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Abstract

Background

Triple-negative breast cancer (TNBC) accounts for 15–20% of all breast cancers and usu-

ally requires the administration of adjuvant chemotherapy after surgery but even with this

treatment many patients still suffer from a relapse. The main objective of this study was to

identify proteomics-based biomarkers that predict the response to standard adjuvant che-

motherapy, so that patients at are not going to benefit from it can be offered therapeutic

alternatives.

Methods

We analyzed the proteome of a retrospective series of formalin-fixed, paraffin-embedded

TNBC tissue applying high-throughput label-free quantitative proteomics. We identified sev-

eral protein signatures with predictive value, which were validated with quantitative targeted

proteomics in an independent cohort of patients and further evaluated in publicly available

transcriptomics data.

Results

Using univariate Cox analysis, a panel of 18 proteins was significantly associated with dis-

tant metastasis-free survival of patients (p<0.01). A reduced 5-protein profile with prognostic

value was identified and its prediction performance was assessed in an independent tar-

geted proteomics experiment and a publicly available transcriptomics dataset. Predictor P5
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including peptides from proteins RAC2, RAB6A, BIEA and IPYR was the best performance

protein combination in predicting relapse after adjuvant chemotherapy in TNBC patients.

Conclusions

This study identified a protein combination signature that complements histopathological

prognostic factors in TNBC treated with adjuvant chemotherapy. The protein signature can

be used in paraffin-embedded samples, and after a prospective validation in independent

series, it could be used as predictive clinical test in order to recommend participation in clini-

cal trials or a more exhaustive follow-up.

Introduction

Breast cancer is one of the leading causes of death among women in developed countries.

Approximately 20% of the cases correspond to triple-negative tumours, i.e., those not express-

ing estrogen and progesterone receptors and with no HER2 over-expression. Triple-negative

breast cancer (TNBC) is associated with a poor outcome when compared with other subtypes,

due to its aggressive behavior and limited therapeutic options [1]. Adjuvant therapy for TNBC

relies exclusively on chemotherapy, as hormonal agents and anti-HER2 therapy are no effec-

tive in this type of breast cancer. The standard chemotherapy used in this setting includes

anthracyclines and taxanes, but even with the use of adjuvant therapy, relapse risk approaches

50% and it is even higher in patients with additional high-risk factors [2].

Moreover, the clinical and molecular heterogeneity within this TNBC subtype makes the

treatment of these patients even more challenging as some patients never relapse, whereas oth-

ers do suffer an early relapse from resistant tumors. Several gene expression profiling evi-

denced the existence of distinct molecular subgroups of TNBC [3–5]. So far, these molecular

studies have not yet allowed the stratification of patients into categories with different progno-

sis and response to specific treatments. Also, no specific drugs have been developed for the

specific treatment of TNBC, although clinical reports suggest a role for platinum compounds

[6].

High-throughput technologies for the quantitation of biomolecules are providing a com-

prehensive view of the molecular changes in cancer tissues. These technologies allow for the

simultaneous analysis of the whole genome, global gene and microRNA expression, DNA

methylation and protein expression of tumor samples, and in conjunction with the develop-

ment of bioinformatics tools, have revealed the molecular architecture of breast cancer [7–9].

Recently, two large-scale studies have addressed the structure of the TNBC genome, by means

of next generation sequencing and have revealed a plethora of different genetic events occur-

ring in TNBC. Moreover, the results of these studies also revealed the high diversity within this

cancer subtype and that there are very few common genetics events in TNBC tumors; mainly a

mutation of TP53 that occurs in approximately 80% of these tumors and loss of the tumor sup-

pressor phosphatase PTEN occurring in 29%, with all other mutations occurring at a relatively

low frequency [10, 11]. These observations are in agreement with results from other large-

scale sequencing studies showing that cancers exhibit extensive mutational heterogeneity, with

mutated genes varying widely across individuals [12].

The cellular genotype dictates the observed phenotype through the production of proteins,

which, in turn, perform most of the reaction that occur in the cell. Proteomics analyses thus

offer a means to measure the biological outcome of cancer-related genomic abnormalities,
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including expression of variant proteins encoded by mutations, protein changes driven by

altered DNA copy number, chromosomal amplification and deletion events, epigenetic silenc-

ing, and changes in microRNA expression [13].

