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Abstract

Background

The gut microbiome is the full set of microbes living in the gastrointestinal tract and is em-

erging as an important dynamic/fluid system that, if altered by environmental, dietetic or

pharmacological factors, could considerably influence drug response. However, the immu-

nosuppressive drug-induced modifications of this system are still poorly defined.

Methods

We employed an innovative bioinformatics approach to assess differences in the whole-gut

microbial metagenomic profile of 20 renal transplant recipients undergoing maintenance

treatment with two different immunosuppressive protocols. Nine patients were treated with

everolimus plus mycophenolate mofetil (EVE+MMF group), and 11 patients were treated

with a standard therapy with tacrolimus plus mycophenolate mofetil (TAC+MMF group).

Results

A statistical analysis of comparative high-throughput data demonstrated that although simi-

lar according to the degree of Shannon diversity (alpha diversity) at the taxonomic level,

three functional genes clearly discriminated EVE+MMF versus TAC+MMF (cutoff: log2 fold

change�1, FDR�0.05). Flagellar motor switch protein (fliNY) and type IV pilus assembly

protein pilM (pilM) were significantly enriched in TAC+MMF-treated patients, while macro-

lide transport system mrsA (msrA) was more abundant in patients treated with EVE+MMF.

Finally, PERMANOVA revealed that among the variables analyzed and included in our

model, only the consumption of sugar significantly influenced beta diversity.
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Conclusions

Our study, although performed on a relatively small number of patients, showed, for the first

time, specific immunosuppressive-related effects on fecal microbiome of renal transplant

recipients and it suggested that the analysis of the gut microbes community could represent

a new tool to better understand the effects of drugs currently employed in organ transplanta-

tions. However, multicenter studies including healthy controls should be undertaken to bet-

ter address this objective.

Introduction

In recent years, advances in biotechnology have increased our knowledge of the human intesti-

nal microbiome, the entire collection of the genomic elements of a specific microbiota [1]. In

particular, metagenomics, through the sequencing of bacterial genomic DNA from the gut,

has permitted the evaluation of the genetic potential and complexity of the microbial popula-

tion from the gastrointestinal tract in several clinical settings. Additionally, recent studies have

evaluated the role of the gut microbiome in the drug response and the possible impact of the

drugs on the composition of the gut microbiota with clinical, metabolic/biochemical and

immunological consequences [2].

However, although the study of the gut microbiome is a recent emerging field in medicine,

few reports have measured the modification of this complex system in renal transplant recipi-

ents [3,4]. Furthermore, no analyses have been conducted to deeply analyze genomic changes

induced by specific immunosuppressive medications (particularly mTOR-inhibitors) chroni-

cally employed in this population to avoid a rapid loss of graft function.

mTOR-inhibitors (mTOR-I) are less frequently employed immunosuppressive medications

that act by inhibiting the mammalian target of rapamycin (mTOR), a regulatory protein kinase

primarily involved in several biological functions (e.g., protein synthesis, autophagy, cytoskele-

ton remodeling) essential for lymphocyte proliferation.

The more commonly used calcineurin inhibitors (cyclosporine and tacrolimus) suppress

the immune system by preventing interleukin-2 production in T cells. Both drug categories

can be used alone, combined or co-administered with glucocorticoids (methylprednisolone,

prednisolone) and antiproliferative agents (azathioprine, mycophenolate mofetil).

Based on available data obtained by studies performed in different fields of medicine, it is

plausible that the continuous administration of immunosuppressive drugs in transplanted

patients may alter their intestinal microbial balance with a potential clinical impact and a cen-

tral role in the onset and development of systemic complications (e.g., recurrent infections,

reduced response to antibiotics, metabolic and cardiovascular alterations). Additionally, the

modification of the intestinal microbe-associated functional integrity of the gut microbiota

may contribute to the correct pharmacokinetics of these drugs, causing important, severe

adverse renal and systemic effects.

