
RESEARCH ARTICLE

Distributed optimization of multi-class SVMs

Maximilian Alber1☯, Julian Zimmert2☯, Urun Dogan3, Marius Kloft2*

1 Berlin Big Data Center, Berlin Institute of Technology, Berlin, Germany, 2 Department of Computer Science,

Humboldt University of Berlin, Berlin, Germany, 3 Microsoft Research, Cambridge, United Kingdom

☯ These authors contributed equally to this work.

* kloft@hu-berlin.de

Abstract

Training of one-vs.-rest SVMs can be parallelized over the number of classes in a straight

forward way. Given enough computational resources, one-vs.-rest SVMs can thus be

trained on data involving a large number of classes. The same cannot be stated, however,

for the so-called all-in-one SVMs, which require solving a quadratic program of size quadrat-

ically in the number of classes. We develop distributed algorithms for two all-in-one SVM for-

mulations (Lee et al. and Weston and Watkins) that parallelize the computation evenly over

the number of classes. This allows us to compare these models to one-vs.-rest SVMs on

unprecedented scale. The results indicate superior accuracy on text classification data.

Introduction

Modern data analysis requires computation with a large number of classes. As examples, con-

sider the following. (1) We are continuously monitoring the internet for new webpages, which

we would like to categorize. (2) We have data from an online biomedical bibliographic data-

base that we want to index for quick access to clinicians. (3) We are collecting data from an

online feed of photographs that we would like to classify into image categories. (4) We add

new articles to an online encyclopedia and intend to predict the categories of the articles. (5)

Given a huge collection of ads, we want to built a classifier from this data.

The problems above—taken from varying application domains ranging from the sciences

to technology—involve a large number of classes, typically at least in the thousands. This moti-

vates research on scaling up multi-class classification methods. In the present work, we address

scaling up multi-class support vector machines (MC-SVMs) [1]. There are two major types of

MC-SVMs:

1. One-vs.-one (OVO) and one-vs.-rest (OVR) MC-SVMs decompose the problem into mul-

tiple binary subproblems that are subsequently aggregated [1, 2]. Training can be paralle-

lized in a straight forward way.

2. All-in-one MC-SVMs extend the concept of the margin to multiple classes. Because there is

no unique extension of the margin concept, multiple all-in-one MC-SVMs have been pro-

posed, including the ones by Crammer and Singer (CS) [3], Lee, Lin, and Wahba (LLW)

[4], and Weston and Watkins (WW) [1, 5]. See [2, 6–11] for conceptual and empirical

comparisons.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Alber M, Zimmert J, Dogan U, Kloft M

(2017) Distributed optimization of multi-class

SVMs. PLoS ONE 12(6): e0178161. https://doi.org/

10.1371/journal.pone.0178161

Editor: Quan Zou, Tianjin University, CHINA

Received: January 19, 2017

Accepted: May 8, 2017

Published: June 1, 2017

Copyright: © 2017 Alber et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data is available in

the LSHTC corpus: http://lshtc.iit.demokritos.gr/.

Funding: Some authors were supported by

academic funding: MK acknowledges support by

the German Research Foundation (DFG) under KL

2698/2-1 and by the Federal Ministry of Education

and Research (BMBF) under 031L0023A and

031B0187B. MA acknowledges support by the

Federal Ministry of Education and Research

(BMBF) under 01IS14013A. Besides support in

form of salaries or scholarships, the funders did

not have any additional role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. The funder

https://doi.org/10.1371/journal.pone.0178161
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
https://doi.org/10.1371/journal.pone.0178161
https://doi.org/10.1371/journal.pone.0178161
http://creativecommons.org/licenses/by/4.0/
http://lshtc.iit.demokritos.gr/


Recently, Dogan et al. [11] have compared the various all-in-one MC-SVM variants on

rather moderately sized datasets and showed advantages of all-in-one MC-SVMs over OVR

MC-SVM, but—so far—slow training time has prohibited comparisons on data involving a

large number of classes.

The reason is that (linear) state of the art solvers require time complexity of Oð�d�n � C2
Þ and

memory complexity at least of Oð�nC2
Þ, where d is the feature dimensionality, �d the average

number of non-zeros (�d ¼ d for dense data), and �n the average number of samples per class.

This quadratic dependence on the number of classes C can be prohibitive for large C, often

leaving OVO and OVR as the only MC-SVM options in the big data setting.

In this paper, we focus on the comparison between OVR SVMs and all-in-one SVMs. We

do this by developing distributed algorithms where up to OðCÞ nodes solve WW and LLW in

parallel, dividing model and computation evenly. The resulting solvers are compared to a

state-of-the-art OVR solution.

The algorithm proposed for WW draws inspiration from a major result in graph theory:

the solution to the 1-factorization problem of a graph [12]. The idea is that the optimization of

a single coordinate αi,c of the dual objective involves only the two hypotheses wyi and wc. As in

the 1-factorization problem, we can thus form pairs of classes where the corresponding blocks

of coordinates can be optimized in parallel.

On the other hand, we parallelize LLW training by introducing an auxiliary variable �w into

the dual problem that decouples the objective into a sum over C many independent

subproblems.

We provide both multi-core and distributed implementations of the proposed algorithms.

We report on empirical runtime comparisons of the proposed solvers with the one-vs.-rest

implementation by LIBLINEAR [13] on text classification data taken from the LSHTC

corpus [14].

The main contributions of this paper are the following:

• We propose the first distributed, exact solver for WW and LLW.

• We provide both multi-core and truly distributed implementations of the solver.

• We give the first comparison of WW, LLW, and OVR on the DMOZ data from the LSHTC

‘10–’12 corpora using the full feature resolution.

We expect that the present work starts a line of research on parallelization of exact training

of various all-in-one MC-SVMs, including Crammer and Singer, multi-class maximum mar-

gin regression [15], and the reinforced multicategory SVM [16], enabling comparison of all

these methods on large datasets.

The paper is structured as follows. In the next section we discuss the problem setting and

preliminaries. In Section Distributed Algorithms, we present the proposed distributed algo-

rithms for LLW and WW, respectively. We analyze their convergence empirically in Section

Experiments. Followed by sections Discussion of related work and Conclusion.

Preliminaries

We consider the following problem. We are given data (x1, y1), . . ., (xn, yn) with xi 2 R
d and

yi 2 f1; :::; Cg. Each class has in average �n samples. The largest number of samples for a single

class is nmax. We are predicting using the model

ŷðxÞ :¼ argmax
c

wT
c x; ð1Þ

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 2 / 18

Microsoft Research provided support in the form

of salaries for author UD, but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The specific roles of this author are

articulated in the author contributions section.