Mass spectrometry has become the method of choice for analyzing complex protein sam-

ples, and recent technological advances allow identifying thousands of proteins from tissue

amounts compatible with clinical routine. Therefore, proteomics may become a new source of

molecular markers with utility in the management of breast cancer patients and to facilitate

clinical decisions in daily clinical practice. In the case of TNBC patients, the identification of

protein signatures that define patient subgroups that need to be treated with a specific combi-

nation of drugs or alternative interventions is highly desirable. In this study, we identified a

protein signature with a high prediction value in the response to adjuvant chemotherapy, and

validated it in an independent cohort using quantitative targeted proteomics. Indeed, the

described protein signature can predict adjuvant chemotherapy response in triple negative

breast cancer samples, it is suitable to evaluate formalin-fixed, paraffin-embedded tumour

samples, and therefore, it could be used to recommend participation in clinical trials or a more

exhaustive follow-up in high-risk TNBC patients.

Materials and methods

Study design and sample description

The discovery cohort comprises twenty-six FFPE samples from patients diagnosed of triple

negative breast cancer (TNBC) were retrieved from I+12 Biobank (RD09/0076/00118) and

from IdiPAZ Biobank (RD09/0076/00073), both integrated in the Spanish Hospital Biobank

Network (RetBioH; www.redbiobancos.es) between 1997 and 2004. The targeted proteomics

cohort includes one hundred and fourteen samples from patients diagnosed of triple negative

breast cancer were retrieved from I+12 Biobank (RD09/0076/00118) and from IdiPAZ

Biobank (RD09/0076/00073), both integrated in the Spanish Hospital Biobank Network

(RetBioH; www.redbiobancos.es) between 1997 and 2012. Sixty samples from I+12 Biobank

were previously included in an analytical observational case–control study [14]. The histopath-

ological features of each sample were reviewed by an experienced pathologist to confirm diag-

nosis and tumor content. Eligible samples had to include at least 50% of tumor cells.

Ethics, consent and permissions

Written consent was provided by all patients participating in this study, and approval from the

Ethical Committees of Hospitals Doce de Octubre and La Paz was obtained for the conduct of

the study.

Total protein extraction

Proteins were extracted from FFPE samples as previously described [15]. Briefly, FFPE sec-

tions were deparaffinized in xylene and washed twice with absolute ethanol. Protein extracts

from FFPE samples were prepared in 2% SDS buffer using a protocol based on heat-induced

antigen retrieval [16]. Protein concentration was determined using the MicroBCA Protein

Assay Kit (Pierce-Thermo Scientific). Protein extracts (10 μg) were digested with trypsin

(1:50) and SDS was removed from digested lysates using Detergent Removal Spin Columns

(Pierce).
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Discovery mass spectrometry data acquisition

Samples were analyzed by liquid chromatography-mass spectrometry on a LTQ-Orbitrap

Velos (Thermo Fischer Scientific, Bremen, Germany) coupled to NanoLC-Ultra system (Eksi-

gent Technologies, Dublin, CA, USA) as previously described [17]. Peptide samples were fur-

ther desalted using ZipTips (Millipore), dried, and solubilized in 15 μL of a 0.1% formic acid

and 3% acetonitrile solution before MS analysis. Peptide separation was performed on a self-

made C18 column (75μm×150mm, 3 μm, 200A) by a 5 to 30% acetonitrile gradient in 95 min-

utes. Each MS cycle consisted of a full scan MS spectra (300–1700) recorded at resolution of

30000 at 400 m/z followed by CID (collision induced dissociation) fragmentation on the

twenty most intense signals. Charge state screening was enabled and singly charge states were

rejected. Precursor masses selected for MS/MS were placed in a dynamic exclusion for 45s.