Recently, renal transplant recipients who developed post-transplant diarrhea, a frequent

complication with a significant clinical impact on graft survival, were shown to possess re-

duced saccharolytic bacteria (e.g., Dorea, Coprococcus, Ruminococcus, Bacteroides) commonly

associated with a state of intestinal homeostasis. The authors hypothesized that the use of

probiotics including these species could represent a complementary strategy to avoid this

complication. The study further described a reduction in Bacteroides and an increase in Proteo-
bacteria in transplant patients’ microbiota when compared to those of healthy people [4].
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Additionally, the same authors reported that patients who developed urinary tract infections

had an increase of Enterococci [4]. These results were in line with previous studies carried out

in bone marrow transplant patients [5].

Therefore, we employed an innovative whole metagenomic profiling approach to find taxo-

nomic, functional and genomic differences of the gut microbiome in a group of renal trans-

plant recipients undergoing maintenance treatment with 2 different immunosuppressive

schemas: a less commonly used combined regimen of everolimus (EVE) plus mycophenolate

mofetil (MMF) (used in approximately 3% of patients) versus a standard immunosuppressive

protocol with tacrolimus (TAC) plus MMF.

Material and methods

Patients

From February to April 2016 a total of 20 stable adult deceased-donor renal transplant recipi-

ents at least 6 months post-transplant [EVE group median (IQR):4.7 years (3.3–6.7) versus

TAC group: 5.8 years (4.4–7.4)] were included in this study after signing an informed consent

form.

Based on the maintenance immunosuppressive treatment, 9 patients (M/F: 7/2) were

treated with everolimus (EVE, Certican, Novartis, levels 3–6 ng/ml) and 11 (M/F: 9/2) with

tacrolimus (TAC, Advagraft, Astellas, levels 4–8 ng/ml) in combination with mycophenolate

mofetil (MMF, Cell-Cept, Roche) 1000 mg b.i.d. and methylprednisolone 4 mg/day. All

patients enrolled received the following induction therapy: 500 mg of methylprednisolone

intra-operatively, 250 mg of prednisone daily, with the dose tapered to 25 mg by day 8; 20 mg

of a chimeric monoclonal anti-CD25 antibody (Simulect, Novartis) intravenously on day 0

and day 4.

Furthermore, EVE+MMF- and TAC+MMF-treated patients were of similar age (TAC

+MMF mean±SD: 60±11.4 versus EVE+MMF: 65±7.6 years) and had similar serum creatinine

levels [TAC+MMF median (IQR): 107 (95–167) versus EVE+MMF: 99 (87–115) mmol/l] at

the time of enrollment.

Patients with biopsy-proven acute rejection in the 6 months prior to the study, as well as

those with active infections (including cytomegalovirus (CMV), Epstein-Barr virus (EBV) and

BK virus), acute or recurrent urinary tract infections, gastrointestinal disorders, or malignan-

cies at the time of enrollment, were excluded from the study. In addition, patients who

received antibiotics, antiviral or nonsteroidal anti-inflammatory drugs during the previous 6

months were not enrolled.

After signing the consent form, patients from both groups were requested to complete a

lifestyle and simplified food frequency questionnaire (S1 Table).

The study was carried out according to the principles of the Declaration of Helsinki and

was approved by the Verona University Hospital ethics committee (code 752CESC).

Additionally, none of the transplant donors were from a vulnerable population and all

donors or next of kin provided written informed consent that was freely given.

Sample isolation

Nucleic acid isolation was performed with the MoBio PowerMag1 Microbiome kit (Carlsbad,

CA) according to the manufacturer’s guidelines and optimized for high-throughput process-

ing. All samples were quantified via the Qubit1 Quant-iT dsDNA High Sensitivity kit

(Invitrogen, NY) to ensure that they met the minimum DNA concentration and quantity

requirements.
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Library preparation and raw data processing

Samples were prepared for sequencing with the Illumina Nextera kit and quantified with

Quant-iT dsDNA High Sensitivity assays. Libraries were pooled and run with 100-bp paired-

end sequencing protocols on the Illumina HiSeq 2500 platform.

Raw sequence reads have been deposited at the European Nucleotide Archive under pri-

mary project accession number PRJEB20049.

Host sequences were removed with Kraken [6]. Remaining reads were processed with

Trimmomatic [7] to trim adapter sequences and low-quality ends (Q<20). Reads shorter than

35 bp after trimming were discarded. rRNA sequences from all the three domains of life were

identified and removed with SortMeRNA 2.0 [8]. Contaminant sequences were removed with

Bowtie2 [9].

