individual ROIs improves detection of white matter changes by over-

coming issues of injury heterogeneity. Finally, we use a genetic programming approach to

provide support for a model associating longitudinal changes in FA with the severity of post-

concussive symptoms 7–10 days after mTBI In this model, the direction (increase or decrease

in FA value) was not as predictive as the absolute change in FA. In sum, identification of white

matter ROIs with changes in FA signal, over the week after trauma, may provide critical in-

sight into understanding the clinical effects of concussive head injury.

There is no established consensus for optimal, quantitative DTI analysis to identify mTBI.

Region of interest (ROI) methods are generally used, but this technique may artifactually mini-

mize group differences when ROIs are placed within maximal FA regions on post-processed

FA maps and underestimate FA values if ROIs are placed adjacent to low-FA structures where

partial volume averaging artifacts occur such as gray-white junctions or the pericallosal white

matter. Voxel-based methods such as tract-based spatial statistics that normalize DTI data to a

common space to account for differences in individual brains (i.e., size and shape) are subject

to error from partial volume effects, particularly as slice thickness is increased. “Pothole”

the number of mTBI subjects with more than one abnormal region is significantly different to that expected by

chance (binomial distribution, n = 20 subjects, p = 0.0867) [8]. (A) Number of abnormal changes in fractional

anisotropy in mTBI subjects. (B) Number of abnormal changes in radial diffusivity. (C) Number of abnormal

changes in axial diffusivity.

https://doi.org/10.1371/journal.pone.0178360.g002

Table 6. Significant pearson correlation coefficients were found between 9 of the 34 possible input

features provided to Eureqa and the outcome variable S2. The notation ΔFA means FA1 –FA2.

feature r R2 p-value

|Δsplenium| 0.488 0.238 0.0025

|Δbody| 0.332 0.110 0.0477

|Δgenu| 0.348 0.121 0.0375

|ΔPLIC-L| 0.449 0.201 0.0060

|ΔCR-R_All| 0.470 0.221 0.0038

|ΔCST-R| 0.438 0.192 0.0076

ΔCR-L_All 0.342 0.117 0.0409

UF_L1 0.329 0.108 0.0498

S1 0.658 0.433 1.318e-5

https://doi.org/10.1371/journal.pone.0178360.t006
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techniques [11, 36–40], in which areas of unusually high or low FA are identified throughout

the brain, and the number and/or volume of such regions provides a single metric of injury,

has been shown to result in large numbers of false-positives due to the issue of multiple com-

parisons, and recent research has questioned aspects of its methodology used in many TBI

studies [41]. In our study, we compared FA values to regions of the brain most commonly

Fig 3. Non-dominated fronts of error vs. complexity resulting for 5 independent Eureqa runs for each of experiments 1–4 (A) and 5–9 (B), with

corresponding adjusted R2 values relating the evolved expressions to S2 shown in panels (C) and (D), respectively. The complexity 1 expression

was always the constant expression S2 = 2. The expressions corresponding to the 8 numbered points in (C) are detailed in Table 7.

https://doi.org/10.1371/journal.pone.0178360.g003

Table 7. Expressions corresponding to the 8 numbered points on graph C.

Eq. # Evolved expression Mean abs

error

Complexity Adjusted R2 Found in

Experiments

Frequency

Found

1 S2 = 0.353*S1 4.103 3 0.43 2–6,8–9 20/20 runs

2 S2 = S1*(UF-L1) 3.982 3 0.51 7 5/5 runs

3 S2 = 93.73* S1*|Δgenu| 2.936 5 0.79 9 5/5 runs

4 S2 = 0.346* S1 + Δbody* S1
2 2.513 9 0.82 8 4/5 runs

5 S2 = 39.25* S1*(|CR-L_All|) + |Δsplenium|* S1
2 2.312 11 0.90 9 5/5 runs

6 S2 = 52.05* S1*|Δsplenium| + 0.7577*(|CR-L_All|)* S1
2 2.146 13 0.88 9 3/5 runs

7 S2 = 0.282* S1 + 36.90* S1*Δbody + 3489.1*
S1*Δsplenium2

1.776 17 0.92 8 4/5 runs

8 S2 = 0.356* S1 + 3.051e8*(ΔPLIC-R)* Δsplenium3

+ 0.868*Δbody* S1
2

1.491 21 0.96 8 1/5 runs

https://doi.org/10.1371/journal.pone.0178360.t007
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associated with mTBI [16, 42] to provide a proxy measure of injury severity without introduc-

ing the issues of multiple comparisons to the extent seen in voxel-based analyses that may lead

to false positive errors.