Discovery mass spectrometry data analysis

Protein identification and quantification were performed using the Andromeda search

engine and MaxQuant (version 1.2.7.4) [18]. Spectra were searched against a forward Uni-

ProtKB/Swiss-Prot database for human concatenated to a reverse decoyed fasta database and

containing common protein contaminants. The precursor and fragment tolerances were set

respectively to 20ppm and 0.5 Da, carbamidomethyl (C) was set as fixed modification while

oxidation (M), deamidation (N, Q) and N-terminal protein acetylation were set as variable

modifications. Enzyme specificity was set to Trypsin/P, allowing a minimal peptide length of

7 amino acids and a maximum of two missed cleavages. A maximum false discovery rate

(FDR) of 0.01 for peptides and 0.05 for proteins was allowed.

Label free quantification was performed setting a 2 minutes window for match between

runs. The protein abundance was calculated on the basis of the normalized spectral protein

intensity (LFQ intensity). Quantifiable proteins were defined as those detected in at least 75%

of TNBC samples showing two or more unique peptides. Only quantifiable proteins were con-

sidered for subsequent analyses. Protein expression data were log2 and missing values were

replaced using data imputation for label-free data, as explained in [19], using default values.

Finally, protein expression values were z-score transformed. Batch effects were estimated and

corrected using ComBat [20].

All the shotgun mass spectrometry raw data files acquired in this study may be downloaded

from Chorus (http://chorusproject.org) under the project name Breast Cancer Proteomics.

Parallel reaction monitoring data acquisition

Between one and four unique peptides per protein were selected for quantification by parallel

reaction monitoring (PRM), prioritizing those peptides that had been observed previously.

The selected peptides were bought as isotopically labelled internal standard peptides

(13C6,15N2-Lys and 13C6,15N4-Arg, Pepotec Peptides, Thermofisher Scientific) and they were

spiked in the peptide mixture. The amount spiked-in per for each reference peptide was cho-

sen based on the following criteria: i) to have an area as close to the endogenous peptide area

as possible, and ii) to be in within the concentration range in which a linear response of the

peptide was observed.

One third of each sample was analyzed using an Orbitrap Fusion Lumos (Thermo Fisher

Scientific) coupled to an EASY-nanoLC 1000 UPLC system (Thermo Fisher Scientific) with a

50-cm C18 chromatographic column. Peptide mixes were separated with a chromatographic

gradient starting at 5% B with a flow rate of 300 nL/min and going up to 22% B in 79 min and

to 32% B in 11 min (Buffer A: 0.1% formic acid in water. Buffer B: 0.1% formic acid in
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acetonitrile). The Orbitrap Fusion Lumos was operated in positive ionization mode with an

EASY-Spray nanosource at 1.4kV and at a source temperature of 275˚C.

A scheduled PRM method was used for data acquisition with a quadrupole isolation win-

dow set to 1.4 m/z and MSMS scans over a mass range of m/z 340–950, with detection in the

Orbitrap at a variable resolution depending on the peptide. PRM scans for heavy standards

were performed at a resolving power of 15000 (at m/z 200); whereas PRM scans of endogenous

peptides were performed at resolution 30000, 60000 or 120000 (at m/z 200) depending on its

detectability and observed interferences in previous optimization experiments.

MSMS fragmentation was performed using HCD at 30 NCE, the auto gain control (AGC)

was set at 50000 and the injection time (IT) was adjusted according to the transient length,

with a maximum of 118 ms for 60000 resolution, and a minimum of 22 ms for 15000 resolu-

tion. The size of the scheduled window was 10 min and the maximum cycle time was 2.8 s. All

data was acquired with XCalibur software v3.0.63. The Parallel Reaction Monitoring dataset is

publicly available in the Panorama web server at https://panoramaweb.org/labkey/project/

UPF%20-%20CRG/La%20Paz_TN_Breast_Cancer/begin.view?.

Parallel reaction monitoring data analysis

Product ion chromatographic traces corresponding to the targeted precursor peptides were

evaluated with Skyline software v2.5 based on i) traces co-elution, both in its light and heavy

forms; and ii) the correlation between the relative intensities of the endogenous product ion

traces, and their isotopically-labelled counterparts from the internal reference peptides.

For each monitored peptide a light-to-heavy ratio (L/H ratio = sum of product ion areas of

the endogenous peptide/sum product ion areas from the reference peptide) was calculated per

patient. Ratios were transformed to the logarithmic scale (log2) and the obtained values were

used as proxy for protein amount.