Competing interests: UD is supported in the form

of salary by Microsoft Research. There are no

patents, products in development, or marketed

products to declare. This does not alter our

adherence to PLOS ONE policies on sharing data

and materials.

https://doi.org/10.1371/journal.pone.0178161


where W ¼ ðw1; ::;wCÞ 2 R
d�C are unknown parameters. The aim is to efficiently find good

parameters in order to predict well on new data using Eq (1).

To address this problem setting, a number of generalizations of the binary SVM [17] have

been proposed. We are specifically studying the following two formulations, dropping the bias

terms in both. Throughout this paper, l(x) = max{0, 1 − x} will denote the hinge-loss.

Lee, Lin, and Wahba (LLW) [4]

min
W

XC

c¼1

1

2
jjwcjj

2
þ C

X

i:yi 6¼c

lð� wT
c xiÞ

" #

s:t:
X

c

wc ¼ 0

ð2Þ

Weston and Watkins (WW) [5]

min
W

XC

c¼1

1

2
jjwcjj

2
þ C

X

i:yi 6¼c

lðwT
yi
xi � wT

c xiÞ

" #

ð3Þ

Both formulations lead to very similar dual problems, as shown below. For the dualization

of WW, we refer to [18]. The LLW dual is given below, where we introduce an auxiliary vari-

able �w that is exploited by our distributed algorithm, as explained in the next section.

max
a2Rn�C ;�w2Rd

XC

c¼1

�
1

2
jj � Xac þ �wjj2 þ

X

i:yi 6¼c

ai;c

" #

s:t: 8i : ai;yi
¼ 0;8c 6¼ yi : 0 � ai;c � C

ð4Þ

max
a2Rn�C

XC

c¼1

�
1

2
jj � Xacjj

2
þ
X

i:yi 6¼c

ai;c

" #

s:t: 8i : ai;yi
¼ �

X

c:c6¼yi

ai;c;

8c 6¼ yi : 0 � ai;c � C

ð5Þ

Derivation of lagrangian dual problems for Lin, Lee, and Wahba. Using slack variables,

the primal LLW problem reads

min
W

XC

c¼1

1

2
jjwcjj

2
þ C

X

i:yi 6¼c

xi;c

" #

s:t:
X

c

wc ¼ 0

8i :

xi;c � 1þ wT
c xi

8c 6¼ yi : xi;c � 0:

ð6Þ

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 3 / 18

https://doi.org/10.1371/journal.pone.0178161


We introduce Lagrangian multipliers a 2 Rn�C , b 2 Rn, and �w 2 Rd with αi,c, βi� 0.

LðW; x; a;b; �wÞ ¼
XC

c¼1

1

2
jjwcjj

2
þ
X

i:yi 6¼c

Cxi;c þ ai;cð1þ wT
c xi � xi;cÞ � bi;cxi;c

� �
" #

� �wTð
X

c

wcÞ

ð7Þ

Slater’s condition holds; therefore, we have strong duality and can use the dual

max
a;b;�a

min
W;x

LðW; x; a;b; �wÞ

s:t: 8 i 8 c : ai;c; bi;c � 0:

The partial derivatives are given by

@

@xi;c
LðW; x; a; b; �wÞ ¼ C � ai;c � bi;c

@

@wc
LðW; x; a; b; �wÞ ¼ wc þ

X

i:yi 6¼c

ai;cxi þ �w:

Setting those to zero leads to

8 i8 c : 0 � ai;c � C

wc ¼ �
X

i:yi 6¼c

ai;cxi þ �w

¼ � Xac þ �w:

And plugging in into the lagrangian, finally gives the dual

max
a2Rn�C ;�w2Rd

XC

c¼1

�
1

2
jj � Xac þ �wjj2 þ

X

i:yi 6¼c

ai;c

" #

8i :

ai;yi
¼ 0

8c 6¼ yi : 0 � ai;c � C:

ð8Þ

Distributed algorithms

In this section, we derive algorithms that solve (LLW) and (WW) in a distributed manner.

With start by addressing LLW.

Algorithm for Lee, Lin, and Wahba

First note the following optimality condition in (LLW):

�w ¼
1

C

XC

c¼1

Xac:

Which was exploited by prevalent solvers to remove the variable �w from the optimization.

In contrast, the core idea of our LLW solver is to actually keep this auxiliary variable, as it

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 4 / 18

https://doi.org/10.1371/journal.pone.0178161


decouples the objective function into the following sum:

objðaÞ ¼
XC

c¼1

subobjðac; �wÞ:

Then we perform dual block coordinate ascent (DBCA) [18, Algorithm 3.1] with a specially

tailored block structure, considering as blocks �w as well as each single coordinate αi,c. As we

observe from Eq (9), the optimization of the columns α:,c is mutually independent of each

other, given fixed �w. Hence, it can be distributed evenly over C many nodes. On the cth node,

we run coordinate ascend on the subobjective subobjðac; �wÞ over αi,c, i = 1, . . ., n, as described

in the next paragraph. After one epoch of α computation, the variable �w is updated via Eq (9).

The final algorithm is shown in Algorithm 1.

Algorithm 1 Lee, Lin, and Wahba

1: function SOLVE-LLW (C, X, Y)
2: for c ¼ 1::C do in parallel
3: wc 0
4: αc 0
5: for i 2 I do
6: ki xT

i xi

7: whilenot optimaldo
8: optimal True
9: shuffleData()
10: for i 2 I\Ic do
11: solve1DimLLW(i,c)
12: �w Reduce(

P
cwc=C)

13: wc wc � �w

As necessary step within Algorithm 1, we need to update every single αi,c. Optimizing αi,c is

solving the problem

argmax
d

Dðaþ dei;c; �wÞ

s:t: 0 � ai;c þ d � C;
ð9Þ

where ei;c 2 R
n�C is one at the (i, c)th coordinate and zero elsewise. Set wc :¼ � Xac þ �w; then

the gradient for δ is @

@d
D aþ dei;c
� �� �

¼ xT
i wc � xT

i xidþ 1: Hence, the optimal solution of

Eq (9) is given by d ¼ minfC � ai;c; maxf� ai;c; �
xTi wc � 1

xTi xi
gg: The corresponding pseudo-code

can be found in Algorithm 2.