Taxonomic profiling

Metagenomic Phylogenetic Analysis, version 2.0 (MetaPhlAn2, [10]) was used for the taxo-

nomic profiling of the metagenomic samples. Raw non-host reads were used directly because

low-quality reads were ignored, as were human, 16S rRNA and tRNA reads. Marker genes

were identified for bacteria, archaea, viruses and eukaryotic microbes.

Functional analysis

Filtered DNA sequences were mapped against a reference database of all proteins within the

KEGG database (version 75.0). The search for translated DNA sequences was executed using

Diamond [11], and hits that spanned�20 amino acids with�80% similarity were collected.

Alpha diversity (within-sample diversity) and beta diversity (sample-to-

sample dissimilarity) metrics

To evaluate the degree of variation of the microbial community structure within a sample, we

measured the alpha diversity by employing the Shannon diversity index [12]. This index uti-

lizes the richness of a sample along with the relative abundance of the detected operational tax-

onomic units (OTUs, n: 359), functional genes (n: 6520) and pathways (n: 340) to calculate a

specific index.

All profiles were compared in a pair-wise fashion to determine a dissimilarity score and

were stored in a distance dissimilarity matrix. Abundance-weighted pair-wise differences

between samples were calculated using the Bray-Curtis dissimilarity [13]. The binary dissimi-

larity values were calculated with the Jaccard Index [14].

Whole-microbiome significance testing

Permutational analysis of variance (PERMANOVA) was utilized to determine significant dif-

ferences among discrete categorical or continuous variables. PERMANOVA utilizes the sam-

ple-to-sample distance matrix directly rather than a derived ordination or clustering outcome.

Significance testing

Significance testing for OTUs and pathway-level data was accomplished with a Wilcoxon rank

sum test.

Univariate differential abundance of functional genes was tested with a negative binomial

noise model for the over-dispersion and Poisson process intrinsic to these data, as imple-

mented in the DESeq2 package [15,16]. DESeq was run under default settings, and q-values
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were calculated with the Benjamini-Hochberg procedure to correct p-values while controlling

for false-discovery rates.

Results

Taxonomic and pathway and gene functional diversity was similar

between the 2 study groups

As shown in Fig 1, samples from the EVE+MMF group had similar degrees of Shannon diver-

sity at the operational taxonomic unit (OTU) level, microbial gene level and pathway level

compared to the TAC+MMF group.

Both study groups had a similar abundance of Ruminococcaceae, Bifidobacteriaceae,
Lachnospiraceae, Streptococcaceae, Eubacteriaceae, Bacteroidaceae, Coriobacteriaceae and

Fig 1. Alpha diversity estimates. Each point shows a sample’s pathway diversity calculated with the Shannon Diversity Index. Samples from both

therapies had similar degrees of Shannon diversity at the OTU level (A), microbial gene level (B) and pathway level (C).

https://doi.org/10.1371/journal.pone.0178228.g001
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Enterobacteriaceae families (Fig 2A and Table 1). Interestingly, taxonomic families belonged

mainly to phylum Firmicutes (Ruminococcaceae, Lachnospiraceae, Streptococcaceae, Eubacter-
iaceae) which accounted for more than 50% of the gut microbial content, with a relatively low

percentage of Bacteroidetes (family Bacteroidaceae). The different composition compared to

the report of Lee et al [4], could also be due to the exclusion of patients exhibiting acute or

chronic diarrhea.

Additionally, in all patients, the highly conserved bacterial ATP-binding cassette, subfamily

B (ABCB-BAC), putative ATP-binding cassette (ABC) transport system permease protein

(ABC.CD.P), RNA polymerase beta prime subunit (rpoC), RNA polymerase subunit beta

(rpoB), beta-galactosidase (lacZ), periplasmic beta-D-glucoside glucohydrolase (bgIX), DNA

gyrase subunit A (gyrA), and carbamoyl-phosphate synthase large subunit (carB, CPA2) were

the top 8 most abundant functional genes (Table 2 and S1A Fig).