Fig 4. Observed vs. predicted sum of post-concussive symptoms at time period 3, shown for 4 of the

evolved expressions shown in Table 6. The top one is simply the linear relationship with S1, the middle two

were evolved from experiment 9 (using S1 and |ΔFA| as input features), and the bottom one was evolved from

experiment 8 (using S1 and ΔFA as input features).

https://doi.org/10.1371/journal.pone.0178360.g004
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We demonstrate that in our cohort, counting the total number of abnormal ROIs in indi-

vidual patients at either time point was not sensitive to detection of mTBI. There were a signif-

icant number of abnormal regions in only one DTI metric, AD, among mTBI subjects, but

only at time-point 1. Otherwise no significant differences were found at either individual time-

points or for any individual ROI whether compared cross-sectionally or longitudinally. We

observed some ROIs, such as the splenium of the CC, trended towards showing a significant

difference in the comparison between groups, but these differences were not statistically signif-

icant when corrected for multiple comparisons. These findings demonstrate the impact that

inter-subject variability and injury heterogeneity have on diluting subtle white matter changes

seen following mTBI. We acknowledge that there are a number of studies demonstrating

significant findings using cross-sectional ROI analyses, but many of these results may be

explained by similarity of injury mechanism among the study population and/or increased

severity of injury [8, 15]. Further, based on our findings, we suggest results of prior studies

may be missing significant white matter changes due to analysis methodology that is not sensi-

tive enough to subtle changes in white matter seen across time. If these subtle changes play sig-

nificant roles in the initial and long-term symptoms seen in mTBI, as we have suggested, then

this may explain why DTI metrics have thus far been poorly correlated with mTBI symptoms

and prognoses [15, 16].

Studies using whole-brain analyses are also susceptible to the effects of inter-subject vari-

ability, but to a larger extent avoid the issue of injury heterogeneity. This allows for improved

ability to detect white matter changes and may explain why the analysis method has been pop-

ular in recent years. Our results however suggest that these studies likely still fail to capture the

true degree and extent of white matter changes, thereby demonstrating an incomplete picture

of the white matter disruption caused by mTBI. Our results support and extrapolate on the

earlier discovery by Inglese et al. that abnormalities in FA and MD after mTBI are too subtle to

be detected by whole brain analysis [43].

It also is worth considering whether FA is the most appropriate diffusion metric for assess-

ing mTBI. Inglese et al. [43], performed a cross-sectional study of whole brain and ROI analy-

sis in subjects after mTBI. Similar to our results, they found diffusion changes in FA within

commonly injured white matter regions such as the CC and internal capsule, which were not

detected by whole brain analysis. They concluded that early time-point imaging may have util-

ity as a prognostic measure, consistent with our genetic programming analysis. Our findings

differ with regards to the utility of MD; AD and RD had more diagnostic utility, but none

of these measures provided much additional discriminatory capacity to distinguish mTBI

patients from controls. Clinical MR DTI sequences model diffusion as a single three-dimen-

sional ellipsoid, but newer methodologies, such as CHARMED [44] (composite and restricted

model of diffusion), which account for different compartments, may be more realistic and bet-

ter differentiate edema from axonal disruption. Most tensor models do not account for the

presence of multiple fiber populations within a single voxel, but instead average them together,

resulting in an apparent decrease in FA. In addition, heterogeneity of the injuries and forces

that lead to mTBI as well as the spatial heterogeneity of damage within the brain parenchyma

