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Abstract

Natural antisense transcripts (NATs) are complementary to protein coding genes and poten-

tially regulate their expression. Despite widespread occurrence of NATs in the genomes of

higher eukaryotes, their biological role and mechanism of action is poorly understood. Zeb-

rafish embryos offer a unique model system to study sense-antisense transcript interplay at

whole organism level. Here, we investigate putative antisense transcript-mediated mecha-

nisms by ectopically co-expressing the complementary transcripts during early zebrafish

development. In zebrafish the gene Slc34a2a (Na-phosphate transporter) is bi-directionally

transcribed, the NAT predominantly during early development up to 48 hours after fertiliza-

tion. Declining levels of the NAT, Slc34a2a(as), coincide with an increase of the sense tran-

script. At that time, sense and antisense transcripts co-localize in the endoderm at near

equal amounts. Ectopic expression of the sense transcript during embryogenesis leads to

specific failure to develop a cerebellum. The defect is RNA-mediated and dependent on

sense-antisense complementarity. Overexpression of a Slc34a2a paralogue (Slc34a2b) or

the NAT itself had no phenotypic consequences. Knockdown of Dicer rescued the brain

defect suggesting that RNA interference is required to mediate the phenotype. Our results

corroborate previous reports of Slc34a2a-related endo-siRNAs in two days old zebrafish

embryos and emphasize the importance of coordinated expression of sense-antisense tran-

scripts. Our findings suggest that RNAi is involved in gene regulation by certain natural anti-

sense RNAs.

Background

Long non-coding RNAs (lncRNAs) play an essential role in coordinating the spatio-tempo-

ral transcription of complex genomes. Natural antisense transcripts (NATs) constitute a

particular group of lncRNAs with the hallmark of sharing complementarity with related,
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protein-coding sense mRNAs [1–3]. As a consequence, co-expressed sense/antisense tran-

scripts can hybridize and potentially feed into double stranded RNA (dsRNS) mediated

pathways. The biological relevance of dsRNA intermediates is supported by the observation

that sense and antisense transcripts are usually detected in the same RNA preparation [4]

and also by recent reports focussing on specific bi-directionally transcribed genes. In verte-

brates up to 72% of genomic loci show evidence of bi-directional transcription and poten-

tially express NATs [5]. These are enriched in testis, particularly in haploid spermatids, but

are also found in somatic cells of all tissues [6, 7]. Remarkably, gene arrangements that give

rise to sense-antisense hybrids are significantly under represented on the mammalian X

chromosome [8, 9].

As a consequence of base complementarity, NATs are potentially highly specific regula-

tors of their related sense transcripts, through interference at the transcriptional level or the

formation of dsRNA. Both inhibitory and stimulatory impacts of NATs on the expression of

related sense transcripts have been described [5, 10]. Alike other lncRNAs, NATs can form

complexes with chromatin modifying proteins to alter the accessibility of the specific locus,

thus restricting or enhancing transcription [11, 12]. Aberrant NAT-expression was also

shown to induce DNA methylation of the sense promoter and knockdown the cognate pro-

tein coding gene [13, 14]. Mechanisms involving dsRNA formation affect the half-life of the

sense transcript by masking microRNA binding sites, AU-rich elements or trigger RNA

interference [15–19]. In these cases, hybrid formation occurs at the 3’end of the sense tran-

script; conversely, 5’ complementarity may increase translation efficiency by masking out of

frame initiation codons [20, 21]. Nevertheless, there is a striking discrepancy between the

large number of antisense transcripts and the current understanding about the associated

regulatory mechanisms.

The Slc34a gene family encodes epithelial phosphate (Pi) transporters and selected verte-

brate paralogues are transcribed in both directions [22]. In human and mouse, for example,

the NAT overlapping the Slc34a1 gene arises from a downstream single exon gene (PFN3/
Pfn3) and represents a spliced and poly-adenylated read-through transcript. Slc34a encoded

proteins are predominantly expressed in intestine and in kidney and are regulated by parathy-

roid hormone, vitamin D3 and fibroblast growth factor 23, factors that are essential to balanc-

ing body Pi levels [23, 24]. In contrast to the well-established physiological function of Slc34a
encoded proteins, the biological role of the NAT is largely hypothetical and may not be related

to maintaining phosphate (Pi) homeostasis.