Prognostic models development and validation

Shotgun data were used to compute a statistical significance level for each protein based on a

univariate proportional hazards model [21] with the aim of identifying proteins with an abun-

dance level significantly related to the distant metastasis-free survival (DMFS) as described

previously [22]. Briefly, proteins related to DMFS were filtered based on their p-values. Pro-

teins with a p-value<0.01 were used to develop prediction models of recurrence risk using the

supervised principal component method [23]. Additionally, we evaluated the correlation

between the proteins to establish correlation groups and reduce the number of selected pro-

teins to build the molecular signatures. Proteins with a Pearson correlation higher than 0.5

were grouped together and reduced profiles were designed including randomly proteins from

different correlation groups. Leave-one-out cross-validation was used to evaluate the predic-

tive accuracy of the profiles. The cutoff point was established a priori and to test the statistical

significance, the p-value of the log-rank test statistic for the risk groups was evaluated using

1000 random permutations. Analyses were performed in BRB-ArrayTools v4_2_1. BRB-Ar-

rayTools has been developed by Dr. Richard Simon and BRB-ArrayTools Development Team.

Transcriptomics analyses

We used previously published transcriptomics array expression data of 1,296 primary breast

carcinomas from two previously published works [24, 25]. Batch effects between data sets were

estimated and corrected using ComBat [20]. After protein-to-gene ID conversion, all probes

in dataset for each gene were retrieved. Probes with higher coefficient of variation were

selected when multiple probes were found for a single gene. We selected estrogen receptor
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negative patients with TNBC characteristics, thus we excluded any patient showing an ESR1

relative expression above 12 and ERBB2 relative expression above 11.8, as described previously

[26, 27]. Per-gene normalization within the validation cohorts was performed using median

values obtained in the discovery cohort. Survival curves were then estimated [28]. Note that no

clinical HER2 assessment was available for the transcriptomics samples and that the ERBB2

gene expression value was used for sample classification.

Statistical analyses and software suites

Distant metastasis free survival (DMFS) was defined as the time between the day of surgery

and the date of distant relapse or last date of follow-up. The independence of prognostic value

of predictors when compared with clinical information was evaluated using multivariate Cox

regression analyses. SPSS v16 software package, GraphPad Prism 5.1 and R v2.15.2 (with the

Design software package 0.2.3) were used for all statistical analyses. All p-values were two-

sided and p<0.05 was considered statistically signficant.

Results and discussion

Triple-negative breast cancer (TNBC) accounts for one fifth of all breast cancers, and although

they are usually treated with the administration of adjuvant chemotherapy after surgery, many

patients have a relapse. Therefore, the main objective of this study was to identify proteomics-

based biomarkers to stratify patients according to the benefits of the adjuvant chemotherapy,

enabling the possibility to offer therapeutic alternatives to patients with predicted poor

response to it.

Patient’s characteristics

In order to identify prognostic biomarkers of the standard chemotherapy in TNBC patients,

we included 25 TNBC patients to be in the discovery study, and 114 TNBC patients to be

included in the targeted-proteomics study as an independent validation cohort. The clinical

characteristics from all these patients are provided in Table 1. All included patients had node-

positive disease; all of the tumors were negative when tested for hormonal receptors using

immunohistochemistry and Her2 amplification using immunohistochemistry and fluorescent

in situ hybridization when needed. Adjuvant chemotherapy was used in all cases (either

anthracycline-based or not). In the discovery patient cohort, the median follow-up of all

patients was 8.14 years (range: 1.24–12.95) and 9 patients had relapse events. In the validation

cohort, median follow-up of all patients was 5.29 years (range: 0.47–11) and 56 patients had

relapse events. Adjuvant chemotherapy was used in all patients (either anthracycline-based or

not) except in four cases Study design is schematized in Fig 1.