[13] ultimately limit the ability of DTI in the setting of acute mTBI regardless of the diffusion

metric used. FA was the most sensitive measure in our study for capturing white matter

changes in mTBI subjects. These findings are consistent with most current animal and human

studies and demonstrate the importance of employing multiple DTI metrics during analysis

for future studies [15, 16, 30]. Our study corroborates the importance of DTI with ROI analysis

of FA to identify axonal injury in mTBI subjects, and further suggests that analysis of longitu-

dinal imaging across time may detect more subtle white matter injury than single time point

analysis.
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Furthermore, on closer examination of the DTI changes demonstrated via longitudinal

analysis, that most subjects only have a few regions with significant changes in white matter;

rather than a more diffuse pattern across all ROIs. We believe that this further demonstrates

the focal and heterogeneous nature of white matter injury after in mTBI, which is likely sec-

ondary to variables such as injury mechanism, location, directionality and magnitude of

impact. Our results show that, for every ROI analyzed, the subject with the greatest degree of

change in FA for that ROI was always from the mTBI group. When looking across individuals,

80% of the mTBI subjects exhibited one or more regions with a change in greater magnitude

than all changes seen in controls for that region. These findings provide convincing evidence

that these changes are markers of white matter disruption. The reason 80% and not 100% of

mTBI subjects had a larger change than controls may be due a variety of factors including

injury severity, imaging timepoints in conjunction with the time frame of specific patient’s

recovery or that the location of injury was within an uncommon white matter tract. We also

noted that certain regions such as the splenium of the CC had an increased frequency of white

matter changes among mTBIs, likely representing an anatomical susceptibility as has already

been suggested by prior research [16]. Moreover, the regions most commonly associated with

FA changes in our study were consistent with those previously published [16].

In addition, we observed both increases and decreases in DTI signals among mTBI subjects

following injury, which matches findings in both animal and human literature [15, 16, 30].

The variability in directionality of DTI metrics likely involves co-occurring processes of injury

and recovery [15, 30]. While there currently is no consensus on the true mechanism behind

the injury and recovery processes occurring within white matter following mTBI, the most recent

animal models have proposed the changes are driven by edema, gliosis, inflammatory cytokines,

and various astrocytic processes [24, 27, 28, 30]. All of these likely vary among individuals due to

a large number of factors including severity of injury and individual recoverability.

Our results also demonstrate the highly reproducible nature of ROI-based FA measure-

ments in human subjects across short periods of time. Longitudinal imaging in our control

population enabled us to determine coefficients of variation (CV) for test-retest reliability. The

CVs determined from our control subjects compared well to those published previously [45].

For large, uniform white matter structures such as the splenium, the within-subject CV of

0.4% is remarkably good. Smaller anatomic structures such as the uncinate fasciculus have sub-

stantially higher CVs. Because the higher sensitivity of the longitudinal study is likely due to

the fact that within-subject variability is much smaller that between-subject variability, techni-

cal improvements such as multiband imaging [46] may enable faster, more accurate, and

reproducible determination of DTI metrics, but are unlikely to substantially increase sensitiv-

ity in cross-sectional studies where between-subject variability is the dominant source of

uncertainty. For longitudinal studies, within-subject reproducibility is the limiting factor, and

technical improvements may improve sensitivity.

Not surprisingly, we found that the sum of post-concussive symptoms at time 1 (S1) by itself

had a moderate linear relationship (R2 = 0.43) with the sum of post-concussive symptoms at

time 2 (S2). However, when we evolved non-linear expressions using Genetic Programming

(GP) that combined S1 with longitudinal changes in FA, we found several expressions with rel-

atively low model complexity (indicating they were not simply over-fitting the data) that were

much more strongly predictive of S2 (with R2 values up to 0.96). Furthermore, the observation

that we could not evolve such strongly predictive models when we randomly permuted the

longitudinal changes in FA from each patient, relative to the observed values of S1 and S2, is

another indication that there is meaningful signal in the longitudinal changes in FA. Finally, in

the more parsimonious evolved models, we observed greater consistency and greater predic-

tive value when using the absolute value of longitudinal changes in FA. Thus, although with
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only 36 data points, these results from the GP are far from conclusive, they do offer support

for the following two conjectures:

1. There is useful signal in longitudinal changes in FA that is associated with the severity of

post-concussive symptoms 7–10 days after mTBI; and

2. Using absolute values of longitudinal changes in FA appears to have slightly more useful

signal than using signed changes, especially at low model complexities, where over-fitting is

less likely.