In zebrafish, the isoform Slc34a2a features a NAT which is driven by a bi-directional pro-

moter shared with the Rbpja gene [22, 25] (Fig 1A). Due to the transparent appearance of zeb-

rafish embryos, expression profiles of particular transcripts within the entire organism as well

as the morphological consequences of gene overexpression or knockdown can be easily moni-

tored. We have found previously that Slc34a2a sense and antisense transcripts are co-expressed

in zebrafish embryos at around two days post fertilization. We also detected short RNAs by

northern blotting during the period of co-expression [19, 26]. Here, we report that transcripts

from the bi-directionally transcribed Slc34a2a locus show different spatio-temporal expression

in whole mount zebrafish embryos. Only at hatching stage the protein coding sense transcript

and the antisense transcript are co- expressed in the endoderm, coinciding with the detection

of Slc34a2a related endo-siRNAs [19]. In order to explore the consequences of dysregulated

sense-antisense co-expression and to characterize putative, antisense triggered regulatory

mechanisms we injected various RNAs into fertilized zebrafish eggs and monitored the devel-

opment of the embryos. Premature presence of the sense RNA leads to a specific phenotype

that lacks the cerebellum. The defect depends on complementary RNA structures and can be

rescued by the knockdown of Dicer.

Dicer-dependent consequences of ectopic sense-antisense RNA expression in zebrafish embryos
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Results

To characterize potential interactions between complementary Slc34a2a sense and antisense

transcripts, we quantified and visually demonstrated the expression of these RNAs during zeb-

rafish development. We performed RT-qPCR with RNA extracted from individual zebrafish

embryos and groups of five. The latter proved more reliable and therefore these data are pre-

sented. Primers specific for Slc34a2a, antisense, Rbpja and the paralogue Slc34a2bwere used

(S1 Table) and the Ct values were compared to the actin signal from the same cDNA sample.

In line with previous end-point PCR data [26], we found a gradual increase of the Slc34a2a
sense transcript with a parallel decrease of the antisense transcript (Fig 1B). The detection

limit is around a ΔCt value of 12, suggesting that Slc34a2a is only expressed after about 2 days

post fertilization (dpf). Slc34a2b is significantly expressed throughout embryonic development

as was Rbpja, though the latter showed a different U-shaped pattern. The fact that the antisense

transcript and Rbpja show significantly divergent expression suggest that the common pro-

moter is directionally regulated. The two start sites are 229 bp apart and located at either end

of a CpG island (Fig 1A). In order to assess the expression pattern, we performed whole

mount in situ hybridization (ISH) of the genes assessed by RT-qPCR; Shh (Sonic hedgehog)

was used instead of actin as a positive control. As detailed in Fig 1C the protein encoding sense

transcript is not present during early developmental stages and only becomes detectable in the

endoderm at 48 hpf. In contrast, the antisense transcript is expressed at early stages and is dif-

fusely localized in the head and later becomes more confined to the pharynx, endoderm, as

well as the primordial mid- and hindbrain channel. At early stages Rbpjamirrors the diffuse

expression pattern of the antisense transcript, but from 48 hpf onwards, it localizes to the otic

vesicle and outlines the posterior of the mesencephalon (midbrain). The transporter homo-

logue Slc34a2b is expressed at early stages but only becomes defined after 48 hpf in the phar-

ynx, endoderm and the otic vesicle. All embryos were destained extensively and diffuse signals

were confirmed using published findings (Rbpja, [27]).

Fig 1. Expression of Slc34a2a and related transcripts during zebrafish embryogenesis. (A) Schematic representation of the

Slc34a2a, Slc34a2a(as) and Rbpja loci. The antisense transcript Slc34a2a(as) is depicted in red. (B) RT-qPCR analysis of Slc34a2a,

Slc34a2a(as) and Rbpja transcripts including the paralog Slc34a2b. Based on negative controls using RNA as an input, the detection

limit was set at a ΔCt of 12 which is in agreement with ISH results. (C) Demonstration of Slc34a2a, Slc34a2a(as), Rbpja, Slc34a2b

and Shh (Sonic Hedgehog) transcripts at progressing stages of development by whole mount ISH.

https://doi.org/10.1371/journal.pone.0178219.g001
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Ectopic Slc34a2a sense RNA expression interferes with cerebellum

development

Given the early expression of the antisense transcript and the later co-localization of the two

complementary Slc34a2a transcripts, we tested the consequences of an ectopic presence of the

sense transcript during early developmental phases by injecting in vitro synthesized RNA into

fertilized eggs. To a certain extent this co-expression of sense and antisense transcripts would

mimic the endogenous situation at 48hpf where we previously detected both transcripts by

endpoint PCR and found endogenous siRNAs [26]. The paralogue Slc34a2bwhich shares

67.5% nucleotide sequence identity with Slc34a2awas used as a control. The embryos were

classified for morphological abnormalities at 24 and 48 hpf into levels 1 (normal), 2 (one organ

affected), 3 (2 or 3 visual/organ defects), 4 (multiple, severe defects) and 5 (developmental

arrest) (Fig 2A). As demonstrated in Fig 2B, injection of exogenous Slc34a2a sense transcript