Algorithm 2 Solving 1-dim sub-problem of LLW

1: function SOLVE1DIMLLW(i,c)
2: globalC, X, k, αc, wc, optimal
3: g wT

c xi � 1

4: if g < −� and αi,c < C then
5: δ min{C − αi,c, −g/ki}
6: optimal False
7: if g > � and αi,c > 0 then
8: δ max{−αi,c, −g/ki}
9: optimal False
10: wc wc + δxi
11: αi,c αi,c + δ

Convergence. It is well known that the block coordinate ascent method converges under

suitable regularity conditions e.g. [19, 20]. Our objective is continuously differentiable and

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0178161


strictly convex. The constraints are solely box constraints, hence the feasible set decomposes as

a Cartesian product over the blocks. Algorithm 1 traverses the two blocks in cyclic order.

Under these conditions, the DBCA method provably converges (e.g. Prop. 2.7.1 in [20]).

Note that in practice, we observed speedups by updating �w in Algorithm 1 after each tenth

of an epoch, breaking the cyclic order. The blocks of coordinates are then traversed in so-called

essentially cyclic order e.g. Section 2 in [19], meaning that there exists T 2 N such that each

block is traversed at least once after T iterations. Closer inspection of the proof in Prop. 2.7.1

in [20] reveals that the result holds also under this slightly more general assumption.

Further, we drop variables αi,c in the optimization (shrinking) if they are not updated in

three subsequent epochs. Once the stopping condition holds, we run another epoch of optimi-

zation over all variables (including the ones that were dropped). If the stopping criterion is

then met, we terminate the algorithm and continue optimization elsewise.

Implementation details. Our implementation uses OpenMPI for inter-machine (MPI)

[21] and OpenMP (MC) [22] for intra-machine communication. Note that Algorithm 1 has

very mild communication requirements: the only communication needed is the sum of all

weight vectors �w ¼
P

cwc. Hence, MPI suffers very little from communication overhead

between the various machines. In practice, we may not be able to fully parallelize to the maxi-

mum of C cores; therefore our algorithm will divide the set of classes into number-of-cores

many chunks and optimize each class sequentially.

Recall, �d is the average number of non-zero entries per sample and �n is the average number

of samples per class. Given c cores and I iteration steps, the optimization has an asymptotic

runtime estimate of O I � C
c � �n � �d þ d log 2c
� �� �

, where the first part of the sum amounts for

the gradient updates and the second for the model communication and update. Given an aver-

age dual sparsity as 1 � �a the algorithm needs at each node an asymptotic space complexity of

O C
c � ð

�d þ �n � �aÞ þ d
� �

to store the weight matrix, the dual coefficients and the weight vector

used for averaging.

Algorithm for Weston and Watkins

In this section, we propose a distributed algorithm for WW, which draws inspiration from the

1-factorization problem of a graph. The approach is presented below.

Preliminaries. Our approach is based on running dual coordinate ascend, e.g. algorithm

3.1 in [18], over αi,c on the (WW) objective function as follows. Denote the objective in Eq (5)

by D(α) and recall from [18] that optimizing αi,c is solving the problem

argmax
d

Dðaþ dei;cÞ

s:t: 0 � ai;c þ d � C:
ð10Þ

Setting wc = ∑i:yi6¼c(−xiαi,c + ∑c:c6¼yi xiαi,c), the gradient for δ is given by @

@d
D aþ dei;c
� �� �

¼

� xT
i ðwyi

� wcÞ � xT
i xidþ 1: Which is optimal at:

d ¼ min C � ai;c; max � ai;c;
xT
i ðwyi

� wcÞ � 1

2xT
i xi

� �� �

ð11Þ

This computation is summarized in Algorithm 3.

Algorithm 3 Solving 1-dim sub-problem of WW

1: function SOLVE1DIMWW(i,c)
2: globalC, X, wyi, wc, αc, optimal
3: g ðwT

yi
� wT

c Þxi � 1

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0178161


4: if g < −� and αi,c < C then
5: δ min{C− αi,c, −g/2ki}
6: optimal False
7: if g > � and αi,c > 0 then
8: δ max{−αi,c, −g/2ki}
9: optimal False
10: wyi wyi + δxi
11: wc wc − δxi
12: αi,c αi,c + δ

Core observation. We observe from above that optimizing with regard to αi,c will require

only the weight vectors wyi and wc. In other words, given four different classes c1, c2, c3, c4, the

optimization of the block of variables (αi, c1)i:yi=c2—according to Eq (11)—is independent of

the optimization of the block (αi, c3)i:yi=c4. Hence it can be parallelized. In the next section we

describe how we exploit this structure to derive a distributed optimization algorithm.

Excursus: 1-factorization of a graph. Assume that C is even. The core idea now is to

form C
2

many disjoint blocks ðai; c1Þi:yi¼c2 ; . . . ; ðai; cC� 1Þi:yi¼C of variables. Each of these blocks

can be optimized in parallel. The challenge is to derive a maximally distributed optimization

schedule where each block (αi, cj)i:yi=ck for any j 6¼ k is optimized.

To better understand the problem, we consider the following analogy. We are given a foot-

ball league with C teams. Before the season, we have to decide on a schedule such that each

team plays any other team exactly once. Furthermore, all teams shall play on every matchday

so that in total we need only C � 1 matchdays. This problem is the 1-factorization problem in
graph theory, e.g. [12]. The solution to this problem, illustrated in Fig 1, is as follows.

We arrange one node centrally and all other nodes in a regular polygon around the center

node. At round r, we connect the centered node with node r and connect all other nodes

orthogonal to this line. The pseudocode to compute the partner of a given node c at a certain

round r is given in Algorithm 5. Note that in case of an uneven number of classes, we intro-

duce a dummy class C þ 1, making the number of classes even. We run the algorithm, but skip

all computations involving the dummy class.

Algorithm. The algorithm, shown in Algorithm 4, performs DBCA over the variables αi,c
using the schedule derived in Section and the coordinate updates derived in Section.

Fig 1. 1-factorization. Illustration of the solution of the 1-factorization problem of a graph with C ¼ 8 many nodes. Node 8 gets arranged centrally

and at each step the pattern is rotated by one.

https://doi.org/10.1371/journal.pone.0178161.g001

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0178161.g001
https://doi.org/10.1371/journal.pone.0178161


Algorithm 4 Watkins-Weston

1: functionSOLVE-WW(c,X,Y)
2: for c ¼ 1::C do in parallel
3: wc 0
4: αc 0
5: for i 2 I do
6: ki xT

i xi

7: whilenot optimaldo
8: optimal True
9: shuffleData()
10: for r ¼ 1::C � 1 do
11: for c ¼ 1::C do in parallel
12: ~c matchClass(C; c; r)
13: if ~c > c then
14: for i 2 Ic do
15: solve1DimWW(i;~c)
16: for i 2 I~c do
17: solve1DimWW(i,c)

Algorithm 5 Solving the graph 1-factorization problem. Indices start with one.