Limitations of our study include the relatively small sample size and the use of only two

time points in the acute and subacute phases, as opposed to an additional third point in the

chronic phase. A recent meta-analysis [15] showed that FA increases are generally seen in the

acute stage 2–4 days post-injury, changes are inconsistent in the sub-acute stage of 4 days-2

weeks post-injury, and decreases are observed beyond 2 weeks. In our study, we observed

greater change in the mTBI group compared to the control group. Directions of change varied

in different ROIs. Whether longitudinal imaging is more sensitive than cross-sectional imaging

may depend on the magnitude of change in DTI metrics over the time course between scan-

ning. Further work is required to determine optimal imaging time points to maximize the sensi-

tivity of longitudinal studies. Another limitation is the analysis of only 11 white matter regions

where injury was most commonly reported. However, because only 11 regions were analyzed, it

is likely that mTBI subjects had injury to additional regions, and it is possible that some mTBI

subjects had no injury among our 11 chosen regions. It is also important to address the fact that

changes in FA among our study population are relatively small in magnitude compared to over-

all FA values. While we acknowledge this fact, it is important to remember that because we have

demonstrated, as have other studies [22], that FA is highly reproducible across time in healthy

individuals, that significant changes would still hold clinical significance. Further, subtle abnor-

malities are rather, to an extent, actually anticipated due to the variable nature of injury within

the mTBI population. Furthermore, when examining large white matter tracts, it would be para-

doxical to theorize that large-magnitude changes/insults, which commonly present with more

severe neurological findings consistent with stroke or severe TBI, would produce the clinically

non-specific symptomatology seen in mTBI.

Practical applications

Significant changes in FA were detected in patients with mTBI within the first week following

injury. Although between-subject variation is a substantial obstacle in the study of mTBI using

DTI, we demonstrate that longitudinal imaging over the first week after an injury improves

the characterization of mTBI by DTI metrics. Our results suggest that sequential imaging of

the same individual is superior to cross-sectional imaging for quantitative DTI analysis of

mTBI. Our results using genetic programming support this suggestion that longitudinal

changes in FA may have clinical utility in predicting severity of post-concussive symptoms a

week or more after mTBI, and that the magnitude of change may be more predictive of long-

term outcomes compared to the directionality of the change.

Supporting information

S1 Fig. Abnormal regions in fractional anisotropy. (A) Time 1, (B) Time 2 and (C) Change

over time.
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S2 Fig. Abnormal regions in mean diffusivity. (A) Time 1, (B) Time 2 and (C) Change over time.

(TIF)

S3 Fig. Abnormal regions in radial Diffusivity. (A) Time 1, (B) Time 2 and (C) Change over

time.

(TIF)

S4 Fig. Abnormal regions in axial Diffusivity. (A) Time 1, (B) Time 2 and (C) Change over

time -4 �for S1–S4 Figs. Number of abnormal regions of interest in mild traumatic brain injury

(mTBI) subjects. Abnormal regions are defined as having DTI metrics more than 2 standard

deviations above or below the mean for the control group. Blue bars indicate the number of

mTBI subjects with a given number of abnormal regions. Red bars indicate the number of sub-

jects that would be expected by chance, based on a binomial distribution with n = 11 regions,

p = 0.0455. Regions are assumed to be independent (8). Dashed boxes indicates metrics in

which the number of mTBI subjects with more than one abnormal region is significantly dif-

ferent to that expected by chance (binomial distribution, n = 20 subjects, p = 0.0867).

(TIF)

S1 Table. Mean FA values for TBI and control subjects at time 1, time 2 and delta.
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S2 Table. Mean MD values for TBI and control subjects at time 1, time 2 and delta.
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S3 Table. Mean RD values for TBI and control subjects at time 1, time 2 and delta.
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S4 Table. Mean AD values for TBI and control subjects at time 1, time 2 and delta.

(DOCX)

S5 Table. Mechanisms of injury.

(DOCX)

S6 Table. Reproducibility of FA seen in control subjects without resampling across 1 week.

Binary masks defining each region of interest were transformed into the individual subject

space using nearest neighbor resampling. This prevented any possible effect of smoothing of

the original data, although the mask definitions are likely to be somewhat less accurate. For

control subjects, the standard deviation of FA values for each ROI at time point 1 and 2, along

with the standard deviation of change within subjects across the two time points is shown.

(DOCX)

S1 Methods. Supplemental methods.
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