Fig 2. Injection of Slc34a2a RNA into fertilized zebrafish eggs. A) Visual classification of malformations depending on the

severity of the defect: Level 1, wild type; level 2, one organ affected (size, shape or function, e.g. heart rate); level 3, 2–3 organs

affected, level 4, multiple malformations; level 5, developmental arrest. B) Phenotypic characterization of zebrafish embryos injected

with various RNAs, Slc34a2a (554 embryos in total), antisense (94 embryos) and Slc34a2b (538 embryos). C) (i) Anatomy of a 48 hpf

zebrafish embryo: Y, yolk sac; E, eye; O, otic vesicle (ear); R1/R7, rhombomeres; M, mesencephalon; C, cerebellum, in red. (ii) non

injected wild type embryo; (iii) Slc34a2a injected embryo; (iv) wild type embryo, Eng2 stained; (v) Slc34a2a injected embryo, Eng2

stained; (vi, vii) Slc34a2a(as) and Slc34a2b Eng2 stained.

https://doi.org/10.1371/journal.pone.0178219.g002
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interfered with the developmental program in a dose-dependent manner whereas injection of

neither the antisense transcript nor Slc34a2b had significant adverse effects. The lower range of

injected RNA (82.5 and 110 pg) produced a consistent, mild level 2 phenotype in more than 50

percent of the injected embryos, specifically lacking the cerebellum at 48 hpf. To demonstrate

this defect more clearly embryos were stained for Engrailed-2 (Eng2) expression, a specific

marker for the cerebellum and mid-hindbrain boundary [28–30]. As shown in Fig 2C, the

injection of Slc34a2aRNA eliminated the staining for Eng2 almost completely, whereas control

injections with antisense or Slc34a2b had no effect.

To monitor the consequences of injections on the spatio-temporal distribution of Slc34a
related transcripts we performed whole mount ISH with Slc34a2a, Slc34a2a(as) and Slc34a2b
injected embryos at 24 hpf (Fig 3A). Remarkably, after injection of Slc34a2a the transcript

remained undetectable, possibly the consequence of dsRNA formation with the endogenous

NAT as this staining was also significantly fainter (Fig 3A, second column, first two rows).

Injection of Slc34a2a(as) had an unexpected effect, a reduced staining of the antisense tran-

script (compare second row, first and third column), suggesting degradation and/or masking

of both endogenous and exogenous Slc34a2a(as). These findings are in contrast to injections

of the paralog Slc34a2bwhich produced an enhanced and more diffuse staining (column four,

row four). The expression pattern of other genes (Rbpja, Shh) was unaffected by the injections

(rows three and five). In contrast to the ISH results, RT-qPCR revealed a significant increase of

sense transcript levels after injection of Slc34a2a whereas Slc34a2a(as) or Slc34a2b injection

had no significant effect (Fig 3B, left panel). Remarkably, injection of all three transcripts

(Slc34a2a, Slc34a2a(as) and Slc34a2b) caused a marked down-regulation of the antisense tran-

script, which is line with the ISH data (Fig 3B middle panel, Fig 3A, row 2). Injection of

Slc34a2b RNA enhanced the RT-qPCR signal for Slc34a2b as expected whereas Slc34a2a(as)

did not affect Slc34a2b levels. Slc34a2a injection appeared to stimulate Slc34a2b expression

after 24 hpf (Fig 3B, right panel). The RT-PCR results are in line with the in-situ hybridizations

but suggest that the experimental detection of transcripts may be affected by the interactions

of injected and endogenous RNA (see Discussion). In the following experiments, the distinct

cerebellar phenotype was used as a read-out to test details of the mechanism triggered by

sense-antisense co-expression.

RNA complementarity causes developmental phenotype

The injection of a protein coding transcript complementary to an endogenous antisense tran-

script can trigger various pathways that interfere with the developmental program of the

embryos. Here, the specificity and the comparably subtle nature of the phenotype argues against

an ‘RNA overdose’ effect [31]; however, both protein and RNA could be the active agent. A

first hint towards an RNA-mediated mechanism was obtained when injection of capped and

uncapped sense transcripts (which display different translation efficiencies) produced identical

phenotypes. To rule out a protein mediated mode of action, we mutated the start codon to gen-

erate a Slc34a2a transcript with a frame shift (Slc34a2a-FS). Upon injection, a comparable phe-

notype as with the wild type sense transcript was observed, though with a slightly lower

penetrance (Fig 4A and 4B). These results point to an RNA-mediated mechanism.

To narrow down the active region of the sense transcript, we generated fragments of both

sense and antisense cDNAs with T7 and SP6 promoters at either end. We generated six tran-

scripts (three in each sense and antisense direction, Fig 3C) and injected them into zebrafish

embryos. The only fragment that caused phenotypic alterations of the cerebellum included the

sequence of the sense transcript complementary to exons 4 and 5 of the antisense transcript

(fragment 3 in Fig 3D–3F). None of the other fragments affected embryonic development,

Dicer-dependent consequences of ectopic sense-antisense RNA expression in zebrafish embryos
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including the fragment complementary to exons 1–3 of the antisense transcript. Eng2 staining

confirmed the effect of fragment 3 on cerebellum development (Fig 3F). These findings suggest

that it is not the interference with the antisense transcript per se but a sequence specific mecha-

nism involving RNA complementarity that causes the developmental phenotype.