Fig 2. Proportional abundance. (A) The most abundant taxa at the family level. Samples from both therapies had similar abundances of Ruminococcaceae,

Bifidobacteriaceae, Lachnospiraceae, Streptococcaceae, Eubacteriaceae, Bacteroidaceae, Coriobacteriaceae and Enterobacteriaceae families. (B) The

abundance of starch and sucrose metabolism in the 2 study groups. Compared to the EVE+MMF group, TAC+MMF-treated patients were enriched in this

pathway.

https://doi.org/10.1371/journal.pone.0178228.g002

Table 1. The top 8 most abundant families in the 2 study groups.

Family Chi-square KW p-val TAC+MMF Mean (sd) EVE+MMF Mean (sd)

Ruminococcaceae 0.0361 0.85 22.5 (14) 21.5 (15.8)

Bifidobacteriaceae 0.0361 0.85 22.1 (24.1) 16.8 (11.5)

Lachnospiraceae 0.1169 0.73 13.7 (9.57) 11.7 (6.14)

Streptococcaceae 0.9019 0.34 8.49 (7.25) 15.1 (14.5)

Eubacteriaceae 0.1746 0.68 10.3 (12.6) 7.98 (10.2)

Bacteroidaceae 0.5209 0.47 5.27 (5.62) 6.22 (5.59)

Coriobacteriaceae 0.1746 0.68 3.43 (2.53) 5.37 (6.86)

Enterobacteriaceae 0.1444 0.70 1.91 (3.57) 2.94 (3.85)

https://doi.org/10.1371/journal.pone.0178228.t001
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Interestingly, although pathway analysis showed no substantial differences between the two

study groups (S1B Fig), the samples for renal transplant patients undergoing maintenance

treatment with EVE+MMF exhibited a lower abundance of starch and sucrose metabolism

pathway genes (Chi-square: 6.87; p-value: 0.01) (S1B Fig and Fig 2B) than those treated with

TAC+MMF. This drug-induced microbiomic metabolic change might specifically influence

intestinal habit and modify susceptibility to infections.

Three genes discriminated EVE+MMF from TAC+MMF patients

To identify specific drug-related differences in the microbiome, we employed several bioinfor-

matics algorithms.

Interestingly, comparative statistical analysis revealed that the 3 top functional genes

(detected out of 4515 tested) were able to highly discriminate EVE+MMF versus TAC+MMF

(cutoff: log2 fold change�1, FDR�0.05). Particularly, the macrolide transport system mrsA

(msrA) was significantly enriched in EVE+MMF, while the flagellar motor switch protein

(fliNY) and type IV pilus assembly protein pilM (pilM) were increased in the TAC+MMF

group (Fig 3 and Table 3).

In contrast, data analysis revealed that out of the 262 tested, no OTUs passed multiple test-

ing correction. However, 11 OTUs met the log2 fold change threshold and had unadjusted p-

values<0.05 (S2 Table). Two of the 11 OTUs were enriched in TAC+MMF-treated subjects,

and the rest were enriched in EVE+MMF-treated patients.

One OTU enriched in the TAC+MMF treatment group, Haemophilus parainfluenzae, was

identified as an opportunistic pathogen. H. parainfluenzae is often seen in the intestinal micro-

flora [17,18]. However, H. parainfluenzae OTUs only accounted for a small percentage of the

whole microbiomes (mean 0.05% in TAC+MMF and 0.01% in EVE+MMF).

Similarly, no pathways were significantly different between the two study groups after mul-

tiple testing correction. Five pathways had an unadjusted p-value<0.05 but did not have an

absolute log2 fold change greater than 1 (S3 Table).

The consumption of sugar was significantly correlated with microbiome

composition in renal transplant patients

To estimate the degree of variation of microbial community composition among samples and

to better understand which variables significantly contributed to beta diversity, a multivariate

analysis that included demographic, clinical and food frequency variables was carried out.

Abundance-weighted sample pair-wise differences were calculated using the Bray-Curtis dis-

similarity [13].

Table 2. The top 8 most abundant functional genes in the 2 study groups.