1: functionMATCHCLASS(C,c,r)
2: if C is even and c ¼ C then
3: returnr
4: if c = r then
5: if C is even then
6: return C
7: else
8: returnc
9: returnmodð2r � c; C � 1Þ

Convergence and implementation details. Furthermore, note that our algorithm per-

forms the same coordinate updates as Algorithm 3.1 in [18]. Hence, they share the same favor-

able convergence behavior. Formally, convergence is guaranteed for exactly the same reasons

discussed in Section. We also employ the same speedup tricks, i.e. shrinking and updating

every tenth of an epoch.

In practice, because of limitations of computational resources, we might not be able to fully

parallelize to the maximum of C=2 cores. In that case, our algorithm divides the set of classes

into number-of-cores many chunks and solves each bundle sequentially. For optimal speedup,

it is advisable to arrange the classes into chunks of equal number of classes and data points.

Given the average number of non-zero entries per sample �d and the average number of

samples per class �n, c cores and I iteration steps, the optimization has an asymptotic runtime

estimate of O I � C � C
c � �n � �d þ d
� �� �

, where the first part of the sum amounts for the gradient

updates and the second for the model communication. Given an average dual sparsity as 1 � �a
the algorithm needs at each node an asymptotic space complexity of O C

c � ð
�d þ �n � �aÞ

� �
to store

the weight matrix and the dual coefficients.

As with LLW, we implemented a mixed MPI-OpenMP solver for WW. However, note that,

while LLW has mild communication needs, WW needs to pair the weight vectors of the

matched classes c and ~c in each epoch, for which C=2 weight vectors needs to communicated

among computers. Therefore it is crucial to communicate efficiently.

We tackled the problem as follows. First of all, we use OpenMP for computations on a sin-

gle machine (efficiently parallelizing among cores). Here, due to the shared memory, no

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 8 / 18

https://doi.org/10.1371/journal.pone.0178161


weight vectors need to be moved. The more challenging task is to handle inter-machine com-

munication efficiently. Our approach is based on two key observations.

If the data is high-dimensional data, yet sparse, we keep the full weight matrix in memory

for fast access, yet communicating only the non-zero entries between computers. Regardless of

the increased computational effort, this takes only a fraction of time compared to sending the

dense data.

Furthermore, we relax the WW matching scheme. Coming back to a football, consider each

country hosts a league, and inside the league, we match the teams as known. Now we would

like to match teams across leagues. In order to do so, we first match the countries with the

scheme from Section. For each pair of countries, call them A and B, every team from country

A plays any other team from country B. Coming back to classes and machines, this means we

transfer bundles of classes (countries) between computers. This drastically reduces the net-

work communication.

Experiments

This section is structured as follows. First we empirically verify the soundness of the proposed

algorithms. Then we introduce the employed datasets, on which we investigate the conver-

gence and runtime behavior of the proposed algorithms as well as the induced classification

performance.

Each training algorithm was run three times, using randomly shuffled data, and the results

were averaged. Note that the training set is the same in each run, but the different order of

data points can impact the runtime of the algorithms.

Setup

For our experiments we use two different types of machines. Type A has 20 physical cpu cores,

128 GB of memory and a 10 GigaBit Ethernet network. Type B has 24 physical cpu cores and

386 GB of memory. On type B we ran the experiments involving CS due to the memory

requirements.

Training repetitions were run on training sets with a random order of the data (note that

the training set is the same in each run; only the order of points is shuffled, which can impact

the DBCA algorithm). For LIBLINEAR solvers we use the newest available version as of April

2016 with the default settings.

We implemented our solveres using OpenMP, OpenMPI, and the Python-ecosystem. In

more detailed we used [23, 24], and [25].

Validation of solver

In our first experiment, we validate the correctness of the proposed solvers. We downloaded

data from the LIBLINEAR (https://www.csie.ntu.edu.tw/*cjlin/liblinear/) [13] and UCI

(https://archive.ics.uci.edu/ml/datasets.html) [26] dataset repositories. Where training and test

splits are unavailable, we split the data once into 90% train and 10% test sets. For each dataset,

the optimal feature scaling was selected, in order to maximize the average accuracy on the test

sets. Datapoints in iris and news were thus normalized to unit norm, letter and satimage were

normalized to unit variance. All other data was considered unnormalized.

Then we compare our LLW and WW solvers with the state-of-the-art implementation con-

tained in the ML library Shark [27]. We implemented the same stopping criteria as [27]. The

results (averaged over 10 runs) are shown in Table 1. We observe good accordance of the

results and model sparsity of the proposed solvers and the reference implementation from the

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 9 / 18

https://www.csie.ntu.edu.tw/cjlin/liblinear/
https://archive.ics.uci.edu/ml/datasets.html
https://doi.org/10.1371/journal.pone.0178161


Shark toolbox, thus confirming that our respective solvers are indeed exact solvers of LLW and

WW.

At random we tested whether the duality-gap closes or not. We did this for both solvers

with different C values and datasets. In any case the duality gap closed, i.e. decreased by an

order of two magnitudes. Based on this we chose our stopping criteria � equal to 0.1 for the

LSHTC datasets.

Table 1. Comparison to existing solver.

Dataset: D-LLW S-LLW D-WW S-WW

Err. Den. Err. Den. Err. Den. Err. Den.

SensIT (com.)