Knockdown of Slc34a2a(as) using morpholino oligonucleotides

To investigate the role of the antisense transcript further, we aimed to knockdown Slc34a2a(as)

with a splice site morpholino oligonucleotide targeting the start of the third exon (S2 Table).

Fig 3. Injection of Slc34a2a RNA and related constructs into fertilized zebrafish eggs. A) ISH of wild type and injected embryos

at 24 hpf. Horizontal labels at the top indicate the injected material, vertical labels, left, represent the probes used for ISH. B) RT-

qPCR of injected zebrafish embryos; Slc34a2a, Slc34a2a(as) and Slc34a2b RNA was injected as indicated with the different colour

from brown to blue and assayed after 10 and 24 hpf. The left group represents RT-qPCR reactions with Slc34a2a-specific primers;

the middle group with Slc34a2a(as)-specific primers and the right group with Slc34a2b-specific primers. The values for non-injected

controls are indicated with grey, transparent boxed.

https://doi.org/10.1371/journal.pone.0178219.g003
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RT-qPCR confirmed a marked decrease in Slc34a2a(as) in response to the morpholino injec-

tions at 24 hpf (Fig 5A). At 2 pg/embryo, injections produced a variety of level three phenotypes

and the outcome could be improved to level 2 with a concomitant knockdown of p53 [32].

Unlike Slc34a2a injections, the morpholino knockdown did not produce a specific phenotype

affecting the cerebellum. By 48 hpf transcript levels of Slc34a2a(as) returned to wild type levels

and the embryos were phenotypically normal (level 1, Fig 5B right panel). At 5 pg/embryo the

splice site morpholino proved toxic, producing varied and unspecific defects and the outcome

could not be improved with concomitant knockdown of p53 (Fig 5B). Moreover, the embryos

only marginally improved in fitness at 48 hpf. These findings suggest that the knockdown of the

antisense transcript has no apparent developmental consequences. This assumption is sup-

ported by the fact that brain development is initiated before 24 hpf and the knockdown of the

antisense transcript is most prominent during this period [33]. In addition, the phenotypes

observed after morpholino injection are inconsistent and rather attributable to general toxicity

than to the specific effect observed upon Slc34a2aRNA injection. The fact that high doses

Fig 4. Injection of non- protein coding Slc34a2a RNA and Slc34a2a fragments interfere with zebrafish development. A)

Schematic representation of a zebrafish head at 48 hpf; forebrain, blue; eyes, yellow; otic vesicles, green and cerebellum, red. Middle

and left, wild type and Slc34a2a-FS injected embryo, respectively. Red arrows indicate the position of the cerebellum. B) Phenotypic

quantification of Slc34a2a and Slc34a2a-FS injected embryos (364 Slc34a2a-FS injected embryos were assessed). C) Schematic

representation of the fragments generated, even numbers represent sense orientation; uneven numbers, antisense orientation. The

large black boxes represent exons comprised in the relevant fragments, the open boxes are exons that are not represented in the

injected fragments. The small boxes in red indicate potential sites of hybridization of the injected fragments with an endogenous

transcript on the opposite strand. D) Top view of 48 hpf embryos with the fragments (Frag) injected as indicated. E) Phenotypic

assessment of injected embryos (90 or more per RNA). F) Eng2 stained embryos injected with the indicated fragments and the

relevant controls. All the embryos were tested in parallel with the same solutions and under identical conditions to allow for a

comparison of the relative intensities.

https://doi.org/10.1371/journal.pone.0178219.g004
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(110 pg) of exogenous antisense RNA are well tolerated also argues against a (dose-dependent)

role of Slc34a2a(as) in cerebellum development. We cannot, however, completely rule out the

possibility, that the antisense transcript plays a biological role between 24 and 48 hpf.

RNA interference

To test the occurrence of potential RNA duplexes in vivo, we knocked down Dicer in sense

transcript injected embryos. Two published anti-Dicer morpholinos were used including the

previously mentioned p53 targeting morpholino to reduce toxicity (S1 Fig and S2 Table) [34].