Molecular characterization of TNBC samples by discovery proteomics

Initially, we set up to perform discovery mass spectrometry-based proteomics of the collected

25 FFPE breast cancer samples to identify potential protein candidates that could be used as

prognostic biomarkers to chemotherapy response of TNBC patients. Tissue samples were pre-

pared for mass spectrometry analysis with trypsin digestion, following a previously-reported

method that exhibit a high reproducibility for these type of samples [23]. Protein abundance

data resulting from the mass spectrometry shotgun data acquisition constituted our “discovery
dataset”. One sample was excluded from the study because it was considered an outlier as it

did not reach the “mean minus twice the standard deviation”-threshold in the number of

unique peptides identified. A total of 3,095 protein groups were identified using the
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Andromeda database search engine (S1 Table, of which 1,064 presented at least two unique

peptides and were detectable in at least 75% of the samples (S2 Table)). Protein label-free

quantification was further performed using MaxQuant LFQ values.

In order to identify proteomics-based biomarkers to stratify patients according to the bene-

fits of adjuvant chemotherapy, we performed a survival analysis using the proteins quantified

in the discovery dataset and related them with distant metastasis free survival with the Survival

Analysis Tool from BRB-ArrayTools. We found that 18 out of 1064 proteins were significantly

associated with distant metastasis-free survival (DMFS) of patients in the discovery dataset

(Table 2)

Proteomics candidates found in the discovery dataset were also checked in a transcrip-

tomics expression data from 134 triple negative breast cancer samples from two publicly avail-

able dataset [24, 25]. To this purpose, per-gene normalization within the validation cohorts

was performed. It has been already demonstrated that mRNA levels largely reflect the respec-

tive protein levels [29, 30]. Consequently, the intersection between proteomic data sets and

other genome-wide data sets often allows robust cross-validation [31, 32].

Table 1. Clinical characteristics of the patients included in the study.

Discovery cohort Validation cohort

Age at diagnosis (median) 61.2 (37–78) 57 (25–89)

Age at diagnosis (mean) 58.5 58.9

Tumor Size

T1 4 (19%) 51 (35.6%)

T2 19 (73%) 109(76.2%)

T3 2 (8%) 7(4.89%)

T4 0 (0%) 8(5.59%)

Multifocal 0 (0%) 1(0.69%)

Tumor Grade

G1 0 (0%) 4(2.79%)

G2 4 (16%) 22(15.38%)

G3 19 (76%) 112(78.32%)

Unknown 2 (8%) 5(3.49%)

Lymph node status

N0 0 (0%) 75(52.44%)

N1 17 (68%) 41(28.67%)

N2 8 (32%) 10(6.99%)

N3 0 (0%) 14(9.79%)

Nx 0 (0%) 3(2.09%)

Chemotherapy

No Antraciclines 11 (42%) 19(16.7%)

Antraciclines 12 (46%) 62(54.3%)

Antraciclines + taxanes 2 (12%) 9(7.9%)

Unknown 0(0%) 20(17.6%)

No 0(0%) 4(3.5%)

Median follow-up (years) 8.14 (1.24–12.95) 5.29 (0.47–11)

Relapse events (%) 9(36%) 56(49%)

Clinical criteria are provided according to TNM classification (http://www.cancer.gov/cancertopics/pdq/

treatment/breast/healthprofessional/page3). Tumor grade is the description of a tumor based on how

abnormal the tumor cells and the tumor tissue look under a microscope.

https://doi.org/10.1371/journal.pone.0178296.t001
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Identification and validation of prognostic protein based signatures in

TNBC patient samples

Protein abundances derived from shotgun mass spectrometry data in the discovery dataset

were then used to identify protein combinations with prediction value of distant metastasis

free (DMFS) survival after standard chemotherapy. The validation of the prediction value of

each proposed protein combination was validated in an independent 114 TNBC patients

cohort performing protein quantitation with parallel reaction monitoring approach (PRM), a

targeted proteomics approach that enables the quantification of a set of preselected peptides of

interest (S3, S4, S5 and S6 Tables). Moreover, proteomics candidates found in the discovery

dataset were further assessed in transcriptomics expression data from 134 triple negative breast

cancer samples from two publicly available dataset.