log(C): -1 21.34 100.0 21.34 100.0 19.88 100.0 19.88 100.0

0 20.95 100.0 20.95 100.0 19.51 100.0 19.51 100.0

1 20.78 100.0 20.78 100.0 19.38 100.0 19.38 100.0

glass

log(C): -1 66.67 100.0 66.67 100.0 38.10 100.0 38.10 100.0

0 61.90 100.0 61.90 100.0 19.05 100.0 19.05 100.0

1 33.33 100.0 33.33 100.0 19.05 100.0 19.05 100.0

iris

log(C): -1 13.33 100.0 13.33 100.0 6.67 100.0 6.67 100.0

0 26.67 100.0 26.67 100.0 13.33 100.0 13.33 100.0

1 26.67 100.0 26.67 100.0 13.33 100.0 13.33 100.0

letter

log(C): -1 87.04 100.0 87.04 100.0 28.25 100.0 28.26 100.0

0 87.24 100.0 87.24 100.0 29.04 100.0 29.03 100.0

1 61.91 100.0 87.24 100.0 28.92 100.0 28.93 100.0

news20

log(C): -1 29.23 97.24 29.23 97.24 15.32 51.16 15.30 49.72

0 22.97 97.24 22.97 97.24 14.80 44.74 14.80 42.70

1 16.15 97.17 16.15 97.04 15.98 45.97 15.98 43.47

rcv1

log(C): -1 47.96 78.00 47.96 78.00 11.31 26.42 11.31 23.45

0 33.27 78.00 33.41 77.98 11.52 22.93 11.52 20.12

1 12.03 78.00 12.03 77.98 12.03 23.05 12.03 20.06

satimage

log(C): -1 26.75 100.0 26.73 100.0 15.80 100.0 15.80 100.0

0 26.80 100.0 26.80 100.0 15.47 100.0 15.53 100.0

1 26.90 100.0 26.90 100.0 15.96 100.0 16.00 100.0

splice

log(C): -1 16.29 100.0 16.37 100.0 16.16 100.0 16.16 100.0

0 16.09 100.0 16.15 100.0 16.37 100.0 16.28 100.0

1 16.34 100.0 16.28 100.0 16.32 100.0 16.24 100.0

usps

log(C): -1 31.84 100.0 31.84 100.0 8.17 100.0 8.17 100.0

0 30.09 100.0 30.04 100.0 9.37 100.0 9.37 100.0

1 28.00 100.0 28.00 100.0 10.51 100.0 10.51 100.0

Error on the test set and density in % of the Shark solver (denoted S) and the proposed solver (denoted D). The results across solver implementations show

good accordance.

https://doi.org/10.1371/journal.pone.0178161.t001

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0178161.t001
https://doi.org/10.1371/journal.pone.0178161


Datasets

We experiment on large classification datasets, where the number of classes ranges between

451 and 27,875. The relevant statistics of the datasets are shown in Table 2. The LSHTC-� data-

sets are high-dimensional text datasets taken from the well-known LSHTC corpus [14]. The

datasets belong to the released competition rounds 1 to 3, i.e. ‘10-’12. LSHTC-2011 and

LSHTC-2012 originate from the DMOZ corpus. The features were extracted using TF/IDF

representation and we use the full feature resolution for training.

Speedup

In order to measure the speedup provided by increasing the number of machines/cores, we

run a fix amount of iterations over the whole LSHTC-large dataset. We use 10 runs over 10

iterations with a fixed parameter C equal 1 without shrinking. While the MC execution works

on one machine, the MPI executes on two or four machines, i.e. spreading the used cores

evenly on each node.

The results are shown in Fig 2. Both solvers exhibit linear speedup regardless if distributed

or not, due to the small communication cost. Yet the speedup of WW is bounded by a larger

constant compared to LLW.

Timing and classification results

Now we evaluate and compare the proposed algorithms on the LSHTC datasets for a range of

C values, i.e. we perform no cross-validation. For comparison we use a solver from the well-

known LIBLINEAR package, namely the multi-core implementation with L2L1-loss (OVR)

[28]. For completeness we also include the single-core Crammer-Singer implementation (CS)

[13]. Due to the lack of performance we do not compare to the LLW and WW implementation

in the Shark ML library.

For the multi-core solvers, i.e. OVR and WW-MC, we use 16 cores. MPI spreads over 2 or

4 machines using 8 and 4 cores respectively at each node, thus trains the model distributed.

Table 3 shows the error and the model sparsity for the compared solutions. We further provide

the Micro-F1 and Macro-F1 score in Table 4.

For all datasets the canonical multi-class formulations, i.e. CS and WW, perform signifi-

cantly better than OVR. On one hand the error is smaller and the F1-scores better. On the

other hand the learned models are much sparser, i.e. up to a magnitude. The results justify the

increased solution complexity of canonical formulations.

Table 2. Dataset properties.

Dataset n train n test C d

LSHTC-small 4,463 1,858 1,139 51,033

LSHTC-large 128,710 34,880 12,294 381,581

LSHTC-2012 383,408 103,435 11,947 575,555

LSHTC-2011 394,754 104,263 27,875 594,158

The used datasets from the LSHTC-corpus and their properties. n train and n test denote the number of samples in the training and test set respectively, C
the number of classes and d the number of dimensions. The most challenging dataset is given by LSHTC-2011. It contains the most samples, classes and

dimensions.

https://doi.org/10.1371/journal.pone.0178161.t002

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0178161.t002
https://doi.org/10.1371/journal.pone.0178161


Comparing CS and WW, CS performs as well or slightly better at classifying. Though WW

leads to a sparser model. To the best of our knowledge this is the first comparison of these

well-known multi-class SVMs on the studied LSHTC data.

From Fig 3, we observe that the runtime of our solver outperforms the one of OVR and CS

by up to two orders of magnitude. Even when distributed our solver outperforms multi-core

OVR in all except one case.

All WW experiments use the same amount of cores, but with a varying degree of distribu-

tion. We observe that the communication imposes a modest overhead. This overhead is influ-

enced by the model density which is higher for smaller C values and effect of shrinking which

is higher with larger C values. Yet in the regime with best classification results, e.g. C equal 0.1

and 1, the overhead is small.

Lin, Lee, & Wahba. Knowing that LLW converges to the correct solution, as the duality-

gap closes, the results indicate that the chosen C range is not suitable. For LSHTC-small we

conducted experiments with much larger C values. And indeed, as shown in Table 5, LLW per-

forms best in a nearly unconstrained setting. In our experiments we observed that the model

learned by LLW is never sparse, neither in the weight matrix W, nor in dual factors α.

Resource limitations and slow convergence properties hindered us to conduct experiments

with even larger C values. It is left to future work to explore this space or even develop a uncon-

strained version of LLW.

Fig 2. Speed-up. Speed-up of our solver averaged over 10 repetitions respectively in the number of cores.

For *-MPI-2 and *-MPI-4 the number of cores is split evenly on 2 and 4 machines respectively. We observe a

linear speedup in the number of cores for both solvers.

https://doi.org/10.1371/journal.pone.0178161.g002

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0178161.g002
https://doi.org/10.1371/journal.pone.0178161


Discussion of related work

Most approaches to parallelization of MCSVM training are based on OVO or OVR [29],

including a number of approaches that attempt to learn a hierarchy of labels [30–36] or train

ensembles of SVMs on individual subsets of the data [37–39].