Fertilized eggs were injected with a cocktail of Slc34a2a sense RNA, and morpholinos targeting

Dicer and p53. As demonstrated in Fig 5, both Dicer MO and Slc34a2a caused the majority of

embryos to be scaled at level two or higher and p53 co-injection considerably alleviated the

Fig 5. Morpholino knockdown of Slc34a2a(as) and Dicer. A) RT-qPCR quantification of Slc34a2a, Slc34a2a(as) and Slc34a2b

after splice site morpholino injection at 24 hpf. Wild type non injected controls, light blue bars; 5 ng splice-site MO injected embryos

are in dark blue; 5 ng scrambled MO injected embryos are in blue. B) Phenotypic characterization of MO injected embryos at 24 and

48 hpf. The injected oligonucleotides and quantities are indicated below the bars. Phenotypic scaling was performed as described in

Fig 2. C) Rescue of cerebellum development by Dicer knockdown. Phenotypic assessment of embryos injected with combinations of

Dicer MO, p53 MO and Slc34a2a. D) 48 hpf zebrafish embryos injected with Dicer MO, p53 MO and Slc34a2a as indicated in the

pictures. In the upper panel, heads with red arrows indicating the cerebellum are shown; the lower panel shows ISH of embryos with

an Eng2 probe.

https://doi.org/10.1371/journal.pone.0178219.g005
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severity of the malformations. Whereas the Slc34a2a injected embryos displayed the previously

established cerebellar phenotype, the embryos receiving the triple cocktail showed light or no

developmental alterations (Fig 5C). Importantly, all fish developed a cerebellum which was

clearly visible and produced distinct Eng2 staining (Fig 5D).

We hypothesized that siRNAs produced by Dicer could be loaded onto Argonaute proteins

and mimic the action of microRNAs. A Blast search including the complementary regions of

Slc34a2a sense and antisense transcripts identified three genes that showed significant seed

identity including Rasl11b, Wnt4b and Psen2. We designed hairpin oligonucleotides contain-

ing a T7 RNA polymerase promoter sequence including the relevant sense-antisense fragments

separated by a 5 base linker sequence (S3 Table). The hairpin RNAs were synthesized in vitro
and injected alone (82.5 and 165 pg/embryo) or in combinations (40 pg each) into fertilized

eggs. The phenotypes of the developing embryos were classified as described (Fig 2A). Only

comparably high levels of RNA (165 pg/embryo) produced minor phenotypes with Rasl11b

and Psen2. Ras11b injected level 2 embryos appeared normal and in perfect proportion but

were slightly smaller than non-injected controls (hence level 2 classification; S2 Fig), however,

this defect resolved by 48 hpf. Psen2 hairpins caused a specific brain phenotype with increasing

amounts of RNA injected. In contrast to Slc34a2a sense injected embryos which showed a cer-

ebellum specific phenotype, the hindbrain was more broadly affected after Psen2 hairpin injec-

tions with enlarged rhombomeres but minimally affected cerebellum. Combinations of low

amounts of the different hairpin RNAs (40 pg each/embryo) failed to produce a developmental

phenotype, hence there was no obvious synergism between the three different hairpin con-

structs. Above described experiments have an additional read-out: The sequence similarity of

the three hairpin RNAs with Slc34a2a implies that the antisense transcript which is expressed

during early embryogenesis represents a perfect target. The lack of a phenotype with all hairpin

RNAs including an siRNA pool, again, argues against an essential role of Slc34a2a(as) in cere-

bellum development.

Discussion

We have used zebrafish embryos to comprehensively map Slc34a2a sense and antisense tran-

script expression and to investigate the consequences of ectopic expression of the sense tran-

script encoding an epithelial Na/phosphate cotransporter. Natural antisense transcripts not

only harbour large regulatory potential but also pose formidable technical challenges. For

example, simulated co-expression of a sense-antisense transcript pair almost inevitably leads

to altered expression levels of the endogenous transcript with little predictive value for an

antisense RNA mediated regulatory mechanism. Moreover, general procedures such as RNA

extraction in the presence of guanidinium salts (as contained in Trizol, for example) have pro-

found effects on the experimental outcome by very efficiently promoting RNA hybridization

[35]. As a consequence, sense and antisense transcripts expressed in different cells or cellular

compartments will hybridize during RNA extraction despite being kept apart under natural

circumstances.

The biological role of most natural antisense transcripts is still largely speculative and a vari-

ety of molecular mechanisms have been put forward (see reviews [36, 37]. Several lines of inde-

pendent evidence suggest that dsRNA formation is an essential step in an antisense mediated

regulatory cascade [18, 22, 38]. Hence, the expression of complementary transcripts must be

tightly coordinated to enable a timely interaction and also to avoid ectopic formation of

dsRNA, an event that potentially triggers an antiviral response [39]. We found widespread

expression of the Slc34a2a antisense transcript in the head region at stages where the protein

coding sense transcript was not expressed and predominant co-expression in the endoderm

Dicer-dependent consequences of ectopic sense-antisense RNA expression in zebrafish embryos
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thereafter; although the antisense transcript remained expressed at significant levels in other

tissues. This pattern confirms earlier results by Nalbant et al. who tested the expression of