Initially, the identified 18 proteins to be significantly associated with DMFS were initially

used to build a protein predictor of DMFS containing all 18 proteins. The cutoff threshold

value was bounded a priori to split the population with a 50:50 distribution between low and

high distant metastasis risk. DMFS at 5 years was 100% for patients defined as low-risk by the

prognostic profile versus 25% for patients defined as high-risk (hazard ratio (HR) = 16.36,

p<0.0001). However, the prognostic value of this signature could not be validated neither

using PRM data from the validation cohort nor using the publicly available transcriptomics

dataset. In the PRM validation cohort, DMFS at 5 years was 59.8% for patients defined as low-

risk by the prognostic profile versus 56.6% for patients defined as high-risk when used a 50:50

cutoff value (HR = 1.065, p = 0.78). In the transcriptomics verification, when using a 50:50 cut-

off, DMFS at 5 years was 71.3% for patients defined as low-risk by the prognostic profile versus

66.5% for patients defined as high-risk (HR = 1.309, p = 0.38).

We then explored the possibility of developing a protein combination using a reduced

number of proteins, as the incorporation of redundant information may reduce the chances of

finding a valid predictor [28]. Towards this direction, we established three groups of proteins

based on the correlation of their expression abundance patterns and one or two proteins

belonging to different correlation groups were randomly included to build predictors that

included three to seven proteins. Again, a 50:50 distribution between low and high distant

metastasis risk was set a priori to obtain a cutoff threshold value. Twelve protein combinations

Fig 1. Study design. Chart of samples included and analysis performed in each cohort.

https://doi.org/10.1371/journal.pone.0178296.g001
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were built and they all exhibited a significant prognostic value in our discovery dataset (S1 Fig

and S7 Table).

Using the protein abundances derived from the PRM analysis of the 114 TNBC tumor sam-

ples, we could validate two out of twelve reduced predictors, which also showed a significant

prognostic value in an independent cohort of patients (Table 3). Predictor P1 showed a signifi-

cant prognostic value using a 70:30 distribution between low and high risk patients. DMFS at

5-years was of 65.6% in the low-risk group and 29.92% at high-risk group (HR = 2.577,

p = 0.0002). Predictor P5 showed a significant prognostic value using a 70:30 distribution

between low and high risk patients. DMFS at 5-years was of 63.54% in the low-risk group and

39.99% at high-risk group (HR = 2.322, p = 0.0142). Moreover, predictor P5 also showed a sig-

nificant prognostic value when compared with tumor size and lymph node status using multi-

variate Cox regression analyses (S8 and S9 Tables), and when used to predict the behavior of

the patients analyzed in the transcriptomics dataset.

Table 2. Proteins significantly associated with distant metastasis free survival.

UniProtKB

accession

numbers

Uniprot ID Protein name Gene Symbol Hazard

ratio

P

value

O43175 SERA_HUMAN D-3-phosphoglycerate dehydrogenase (3-PGDH) (EC 1.1.1.95) PHGDH PGDH3 0.689 0.001

O75323 NIPS2_HUMAN Protein NipSnap homolog 2 (NipSnap2) (Glioblastoma-amplified

sequence)

GBAS NIPSNAP2 1.830 0.001

P05091 ALDH2_HUMAN Aldehyde dehydrogenase, mitochondrial (EC 1.2.1.3) (ALDH class 2)

(ALDHI)

ALDH2 ALDM 0.423 0.002

P05161 ISG15_HUMAN Ubiquitin-like protein ISG15 (Interferon-induced 15 kDa protein)

(Interferon-induced 17 kDa protein) (IP17) (Ubiquitin cross-reactive

protein) (hUCRP)

ISG15 G1P2

UCRP

0.500 0.002

P07996 TSP1_HUMAN Thrombospondin-1 THBS1 TSP TSP1 0.649 0.002

P14317 HCLS1_HUMAN Hematopoietic lineage cell-specific protein (Hematopoietic cell-specific

LYN substrate 1) (LckBP1) (p75)

HCLS1 HS1 0.379 0.003

P15153 RAC2_HUMAN Ras-related C3 botulinum toxin substrate 2 (GX) (Small G protein)

(p21-Rac2)

RAC2 0.423 0.003

P18085 ARF4_HUMAN ADP-ribosylation factor 4 ARF4 ARF2 3.754 0.003

P20340 RAB6A_HUMAN Ras-related protein Rab-6A (Rab-6) RAB6A RAB6 0.493 0.004

P28065 PSB9_HUMAN Proteasome subunit beta type-9 (EC 3.4.25.1) (Low molecular mass

protein 2) (Proteasome subunit beta-1i) (Really interesting new gene 12

protein)