Gene Chi-square KW p-val TAC+MMF Mean (sd) EVE+MMF Mean (sd)

ABCB-BAC 0.0361 0.85 1.35 (0.149) 1.33 (0.126)

ABC.CD.P 1.7677 0.18 0.768 (0.164) 0.692 (0.0982)

rpoC 1.7677 0.18 0.472 (0.0477) 0.502 (0.0625)

rpoB 1.0519 0.31 0.47 (0.051) 0.493 (0.0531)

lacZ 2.4257 0.12 0.481 (0.0727) 0.42 (0.14)

bglX 3.1876 0.07 0.484 (0.0752) 0.381 (0.128)

gyrA 1.5714 0.21 0.447 (0.0515) 0.411 (0.0522)

carB, CPA2 0.417 0.52 0.43 (0.062) 0.431 (0.071)

https://doi.org/10.1371/journal.pone.0178228.t002
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Notably, PERMANOVA revealed that the consumption of sugar was highly correlated with

significant differences in taxonomic (OTU) beta diversity (p-value: 0.0136), functional gene

content (p-value: 0.0116), and pathway differences (p-value: 0.0035) among samples (Table 4).

The frequency of consumption of sugar is reported in S2 Fig.

Interestingly, although it did not reach statistical significance, the consumption of fish,

fresh fruit and legumes may have contributed to differences in the microbiome.

Samples did not cluster or separate according to immunosuppressive therapy in any of the

3 ordination analyses (taxonomy, functional gene, and pathway) (Fig 4).

Discussion

The relationship between the microbiome and drug response represents a new and fascinating

research topic in medicine. However, to date, only a few reports have been published in the

Fig 3. Differentially abundant features. Features were considered significant if their FDR-corrected p-value

was less than or equal to 0.05 and the absolute value of the log2 fold change was greater than or equal to 1.

Each point represents a functional gene that differentiates TAC+MMF and EVE+MMF therapies. The TAC

+MMF group had an enrichment of genes for flagellar motor switch protein (fliNY, fliN) and type IV pilus

assembly protein (pilM). EVE+MMF samples had an enrichment of macrolide transport system ATP-binging/

permease protein (mrsA, vmlR).

https://doi.org/10.1371/journal.pone.0178228.g003

Table 3. List of the different functional genes.

KEGG Orthology Gene Description log2 Fold Change p-value padj

K02417 fliNY, fliN flagellar motor switch protein; bacterial chemotaxis and flagellar assembly 1.402666107 3.29E-05 0.04957831

K18231 msrA, vmlR macrolide transport system ATP-binding/permease protein -1.451499003 5.31E-06 0.02397658

K02662 pilM type IV pilus assembly protein PilM (type 2 secretion system) 1.409863436 1.85E-05 0.04185832

https://doi.org/10.1371/journal.pone.0178228.t003
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field of renal transplantation, none of them are exhaustive [19–21], and none have analyzed

the fecal microbiome profile. mTOR-I might be expected to have effects on the microbiome, as

mTOR signaling plays a significant role in bacterial recognition by immune cells [22].

In the present study, although performed on a small patient subset (20 patients), we con-

ducted, for the first time, whole fecal metagenomic functional profiling through shotgun

sequencing finalized to identify differences between two treatment protocols (EVE+MMF

versus TAC+MMF). Notably, the small number of patients included was due to 1. the employ-

ment of a non-standard immunosuppressive schema based on EVE+MMF (used in approxi-

mately 3% of patients); 2. the strict inclusion criteria finalized to minimize confounding

demographic, clinical, environmental and pharmacological variables; and 3. the high cost of

the methodology used.

The methodology utilized in our study allowed us to comprehensively analyze a large num-

ber of genes in all organisms present in fecal samples, enabling us to evaluate bacterial diversity

and to detect the abundance of microbes. This method of sequencing can detect very low-

abundance members of the microbial community that may be missed using other methodolo-

gies. However, because of the large amount of metagenomic data and the presence of specific

technical problems, skilled bioinformaticians, in addition to novel and efficient computational

tools, are required [23].

Table 4. Identification by multivariate (PERMANOVA) analysis of clinical, demographic and food frequency variables significantly contributing to

the beta diversity of the samples.