Slc34a2a transcripts in adult fish and found the transporter expressed in intestine, kidney and

the eyes, whereas the antisense transcript was detected in all other tissues [40]. The co-expres-

sion of sense and antisense transcripts at 48 hpf implies that dsRNA can be formed. A report

by Carlile et al. demonstrating Slc34a2a derived endo-siRNAs indirectly supports the presence

of sense/antisense duplexes [19]. We attempted to demonstrate these molecules using the

dsRNA specific antibody J2 followed by RT-PCR. We validated the protocol for cell lysis and

immune purification of RNA duplexes using hybridized Slc34a2a/Slc34a2a(as) as spike-in

probes that were analysed by RNAseq. In all eight samples tested the antibody retained> 90%

of the dsRNA. The failure of detecting dsRNA in vivo is therefore likely due to the very low

and transient nature of the RNA hybrid.

The Slc34a2a antisense transcript and Rbpja are driven from the same promoter but in

opposite directions. The promoter contains a distinct CpG island which is frequently associ-

ated with the transcription of long upstream antisense transcripts (here in relation to Rbpja)

[41]. Lepoivre et al. also found co-regulation of many CpG promoter driven sense/antisense

transcript pairs, a feature that Rbpja and Slc34a2a antisense do not share. The two transcripts

do show similar overall expression levels (Fig 1) but a distinctly different expression pattern,

especially recognizable at stages past 24 hpf.

The ectopic expression of the protein coding sense transcript during early embryonic devel-

opment causes a dose dependent phenotype that –at low doses- specifically affects the forma-

tion of the cerebellum (Fig 2). RNA injected into zebrafish eggs is distributed uniformly and, if

coding, leads to an early expression of a transgene [42]. Considering the expression pattern of

the antisense transcript, the complementary endogenous and injected Slc34a2a(as)/ Slc34a2a
transcripts are therefore likely to hybridize in cells of the head region. dsRNA can be toxic and

interfere with zebrafish embryonic development in a dose dependent manner, especially if

more than 40 pg of dsRNA are injected per embryo [43]. The hybrids were found to trigger

either the PKR-interferon pathway or saturate RNA interference and deprive the embryos

from essential micro RNAs, mi430 in particular [44]. The latter scenario is particularly relevant

if hairpin RNAs are injected, though up to 400 pg shRNAs were used in these experiments

[45]. The observation that dsRNA derived from various genes produce significantly different

phenotypes suggest a sequence specific mode of action, likely at low RNA concentrations [46].

Our findings that only the fragment encompassing the naturally occurring complementary

region caused the brain phenotype, but not a different fragment of the same transcript, sup-

ports this conclusion. RNA concentrations used in our experiments are unlikely to cause

unspecific effects since the amount of dsRNA form depended on the lowly expressed endoge-

nous Slc34a2a antisense transcript. Moreover, the concentration of the shRNAs were chosen

to mimic the maximal level of dsRNA formed between exogenous sense and endogenous anti-

sense Slc34a2a transcript and were, with 165 pg/embryo below the amount used by Zhao et al.

[47]. Hence, several lines of evidence corroborate the specificity of our experimental findings

despite the reported drawbacks of RNA injections to manipulate zebrafish development. It has

to be kept in mind though, that concentration gradients of injected material, RNA secondary

structure and stability may significantly influences the local concentration of particular tran-

scripts which in turn affect the development of the embryo.

Endo-siRNAs or microRNAs derived from long sense/antisense duplexes are found pre-

dominantly in plants and C. elegans but their occurrence has been disputed in vertebrate cells

[48]. Recent findings, however, add weight to a hypothesis where sense/antisense derived

dsRNA feeds into an RNAi mediated regulatory pathway. First, there are increasing numbers

of reports demonstrating the co-expression of sense and antisense transcript in the same
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specific cell types [7]. This is in line with the ISH pattern detected in zebrafish embryos at 48

hpf (Fig 1) and also with the detection of endo-siRNAs from sense/antisense RNA at that stage

[19]. Second, the involvement of Dicer in the processing of endogenous RNA-RNA hybrids

was shown in both mouse brain and testis [18, 49]. Third, experiments using reporter con-

structs that are transcribed in both orientation point to a mechanism that involves dsRNA for-

mation, dicer processing, siRNA formation and concomitant transcriptional silencing of the

locus [50, 51]. The model systems included HeLa cells and zebrafish; of note, only in HeLa

cells transgene related siRNAs could be detected [51], whereas in zebrafish dicer dependence

of silencing and histone modifications were shown [50]. These findings suggest that the siR-