There is a line of research on parallelizing stochastic gradient (SGD) based training of

MC-SVMs over multiple computers [40, 41]. SGD builds on iteratively approximating the loss

term by one that is based on a subset of the data (mini-batch). In contrast, batch solvers (such

as the ones proposed in the present paper) are based on the full sample. In this sense, our

approach is completely different to SGD. While there is a long ongoing discussion whether the

batch or the SGD approach is superior, the common opinion is that SGD has its advantages in

the early phase of the optimization, while classical batch solvers shine in the later phase. In this

sense, the two approaches are complementary and could also be combined.

The related work that is the most closest to the present work is by [42]. They build on the

alternating direction method of multipliers (ADMM) [43] to break the Crammer and Singer

optimization problem into smaller parts, which can be solved individually on different com-

puters. In contrast to our approach, the optimization problem is parallelized over the samples,

not the optimization variables. In our problem setting, high-dimensional sparse data, the

Table 3. Test error and model density.

Dataset: Error Model-Density

OVR CS WW LLW OVR CS WW LLW

LSHTC-small

log(C): -3 93.00 59.74 72.82 93.00 92.74 11.11 69.73 92.74

-2 85.36 59.74 65.34 93.00 81.54 11.13 16.44 92.74

-1 74.54 59.74 57.59 93.00 46.76 11.12 6.06 92.74

0 64.37 55.49 54.57 93.00 38.20 11.76 5.74 92.74

1 57.75 54.57 54.41 93.00 38.63 11.69 5.73 92.74

LSHTC-large

log(C): -3 88.12 58.57 66.47 95.86 75.26 2.53 18.50 100.0

-2 85.21 58.57 60.58 95.86 45.14 2.53 4.45 100.0

-1 77.96 57.82 55.28 95.86 25.28 2.55 1.71 100.0

0 63.11 53.61 53.98 95.86 18.33 2.69 1.61 100.0

1 57.18 54.18 54.41 * 18.55 2.67 1.66 *

LSHTC-2012

log(C): -3 83.66 49.81 58.02 92.63 72.60 1.73 16.97 99.52

-2 75.15 49.65 50.20 92.63 46.20 1.71 4.06 99.52

-1 60.38 46.14 44.94 92.63 25.87 1.76 1.52 99.52

0 47.33 42.67 44.01 * 18.20 2.06 1.42 *

1 46.83 45.60 46.15 * 18.46 2.09 1.47 *

LSHTC-2011

log(C): -3 87.95 59.09 68.19 96.18 72.38 1.57 13.49 100.0

-2 85.85 59.09 62.14 96.18 45.97 1.57 3.16 100.0

-1 76.78 58.18 57.31 96.18 25.97 1.55 1.19 100.0

0 63.11 55.58 56.94 * 18.24 1.69 1.11 *

1 60.01 57.78 58.32 * 18.46 1.70 1.14 *

Test set error and model density (in %) as achieved by the OVR, CS, WW, and LLW solvers on the LSHTC datasets. For each solver the result with the best

error is in bold font. For LLW entries with a ‘*’ did not converge within a day of runtime.

https://doi.org/10.1371/journal.pone.0178161.t003

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0178161.t003
https://doi.org/10.1371/journal.pone.0178161


Table 4. F1-Scores.

Dataset: Micro-F1 Macro-F1

OVR CS WW LLW OVR CS WW LLW

LSHTC-small

log(C):-3 7.00 40.26 27.18 7.00 0.61 22.08 10.73 0.61

-2 14.42 40.26 34.66 7.00 2.70 22.08 16.15 0.61

-1 25.46 40.26 42.41 7.00 8.72 22.08 24.71 0.61

0 35.47 44.46 45.43 7.00 16.42 26.70 28.75 0.61

1 42.41 45.48 45.59 7.00 25.09 28.73 29.15 0.61

LSHTC-large

log(C): -3 11.77 41.35 33.53 4.14 0.88 25.43 15.05 0.09

-2 14.80 41.52 39.42 4.14 1.51 25.41 20.83 0.09

-1 22.02 42.19 44.72 4.14 3.35 25.83 27.90 0.09

0 36.86 46.41 46.02 * 14.76 30.99 31.29 *

1 42.80 45.83 45.59 * 25.87 31.13 31.12 *

LSHTC-2012

log(C): -3 16.34 50.19 41.98 7.37 0.28 20.55 8.08 0.01

-2 24.85 50.35 49.80 7.37 0.69 20.72 16.17 0.01

-1 39.62 53.86 55.06 7.37 2.64 23.76 25.94 0.01

0 52.67 57.33 55.99 * 12.46 32.57 32.06 *

1 53.17 54.40 53.85 * 24.41 31.84 30.95 *

LSHTC-2011

log(C): -3 12.05 40.91 31.81 3.82 0.46 22.44 10.47 0.05

-2 14.15 40.91 37.86 3.82 0.62 22.46 16.48 0.05

-1 23.22 41.82 42.69 3.82 1.89 23.37 23.17 0.05

0 36.89 44.42 43.06 * 10.60 26.97 27.25 *

1 39.99 42.22 41.86 * 21.30 26.31 26.97 *

Micro-F1 and Macro-F1 scores (in %) as achieved by the OVR, CS, WW, and LLW solvers on the LSHTC datasets. For each solver and each metric the

best result across C values is in bold font. For LLW entries with a ‘*’ did not converge within a day of runtime.

https://doi.org/10.1371/journal.pone.0178161.t004

Fig 3. Training times. Training time averaged over 10 repetitions per C for the various solvers.

https://doi.org/10.1371/journal.pone.0178161.g003

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 14 / 18

https://doi.org/10.1371/journal.pone.0178161.t004
https://doi.org/10.1371/journal.pone.0178161.g003
https://doi.org/10.1371/journal.pone.0178161


model size is vary large. Because each node holds the whole model in memory, this algorithm

hardly scales with large label spaces. E.g. consider Table 2; the model for LSHTC-2011 contains

�16 � 109 parameters. Note also that it is unclear at this point whether the approach of [42]

could be adapted to LLW and WW, which are the object of study in the present paper.

Note that beyond SVMs there is a large body of work on distributed multi-class [44, 45]

and multi-label learning algorithms [46], which is outside of the scope of the present paper.

When the performance of single solvers saturates one can consider to refine them, e.g. by

considering the reliability of single class estimates [47] to enhance the prediction accuracy, or

to learn ensembles of SVMs to get better prediction by combining several estimates. This can

be done by bagging [48] or boosting [49] them or by exploiting smart compositions of solvers,

e.g. with LibD3C [50].

Conclusion

We proposed distributed algorithms for solving the multi-class SVM formulations by Lee et al.