PSMB9 LMP2

PSMB6i RING12

0.758 0.005

P53004 BIEA_HUMAN Biliverdin reductase A (BVR A) (EC 1.3.1.24) (Biliverdin-IX alpha-

reductase)

BLVRA BLVR

BVR

0.674 0.006

P62873 GBB1_HUMAN Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1

(Transducin beta chain 1)

GNB1 0.703 0.006

Q09666 AHNK_HUMAN Neuroblast differentiation-associated protein AHNAK (Desmoyokin) AHNAK PM227 1.614 0.006

Q15046 SYK_HUMAN Lysine—tRNA ligase (EC 6.1.1.6) (Lysyl-tRNA synthetase) (LysRS) KARS KIAA0070 0.672 0.008

Q15181 IPYR_HUMAN Inorganic pyrophosphatase (EC 3.6.1.1) (Pyrophosphate phospho-

hydrolase)

PPA1 IOPPP PP 2.184 0.008

Q9BUP0 EFHD1_HUMAN EF-hand domain-containing protein D1 (EF-hand domain-containing

protein 1) (Swiprosin-2)

EFHD1 SWS2

PP3051

0.265 0.009

Q9GZZ9 UBA5_HUMAN Ubiquitin-like modifier-activating enzyme 5 (Ubiquitin-activating enzyme

5) (ThiFP1) (UFM1-activating enzyme) (Ubiquitin-activating enzyme E1

domain-containing protein 1)

UBA5 UBE1DC1 0.316 0.009

Q9NR31 SAR1A_HUMAN GTP-binding protein SAR1a (COPII-associated small GTPase) SAR1A SAR1

SARA SARA1

0.222 0.009

These 18 proteins are significant with p< 0.01 in the univariate test.

https://doi.org/10.1371/journal.pone.0178296.t002
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Finally, we also checked the performance of the reduced predictors P1 and P5 in the two

publicly available transcriptomics datasets. In these data, predictor P1 showed no prognostic

information, whereas predictor P5 showed a DMFS in the low-risk group over 80% using the

test set defined cutoff thresholds, but they assigned less than 20% of the patients to this group.

However, this last results leaves too many patients who do not relapse in the high-risk group,

and thus, we tested a 50:50 cutoff threshold in this predictor. When a 50:50 cutoff threshold

was used DMFS at five years in the publicly available transcriptomics dataset was 78.0% for

low-risk patients versus 61.4% (HR = 2.888, p = 0.041) (Table 3 and Fig 2).

Predictor P5 includes peptides from proteins RAC2, RAB6A, BIEA and IPYR. RAC2 is a

member of the Ras superfamily of small guanosine triphosphate (GTP)-metabolizing proteins.

It has been proposed that protein RAC2 might have a role in the regulation of the actin cyto-

skeleton during breast cancer metastasis [33]. RAC2 is also involved in both PLD-induced cell

invasion [34] and oncogenic KIT-induced neoplasms [35], and its under-expression has been

related to invasive and metastatic competence in human cancer [36]. BIEA, the protein

encoded by the biliverdin reductase A (BLVRA) gene, belongs to the biliverdin reductase

family members, which catalyze the conversion of biliverdin to bilirubin in the presence of

NADPH or NADH. It also works as a dual-specificity kinase (S/T/Y), and activates the MAPK

and IGF/IRK receptor signal transduction pathways [37, 38]. BIEA plays a pivotal role in the

development of multidrug resistance in human HL60 leukemia cells [39], and itis included

among the 50 genes that compose the PAM50 gene signature for classifying “intrinsic” sub-

types of breast cancer [40].

RAB6A is a member of the RAB family, which belongs to the small GTPase superfamily.

This protein is located at the Golgi apparatus, which regulates protein-trafficking. RAB6A is a

potential target of both miR-21 and miR-155, known to be deregulated [41] and be correlated

with a poor prognosis in breast cancer [42–44], which supports our findings. Additionally,

RAB6A showed an increased expression in the HER-2/neu breast cancer subgroup [45].