Variable Class Taxon p-value Gene p-value Path p-value

age 36–77 0.1251 0.474 0.5336

gender F, M 0.2779 0.6765 0.8047

BMI 20–28.2 0.1069 0.3957 0.3162

TAC level 4–9.2 0.3634 0.7055 0.7408

EVE level 4.8–9.3 0.4741 0.9229 0.4629

comparison TAC, EVE 0.646 0.626 0.566

creatinine level 65–245 0.4892 0.8314 0.7175

sequences 14442927–27282343 0.59 0.3859 0.1208

sampling timeline 0.52 0.8132 0.57 0.5825

sport hours 0–10 0.158 0.5736 0.5823

sport No, Yes 0.2059 0.4328 0.2983

barley oats L0. never, L1. yearly, L2. monthly, L3. weekly, L4. daily 0.1531 0.2826 0.2545

alcoholic drinks L0. never, L1. yearly, L2. monthly, L3. weekly, L4. daily 0.672 0.4451 0.4939

fish L0. never, L1. yearly, L2. monthly, L3. weekly 0.1194 0.0889 0.0514

fresh fruit L0. never, L3. weekly, L4. daily 0.3521 0.0625 0.0559

fresh meat L0. never, L2. monthly, L3. weekly, L4. daily 0.6368 0.5502 0.5189

legumes L2. monthly, L3. weekly, L4. daily 0.2832 0.0739 0.0801

nuts L0. never, L1. yearly, L2. monthly, L3. weekly 0.3652 0.6256 0.506

probiotics L0. never, L2. monthly, L3. weekly, L4. daily 0.7412 0.662 0.5669

sausages L0. never, L1. yearly, L2. monthly, L3. weekly, L4. daily 0.5898 0.1888 0.1484

soft drinks L0. never, L2. monthly, L3. weekly, L4. daily 0.4998 0.747 0.5063

sugar L0. never, L1. yearly, L2. monthly, L3. weekly, L4. daily 0.0136 0.0116 0.0035

vegetables L0. never, L4. daily 0.472 0.6275 0.7248

whole grains L0. never, L1. yearly, L2. monthly, L3. weekly, L4. daily 0.233 0.345 0.4386

gDNA conc 14.553–106.833 0.0663 0.0429 0.0649

MeDi Score 8–13 0.8867 0.6163 0.6903

https://doi.org/10.1371/journal.pone.0178228.t004
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Interestingly, our statistical analysis demonstrated that although the two groups of patients

exhibited a similar degree of alpha diversity at the taxonomic and gene/pathway expression

level, a comparative high-throughput analysis revealed that three functional genes clearly dis-

criminated EVE+MMF versus TAC+MMF (cutoff: log2-fold change�1, FDR�0.05). The fla-

gellar motor switch protein (fliNY) and type IV pilus assembly protein pilM (pilM) were

significantly enriched in TAC+MMF-treated patients, while the macrolide transport system

mrsA (msrA) was increased in patients treated with EVE+MMF.

The bacterial flagellum is a component shared by several pathogenic species, including Spi-
rochetes, E. coli [24] and Salmonella. This filamentous organelle mediates the movement in liq-

uid or semi-solid environments and chemotaxis. The flagellum components, in particular the

protein encoded by the FliN gene, give a clockwise or counterclockwise motion to direct bacte-

rial movement. It has also been observed that the deletion of structural proteins of the flagel-

lum can lead to a reduction in bacterial virulence [25,26].

Fig 4. Ordination analysis. Weighted ordination of taxa (A), functional genes (B) and pathway (C) using abundance. Dimensional reduction of the Bray-

Curtis distance between microbiome samples using the PCoA ordination method. P-value according to PERMANOVA.

https://doi.org/10.1371/journal.pone.0178228.g004
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Bacterial pili are hair-like structures on the cell surface of many bacteria that mediate the

adherence to surfaces or eukaryotic cells. PilM is a cytoplasmic actin-like protein that binds to

the short cytoplasmic N-terminus of the inner membrane protein PilN and, together with

inner membrane proteins PilO and PilNO and lipoproteins PilP and PilQ, constitutes the

secretin alignment subcomplex [27–29] of type IV pili. The PilMNOP complex is required for

efficient pilus assembly [30–32]. Type IV pili have several functions, including gliding motility,

protein secretion, adherence to eukaryotic cells, and twitching motility [33], which play a key

role in the rapid colonization of new surfaces under conditions of high nutrient availability

and in the development of biofilm [34].

A biofilm is an assemblage of different species of microbial cells irreversibly associated with

a surface and enclosed in a matrix of primarily polysaccharide material [35]. Interestingly, this

complex system also has a role in antimicrobial resistance through several mechanisms: cells

may exchange resistance plasmids within biofilms, bacteria in biofilms are less susceptible to

antibiotics, biofilm-associated gram-negative bacteria may produce endotoxins, and biofilms

are resistant to host immune system clearance [35].