NAs generated through convergent transcription are difficult to detect, supported by the fact

that even from transfected HeLa cells the siRNAs needed to be enriched with p19 to become

detectable on northern blots [52]. We also attempted to detect Slc34a2a/Slc34a2a(as) related

siRNAs by northern blot but could not detect a signal (not shown). With the assumption that

endo-siRNAs can feed into RISC and eventually suppress the expression of target genes; we

identified transcripts with complementarity to the Slc34a1 sense/antisense overlap (Rasl1b,

Wnt4b and Psen2). Targeting Psen2 with a hairpin RNA affected the hindbrain but failed to

produce the cerebellum specific phenotype. The possibility that a more comprehensive cocktail

would create the phenotype related to ectopic expression of the entire sense transcript is con-

ceivable, however, this was not the case here. Interestingly, minimal changes to RNA structure

(frame shift, RNA truncation) that are not even close to the dsRNA region reduce the pene-

trance of the phenotype. Hence the structure and the bioavailability of the injected material

play a pivotal role in shaping the outcome of the developmental program. The involvement of

the three genes (Rasl11b, Wnt4b and Psen2) in producing the cerebellum phenotype is there-

fore debatable but may not be ruled out completely.

Conclusion

We have demonstrated that ectopic expression of the Slc34a2a sense transcript during early

zebrafish development leads to a specific brain phenotype and have used this system to get

insights into RNA regulatory mechanisms. Dicer dependence of the phenotype and previous

detection of endo-siRNAs suggest that both ectopic, as well as endogenous processing of sense

–antisense pairs, involve an RNAi related mechanism. Our results emphasize the importance

of correct timing of sense-antisense co-expression and support the involvement of RNA inter-

ference in antisense RNA mediated gene regulation related mechanisms. Intriguing possibili-

ties for such action would include endo-siRNAs as microRNA-like posttranscriptional gene

regulators or agents to establish a locus specific epigenetic status.

Materials and methods

The cDNA clones used in this study have been published elsewhere, Slc34a2a and Slc34a2a
(as) by Nalbant et al. [40], Slc34a2b by Graham et al. [53], Sonic Hedgehog (Shh) by Danesin

et al. [54] and Engrailed 2 (Eng2) was a kind gift from C. Houart. Fine chemicals were pur-

chased from Sigma Aldrich.

Zebrafish (Danio rerio)

Zebrafish were housed under standard conditions on a constant 14hour on /10 hour off light

cycle at 28C and fed with Artemia nauplii and commercial flake (Tetra) [55]. All animals were

maintained according to the requirements of the Animals (Scientific Procedures) Act 1986 of

the UK Government and conformed to Directive 2010/63/EU of the European Parliament
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under UK Home Office project licence 60/4548 held by BC. AB and Golden wild type strains

(Zebrafish International Resource Centre) were used in these studies.

Embryos were collected in blue water (2 ml of 0.1% methylene blue to 1 L aquarium tank

water) and after injection raised at 28˚C in E3 (5.0 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl,

0.33 mM MgSO, pH 7.0 with 1 M NaOH) or E3 PTU (0.2 mM 1-phenyl-2-thiourea (PTU) in

E3). Solutions were changed every 24 hours. Staging of embryos was done in accordance to

morphological criteria provided by Kimmel et al. [56].

In situ hybridization (ISH)

Embryos to be used for ISH were collected at the appropriate stage and fixed overnight at 4˚C

in 4% PFA. If the embryos were older than 24 hours, then they were first dechorionated with 2

mg/ml pronase [55, 57]. If younger than 24 hours, embryos were fixed and dechorionated

manually using forceps. Embryos were dehydrated using increasing concentrations of metha-

nol in water (25%, 50%, 75%, and 100%) prior to storage at -20˚C in 100% methanol.

Embryos were progressively rehydrated on ice with PBST and washed twice in 100% PBST.

10–20 embryos were treated in 10 mg/ml Proteinase K (Sigma, 1:1000 in PBST) at room tem-

perature, treatment length was adjusted to the age of the embryos. Embryos were washed twice

in PBST and post-fixed in 4% PFA for 20 min at room temperature. After two washes in PBST

the embryos were hybridized at 65˚C overnight in a hybridization mix containing (1% block-

ing reagent (w/v, Roche), 50% formamide, 25% 20x SSC, 0.1% yeast RNA (w/v, sigma), 0.01%

(w/v, Heparin, Sigma), 0.1% Tween20, 0.1% CHAPS) plus the appropriate RNA probes.