(LLW) and Weston and Watkins (WW). The algorithm addressing LLW takes advantage of an

auxiliary variable, while our approach to optimizing WW in parallel is based on the 1-factori-

zation problem from graph theory.

The experiments confirmed the correctness of the solver (in the sense of an exact solver)

and show linear speedup when the number of cores is increased. This speedup allows us to

train LLW and WW on LSHTC datasets, for which results were lacking in the literature.

Our analysis contributed to comparing MC-SVM formulations on rather large data sets,

where comparisons were still lacking. In comparison to OVR we showed that WW can achieve

competitive classification results in less time, while still leading to a much sparser model.

Unexpectedly, LLW shows clear disadvantages over the other MC-SVMs. Yet the favorable

scaling properties make further research interesting, for instance regarding the development

of an unconstrained algorithm. We ease further research by publishing the source code under

https://github.com/albermax/xcsvm.

Overcoming the limitations of a single machine, i.e. distribution, is a key problem and a key

enabler in large scale learning. To best of our knowledge, we are the first to train an exact, all-
in-one MC-SVMs in a distributed manner. We hope this first step inspires further research in

this context.

In the future, we would like to study extensions of the concepts presented in this paper to

various more MC-SVMs, including the Crammer and Singer MC-SVM [51], the lp-norm

MC-SVM [52], and scatter based MC-SVMs [53].

Table 5. Results for LLW-Solver.

log(C): 2 3 4

Error: 87.73 66.74 59.31

Micro F1: 2.08 15.07 40.69

Macro F1: 12.27 33.26 24.58

W-Density: 92.74 92.74 92.74

α-Density: 99.88 99.87 99.90

Error, Micro-F1, and Macro-F1 on the test set and model density in % of the LLW solver on the LSHTC-small

dataset.

https://doi.org/10.1371/journal.pone.0178161.t005

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 15 / 18

https://github.com/albermax/xcsvm
https://doi.org/10.1371/journal.pone.0178161.t005
https://doi.org/10.1371/journal.pone.0178161


Acknowledgments

We thank Rohit Babbar, Shinichi Nakajima, and Klaus-Robert Müller for helpful discussions.

We thank Giancarlo Kerg for pointing us to the graph 1-factorization problem. We thank

Ioannis Partalas for help regarding the LSHTC datasets.

Author Contributions

Conceptualization: MA JZ UD MK.

Data curation: MA JZ.

Methodology: MA JZ MK.

Software: MA.

Writing – original draft: MA JZ MK.

Writing – review & editing: MA MK.

References
1. Vapnik V. Statistical Learning Theory. John Wiley and Sons; 1998.

2. Rifkin R, Klautau A. In defense of one-vs-all classification. Journal of Machine Learning Research.

2004; 5:101–141.

3. Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines.

Journal of Machine Learning Research. 2002; 2:265–292.

4. Lee Y, Lin Y, Wahba G. Multicategory Support Vector Machines: Theory and Application to the Classifi-

cation of Microarray Data and Satellite Radiance Data. Journal of the American Statistical Association.

2004; 99(465):67–82. https://doi.org/10.1198/016214504000000098

5. Weston J, Watkins C. Support vector machines for multi-class pattern recognition. In: Verleysen M, edi-

tor. Proceedings of the Seventh European Symposium On Artificial Neural Networks (ESANN). Evere,

Belgium: d-side publications; 1999. p. 219–224.

6. Allwein EL, Schapire RE, Singer Y. Reducing multiclass to binary: A unifying approach for margin classi-

fiers. Journal of Machine Learning Research. 2001; 1:113–141.

7. Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Transactions

on Neural Networks. 2002; 13(2):415–425. https://doi.org/10.1109/72.991427 PMID: 18244442

8. Hill SI, Doucet A. A framework for kernel-based multi-category classification. Journal of Artificial Intelli-

gence Research. 2007; 30(1):525–564.

9. Liu Y. Fisher consistency of multicategory support vector machines. In: Meila M, Shen X, editors. Elev-

enth International Conference on Artificial Intelligence and Statistics (AISTATS). vol. 2 of JMLR W&P;

2007. p. 289–296.

10. Guermeur Y. VC Theory for Large Margin Multi-Category Classifiers. Journal of Machine Learning

Research. 2007; 8:2551–2594.

11. Doğan Ü, Glasmachers T, Igel C. A Unified View on Multi-class Support Vector Classification. Journal

of Machine Learning Research. 2016; 17(45):1–32.

12. Bondy JA, Murty USR. Graph theory with applications. vol. 290. Macmillan London; 1976.

13. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: A library for large linear classification.

Journal of Machine Learning Research. 2008; 9:1871–1874.

14. Partalas I, Kosmopoulos A, Baskiotis N, Artières T, Paliouras G, Gaussier É, et al. LSHTC: A Bench-

mark for Large-Scale Text Classification. CoRR. 2015;abs/1503.08581.

15. Szedmak S, Shawe-Taylor J, Parado-Hernandez E. Learning via linear operators: Maximum margin

regression. PASCAL, Southampton, UK; 2006.

16. Liu Y, Yuan M. Reinforced Multicategory Support Vector Machines. Journal of Computational and

Graphical Statistics. 2011; 20(4):901–919. https://doi.org/10.1198/jcgs.2010.09206

17. Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20(3):273–297. https://doi.org/

10.1007/BF00994018

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 16 / 18

https://doi.org/10.1198/016214504000000098
https://doi.org/10.1109/72.991427
http://www.ncbi.nlm.nih.gov/pubmed/18244442
https://doi.org/10.1198/jcgs.2010.09206
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1371/journal.pone.0178161


18. Keerthi SS, Sundararajan S, Chang KW, Hsieh CJ, Lin CJ. A Sequential Dual Method for Large Scale

Multi-class Linear Svms. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. KDD’08. New York, NY, USA: ACM; 2008. p. 408–416. Available

from: http://doi.acm.org/10.1145/1401890.1401942

19. Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. Jour-

nal of optimization theory and applications. 2001; 109(3):475–494. https://doi.org/10.1023/

A:1017501703105

20. Bertsekas DP, Homer ML, Logan DA, Patek SD. Nonlinear programming. Athena scientific. 1995;.

21. Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable implementation of the MPI mes-

sage passing interface standard. Parallel computing. 1996; 22(6):789–828. https://doi.org/10.1016/

0167-8191(96)00024-5

22. Dagum L, Enon R. OpenMP: an industry standard API for shared-memory programming. Computa-

tional Science & Engineering, IEEE. 1998; 5(1):46–55. https://doi.org/10.1109/99.660313

23. Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical compu-

tation. Computing in Science & Engineering. 2011; 13(2):22–30. https://doi.org/10.1109/MCSE.2011.