Recent data have demonstrated that type IV pili can also sense mechanical features of their

environment and regulate surface-induced gene expression and pathogenicity [36]. In fact,

type IV assembly systems are functionally related to the type II secretion system, which is

responsible for the extrusion of folded proteins, including proteases, cellulases, pectinases,

phospholipases, lipases, and toxins contributing to cell damage and disease [37,38] and bacte-

rial survival.

The msr(A) gene encodes an ABC transporter protein that constitutes an efflux pump

mediating the bacterial resistance to macrolide [39].

Multi-drug efflux pumps (MEFs) are membrane protein complexes that allow the extrusion

of various substrates from the cells, particularly many antibiotics; they represent a well-

encoded bacterial resistance mechanism shared by numerous species, e.g., Enterobacteriaceae

[40], which are responsible for sepsis and urinary tract infections in transplant patients. This is

a molecular target of scientific research to create new antimicrobial drugs [23,41].

Moreover, the expression of the bacterial pilus, flagellar motor protein and MEF pumps are

characteristics of the Enterobacteriaceae group, which include Klebsiella pneumoniae, one of

the main pathogens responsible for urinary tract infections (UTIs) [42].

Recurrent UTIs, often caused by multi-drug-resistant organisms, are among the most fre-

quent infectious diseases in the kidney transplant population. Although they are not associated

with an increased mortality or organ loss, they often require prolonged hospitalization and

intravenous antibiotic therapies, with higher costs and risks for the patient [43,44].

Interestingly, an analysis of the available literature showed that the overall taxonomic and

genetic composition of the microbiomes of our renal transplant recipients was similar to that

of healthy subjects [45]. This result was probably due to the plasticity of the gut microbiota

and the absence of a significant renal functional impairment in our patients.

Additionally, our analysis revealed that the consumption of sugar was highly correlated

with significant differences in taxonomic (OTU) beta diversity (p-value: 0.0136), functional

gene content (p-value: 0.0116), and pathway differences (p-value: 0.0035) among samples.

This finding demonstrated that compared to immunosuppressive drugs, diet likely had a

major impact on variation in the gut microbiota composition.

Among all considered food categories, sugar significantly influenced beta diversity. For a

long time, the Western diet, which is high in sugars and fats, has been associated with dysbio-

sis, obesity, diabetes and metabolic syndrome [46–49]. Our findings confirmed that diet is

a factor capable, in a small period of time [50], of exerting selective pressure on microbial spe-

cies and on microbial genes and pathways that are functionally expressed in the intestinal
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microbial community. On the other hand, considering taxonomic composition, the taxonomic

families allotted to phylum Firmicutes (Ruminococcaceae, Lachnospiraceae, Streptococcaceae,
Eubacteriaceae) constituted, on average, the majority of microbial taxa present in the gut,

while the other most important phylum Bacteroidetes seemed to be poorly represented. This is

in line with observations reported by Lee and colleagues, who reported that Firmicutes and

Bacteroidetes in post-transplantation fecal specimens, were, respectively, the most abundant

bacterial taxa and much lower than observed in samples from healthy subjects analyzed by the

Human Microbiome Consortium [4]. The same observation is valid when considering the rel-

ative prevalence of Firmicutes and Bacteroidetes in stool samples from healthy Italian donors

[51].

In conclusion, our study, although performed on a limited sample size, showed, for the first

time, immunosuppressive-related effects on the fecal microbiome although the enrichment of

genes we found may have resulted from indirect effects and, while they may serve as useful bio-

markers, may not directly guide therapeutic interventions.

However we cannot exclude that in future a larger employment of metagenomics, could

lead to a breakthrough in understanding the effects of immunosuppressive drugs routinely

employed in renal and other solid organs transplantation. Undoubtedly, because results of this

study are mainly obtained analyzing a restricted number of variables correlated with the whole

gut microbial metagenomic data, they cannot be considered definitive. Multicenter studies,

including more clinical/pharmacological variables and a large number of patients and healthy

controls should be undertaken to obtain definitive results.
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