Finally, IPYR is a cytosolic inorganic pyrophosphatase, codified by the PPA1 gene. PPA1

expression is significantly higher in many tumors, especially those of lung and ovarian origin.

Expression of IPYR is heterogeneous in breast cancer cells [46] and the knockdown of

PPA1 shows a decreased colony formation and viability of MCF7 cells [47]. Additionally,

Fig 2. Survival analysis of reduced profile 5 in the PRM validation cohort and in the trasncriptomics orthogonal verification.

https://doi.org/10.1371/journal.pone.0178296.g002
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pyrophosphatase overexpression has been associated with cell migration, invasion, and poor

prognosis in gastric cancer [48].

Conclusions

High-throughput proteomics can be used to identify subgroups with different prognosis

among patients with TNBC and to derive signatures with a combination of multiple proteins

that enable patient stratification. Defining multi-gene or multi-protein predictors for progno-

sis increases their accuracy, reproducibility and robustness, which are highly desirable features

in clinical diagnostic and prognostic tools. Towards this direction, Liu and colleagues devel-

oped a 11-protein signature in early triple-negative breast cancer [49] which showed a prog-

nostic value in lymph node negative patient who had not received systemic adjuvant therapy.

The protein signature was validated in an independent dataset using a cutoff determined from

the ROC curve of the training set to ensure high-sensitivity and specificity. However, for vali-

dation purposes it is usually important that cutoff thresholds of a risk score be defined in

advance [50]. Other authors have defined prognostic and predictive signatures in TNBCs

using gene expression measurement techniques [4, 51, 52].

In the present work, we described the first protein-based signatures to predict adjuvant che-

motherapy response in triple negative breast cancer samples. Several protein predictors were

derived from a shotgun mass spectrometry-based discovery dataset and their performance was

further validated in an independent patient cohort using targeted proteomics (parallel reaction

monitoring). Our protein signatures were derived from routinely processed FFPE samples on

a population of TNBC patients treated with adjuvant chemotherapy, which is closer to the clin-

ical reality. Within these context, predictor P5 that includes peptides from proteins RAC2,

RAB6A, BIEA and IPYR, emerged as the best predictor when accounting both the discovery

and the validation proteomics datasets. Moreover, its performance was also confirmed in a

publicly available transcriptomics dataset, which exemplify the robustness of the described

predictor and its applicability to patient-derived transcriptomics data that might be already

collected.

Although our findings require prospective validation in independent series for routine clin-

ical application, our work demonstrates the potential of proteomics to assist oncologists to

make clinical decisions regarding patient treatment; e.g., patients classified with the low-risk

group by the identified protein signature need to be treated with standard chemotherapy,

whereas those classified with the high-risk group should be offered clinical trials with new

drugs and an intensive follow-up program.
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6. André F, Zielinski CC. Optimal strategies for the treatment of metastatic triple-negative breast cancer

with currently approved agents. Ann Oncol. 2012; 23 Suppl 6:vi46-51. https://doi.org/10.1093/annonc/

mds195 PMID: 23012302.

7. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003; 422(6928):198–207.

https://doi.org/10.1038/nature01511 PMID: 12634793.

8. Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature.

2016; 537(7620):347–55. https://doi.org/10.1038/nature19949 PMID: 27629641.

9. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Proteogenomics connects

somatic mutations to signalling in breast cancer. Nature. 2016; 534(7605):55–62. Epub 2016/05/25.

https://doi.org/10.1038/nature18003 PMID: 27251275;

10. Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490

(7418):61–70. Epub 2012/09/23. https://doi.org/10.1038/nature11412 PMID: 23000897;

11. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, et al. The clonal and mutational evolution spectrum

of primary triple-negative breast cancers. Nature. 2012; 486(7403):395–9. Epub 2012/04/04. https://

doi.org/10.1038/nature10933 PMID: 22495314;

12. Raphael BJ. Making connections: using networks to stratify human tumors. Nat Methods. 2013; 10

(11):1077–8. https://doi.org/10.1038/nmeth.2704 PMID: 24173383.

13. Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK, et al. Connecting genomic alter-

ations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Can-

cer Discov. 2013; 3(10):1108–12. https://doi.org/10.1158/2159-8290.CD-13-0219 PMID: 24124232;
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