The subsequent washes were completed at 68˚C in 2x SSC for 5 min, 2x SSC for twice 30

min, 0.2x SSC for 2x 30 min and a final wash in 0.2x SSC at room temperature. Embryos were

equilibrated in MAB (0.1% Tween20), blocked in MAB/2% blocking reagent (0.1% Tween20,

2 h) and incubated with anti-DIG antibody (Roche, 1:4000) in MAB/blocking reagent over-

night at 4˚C. The embryos were washed in MAB and PBST (0.1% Tween20) and then equili-

brated in NTMT buffer (in mM: for 50 ml: 100 NaCl, 100 Tris HCl pH9.5, 50 MgCl2, 1%

Tween 20). Developing solution consisted of 3.3 μl NBT (Roche) and 3.5 μl BCIP (Roche) per

1.5 ml NTMT buffer. Embryos were washed in PBST stored in 70% glycerol/PBS prior to

imaging using a dissection light microscope (Leica). Groups within an experiment using the

same probe were strictly handled in parallel to allow for a relative comparison of intensities.

Injections

Borosilicate glass capillaries (Hilgenberg, Germany) were prepared using a pipette puller

(Sutter Instrument Co). Morpholinos or RNA were rear-loaded and a Femtojet injector

(Eppendorf) was used to consistently deliver a volume of 2 nl. Concentrations of RNA or mor-

pholinos were altered to adjust dose. The morpholino oligonucleotides were designed and syn-

thesized by GeneTools Inc. The sequences of the different morpholino oligonucleotides are

given below.

In vitro transcription

Plasmids were linearized using the appropriate restriction enzymes and capped mRNA was

synthesized using the mMESSAGE mMACHINE kit (Thermo Fisher Scientific). Non-capped

mRNA was made using either the T7 or SP6 MEGAscript Transcription kit (Thermo Fisher

Scientific). All RNA was DNase treated and purified using SigmaSpin™ Reaction Clean-Up col-

umns prior to use. RNA integrity was confirmed by gel electrophoresis. RNA was stored at

-80˚C until use. Prior to injection, RNA was diluted to the required concentration with 10%
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Phenol Red in water. The probes for in situ hybridization were generated as above but NTPs

were replaced with a mix of DIG labelled nucleotides (Roche).

RT-qPCR

Embryos to be used in RT-qPCR were not fixed but placed directly into Trizol (Ambion, Life

Technologies) and stored at -80˚C until needed. RNA from five embryos was extracted using

50 μl Trizol according to established protocols. The precipitated RNA was resuspended in

16 μl RNAse free water and treated with DNase I (Thermo Scientific) in the presence of MgCl2

and MnCl2. The reaction was stopped with EDTA and purified using SigmaSpin Reaction

Clean-up Columns (Sigma Aldrich). Approximately 1 ug of total RNA was reverse transcribed

using a Qiagen Omniscript RT kit and random nonamers (Sigma Aldrich); the supplier’s pro-

tocol was strictly followed. The cDNA was diluted 1:4 in RNAse free water whilst an aliquot of

the corresponding RNA was diluted 1:10 as a negative control. 10 ul reactions were run with

LightCycler1 480 Sybr Green I Master mix and gene specific primers (PrimerDesign or Simga

Aldrich) in 96-well plates. The Ct values of the reactions were compared to β-actin [58]. Each

sample was run in triplicate and a minimum of three different clutches were analyzed for each

data point.

Supporting information

S1 Fig. Knockdown of p53 alleviates morpholino toxicity at high concentrations. Non-tar-

get specific zebrafish embryo phenotypes can be caused by morpholino toxicity through the

activation of p53 mediated apoptosis [59]. Therefore, a p53 morpholino was co-injected with

the Dicer UTR morpholino to mitigate toxicity. Co-injection of 4 ng of p53 morpholino

caused a partial rescue of 10 ng Dicer UTR injected samples. The rescue was only visible with

high concentrations of Dicer UTR morpholino. When 4 ng p53 morpholino were co-injected

with 2.5 ng Dicer UTR morpholino, 98.2% of embryos were classified as level 3. The predomi-

nant phenotypic feature were shorter body length and non-circular eyes.

(DOCX)

S2 Fig. Injection of hairpin RNAs mimicking Slc34a2a/ Slc34a2a(as) interaction. A) Pheno-

typic classification of hairpin injected embryos at 48 hpf. B) Wild type, left; 165 pg Psen2, mid-

dle;165 pg Rasl11B, right. Red arrows indicate the space above the hindbrain, reduced in Psen2

embryos.

(DOCX)

S1 Table. Primers used for qPCR experiments.

(DOCX)

S2 Table. Morpholino oligonucleotides, sequences and their respective targets. All morpho-

linos were designed by and ordered from Gene Tools LLC.

(DOCX)

S3 Table. Hairpin RNA sequences. Sequence of the templates to synthesize hairpin RNAs

encompassing the complementary sequence between Slce34a2a sense/antisense that is identi-

cal to the three candidate genes Psen2, Wnt4b and Rasl11b. T7 promoter sequence in red;

Slc34a2a in pink; sequences in common between Slc34a2a sense, antisense and target gene in

blue; spacer sequence in grey; XbaI restriction site in italic; M13 universal primer in purple.

(DOCX)
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