37

24. Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The best of both worlds. Com-

puting in Science & Engineering. 2011; 13(2):31–39. https://doi.org/10.1109/MCSE.2010.118

25. Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using python. Advances in Water

Resources. 2011; 34(9):1124–1139. https://doi.org/10.1016/j.advwatres.2011.04.013

26. Asuncion A, Newman D. UCI machine learning repository; 2007.

27. Igel C, Glasmachers T, Heidrich-Meisner V. Shark. Journal of Machine Learning Research. 2008;

9:993–996.

28. Chiang WL, Lee MC, Lin CJ. Parallel Dual Coordinate Descent Method for Large-scale Linear Classifi-

cation in Multi-core Environments. In: Proceedings of the 22Nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. KDD’16. New York, NY, USA: ACM; 2016. p. 1485–1494.

Available from: http://doi.acm.org/10.1145/2939672.2939826

29. Babbar R, Maundet K, Schölkopf B. TerseSVM: A Scalable Approach for Learning Compact Models in

Large-scale Classification. In: Proceedings of the 2016 SIAM International Conference on Data Mining.

SIAM; 2016. p. 234–242.

30. Bengio S, Weston J, Grangier D. Label embedding trees for large multi-class tasks. In: Advances in

Neural Information Processing Systems; 2010. p. 163–171.

31. Deng J, Satheesh S, Berg AC, Li F. Fast and balanced: Efficient label tree learning for large scale object

recognition. In: Advances in NIPS; 2011. p. 567–575.

32. Gao T, Koller D. Discriminative learning of relaxed hierarchy for large-scale visual recognition. In: ICCV.

IEEE; 2011. p. 2072–2079.

33. Choromanska AE, Langford J. Logarithmic Time Online Multiclass prediction. In: Advances in Neural

Information Processing Systems 28. Curran Associates, Inc.; 2015. p. 55–63.

34. Zhou D, Xiao L, Wu M. Hierarchical classification via orthogonal transfer. In: ICML; 2011. p. 801–808.

35. Gopal S, Yang Y. Recursive regularization for large-scale classification with hierarchical and graphical

dependencies. In: ACM SIGKDD. ACM; 2013. p. 257–265.

36. Madzarov G, Gjorgjevikj D, Chorbev I. A Multi-class SVM Classifier Utilizing Binary Decision Tree. Infor-

matica (Slovenia). 2009; 33(2):225–233.

37. Govada A, Gauri B, Sahay SK. Distributed Multi Class SVM for Large Data Sets. In: Proceedings of the

Third International Symposium on Women in Computing and Informatics. WCI’15. New York NY, USA:

ACM; 2015. p. 54–58. Available from: http://doi.acm.org/10.1145/2791405.2791534

38. Govada A, Ranjani S, Viswanathan A, Sahay S. A Novel Approach to Distributed Multi-Class SVM.

arXiv preprint arXiv:151201993. 2015;.

39. Lodi S, Nanculef R, Sartori C. Single-pass distributed learning of multi-class svms using core-sets.

methods. 2010; 14(27):2.

40. Gupta MR, Bengio S, Weston J. Training highly multiclass classifiers. Journal of Machine Learning

Research. 2014; 15(1):1461–1492.

41. Do TN. Parallel multiclass stochastic gradient descent algorithms for classifying million images with

very-high-dimensional signatures into thousands classes. Vietnam Journal of Computer Science. 2014;

1(2):107–115. https://doi.org/10.1007/s40595-013-0013-2

42. Han X, Berg AC. DCMSVM: Distributed parallel training for single-machine multiclass classifiers. In:

Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE; 2012. p. 3554–

3561.

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 17 / 18

http://doi.acm.org/10.1145/1401890.1401942
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/j.advwatres.2011.04.013
http://doi.acm.org/10.1145/2939672.2939826
http://doi.acm.org/10.1145/2791405.2791534
https://doi.org/10.1007/s40595-013-0013-2
https://doi.org/10.1371/journal.pone.0178161


43. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations and Trends® in Machine Learning. 2011; 3

(1):1–122. https://doi.org/10.1561/2200000016

44. Agarwal A, Chapelle O, Dudı́k M, Langford J. A Reliable Effective Terascale Linear Learning System.

CoRR. 2011;abs/1110.4198.

45. Gopal S, Yang Y. Distributed training of Large-scale Logistic models. In: ICML (2); 2013. p. 289–297.

46. Prabhu Y, Varma M. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning.

In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM; 2014. p. 263–272.

47. Liu Y, Zheng YF. One-against-all multi-class SVM classification using reliability measures. In: Neural

Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference on. vol. 2. IEEE;

2005. p. 849–854.

48. Breiman L. Bagging predictors. Machine learning. 1996; 24(2):123–140. https://doi.org/10.1007/

BF00058655

49. Freund Y, Schapire R. A desicion-theoretic generalization of on-line learning and an application to

boosting. In: Computational Learning Theory. Springer; 1995. p. 23–37.

50. Lin C, Chen W, Qiu C, Wu Y, Krishnan S, Zou Q. LibD3C: ensemble classifiers with a clustering and

dynamic selection strategy. Neurocomputing. 2014; 123:424–435. https://doi.org/10.1016/j.neucom.

2013.08.004

51. Crammer K, Singer Y. On the learnability and design of output codes for multiclass problems. Machine

Learning. 2002; 47(2):201–233. https://doi.org/10.1023/A:1013637720281

52. Lei Y, Dogan U, Binder A, Kloft M. Multi-class svms: From tighter data-dependent generalization

bounds to novel algorithms. In: Advances in Neural Information Processing Systems; 2015. p. 2035–

2043.

53. Jenssen R, Kloft M, Zien A, Sonnenburg S, Müller KR. A scatter-based prototype framework and multi-

class extension of support vector machines. PloS one. 2012; 7(10):e42947. https://doi.org/10.1371/

journal.pone.0042947 PMID: 23118845

Distributed optimization of multi-class SVMs

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 18 / 18

https://doi.org/10.1561/2200000016
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.neucom.2013.08.004
https://doi.org/10.1016/j.neucom.2013.08.004
https://doi.org/10.1023/A:1013637720281
https://doi.org/10.1371/journal.pone.0042947
https://doi.org/10.1371/journal.pone.0042947
http://www.ncbi.nlm.nih.gov/pubmed/23118845
https://doi.org/10.1371/journal.pone.0178161

