@° PLOS | ONE

Check for
updates

G OPEN ACCESS

Citation: Alber M, Zimmert J, Dogan U, Kloft M
(2017) Distributed optimization of multi-class
SVMs. PLoS ONE 12(6): e0178161. https:/doi.org/
10.1371/journal.pone.0178161

Editor: Quan Zou, Tianjin University, CHINA
Received: January 19, 2017

Accepted: May 8, 2017

Published: June 1, 2017

Copyright: © 2017 Alber et al. This is an open
access article distributed under the terms of the
Creative Gommons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All data is available in
the LSHTC corpus: http://Ishtc.iit.demokritos.gr/.

Funding: Some authors were supported by
academic funding: MK acknowledges support by
the German Research Foundation (DFG) under KL
2698/2-1 and by the Federal Ministry of Education
and Research (BMBF) under 031L0023A and
031B0187B. MA acknowledges support by the
Federal Ministry of Education and Research
(BMBF) under 011S14013A. Besides support in
form of salaries or scholarships, the funders did
not have any additional role in the study design,
data collection and analysis, decision to publish, or
preparation of the manuscript. The funder

RESEARCH ARTICLE

Distributed optimization of multi-class SVMs

Maximilian Alber'®, Julian Zimmert®®, Urun Dogan?, Marius Kloft?*

1 Berlin Big Data Center, Berlin Institute of Technology, Berlin, Germany, 2 Department of Computer Science,
Humboldt University of Berlin, Berlin, Germany, 3 Microsoft Research, Cambridge, United Kingdom

® These authors contributed equally to this work.
* kloft@hu-berlin.de

Abstract

Training of one-vs.-rest SVMs can be parallelized over the number of classes in a straight
forward way. Given enough computational resources, one-vs.-rest SVMs can thus be
trained on data involving a large number of classes. The same cannot be stated, however,
for the so-called all-in-one SVMs, which require solving a quadratic program of size quadrat-
ically in the number of classes. We develop distributed algorithms for two all-in-one SVM for-
mulations (Lee et al. and Weston and Watkins) that parallelize the computation evenly over
the number of classes. This allows us to compare these models to one-vs.-rest SVMs on
unprecedented scale. The results indicate superior accuracy on text classification data.

Introduction

Modern data analysis requires computation with a large number of classes. As examples, con-
sider the following. (1) We are continuously monitoring the internet for new webpages, which
we would like to categorize. (2) We have data from an online biomedical bibliographic data-
base that we want to index for quick access to clinicians. (3) We are collecting data from an
online feed of photographs that we would like to classify into image categories. (4) We add
new articles to an online encyclopedia and intend to predict the categories of the articles. (5)
Given a huge collection of ads, we want to built a classifier from this data.

The problems above—taken from varying application domains ranging from the sciences
to technology—involve a large number of classes, typically at least in the thousands. This moti-
vates research on scaling up multi-class classification methods. In the present work, we address
scaling up multi-class support vector machines (MC-SVMs) [1]. There are two major types of
MC-SVMs:

1. One-vs.-one (OVO) and one-vs.-rest (OVR) MC-SVMs decompose the problem into mul-
tiple binary subproblems that are subsequently aggregated [1, 2]. Training can be paralle-
lized in a straight forward way.

2. All-in-one MC-SVMs extend the concept of the margin to multiple classes. Because there is
no unique extension of the margin concept, multiple all-in-one MC-SVM:s have been pro-
posed, including the ones by Crammer and Singer (CS) [3], Lee, Lin, and Wahba (LLW)
[4], and Weston and Watkins (WW) [1, 5]. See [2, 6-11] for conceptual and empirical
comparisons.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 1/18

https://doi.org/10.1371/journal.pone.0178161
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178161&domain=pdf&date_stamp=2017-06-01
https://doi.org/10.1371/journal.pone.0178161
https://doi.org/10.1371/journal.pone.0178161
http://creativecommons.org/licenses/by/4.0/
http://lshtc.iit.demokritos.gr/

@° PLOS | ONE

Distributed optimization of multi-class SVMs

Microsoft Research provided support in the form
of salaries for author UD, but did not have any
additional role in the study design, data collection
and analysis, decision to publish, or preparation of
the manuscript. The specific roles of this author are
articulated in the author contributions section.

Competing interests: UD is supported in the form
of salary by Microsoft Research. There are no
patents, products in development, or marketed
products to declare. This does not alter our
adherence to PLOS ONE policies on sharing data
and materials.

Recently, Dogan et al. [11] have compared the various all-in-one MC-SVM variants on
rather moderately sized datasets and showed advantages of all-in-one MC-SVMs over OVR
MC-SVM, but—so far—slow training time has prohibited comparisons on data involving a
large number of classes.

The reason is that (linear) state of the art solvers require time complexity of O(d# - C*) and
memory complexity at least of O(71C), where d is the feature dimensionality, d the average
number of non-zeros (d = d for dense data), and 7 the average number of samples per class.
This quadratic dependence on the number of classes C can be prohibitive for large C, often
leaving OVO and OVR as the only MC-SVM options in the big data setting.

In this paper, we focus on the comparison between OVR SVMs and all-in-one SVMs. We
do this by developing distributed algorithms where up to O(C) nodes solve WW and LLW in
parallel, dividing model and computation evenly. The resulting solvers are compared to a
state-of-the-art OVR solution.

The algorithm proposed for WW draws inspiration from a major result in graph theory:
the solution to the 1-factorization problem of a graph [12]. The idea is that the optimization of
a single coordinate ;. of the dual objective involves only the two hypotheses w,, and w,. As in
the 1-factorization problem, we can thus form pairs of classes where the corresponding blocks
of coordinates can be optimized in parallel.

On the other hand, we parallelize LLW training by introducing an auxiliary variable w into
the dual problem that decouples the objective into a sum over C many independent
subproblems.

We provide both multi-core and distributed implementations of the proposed algorithms.
We report on empirical runtime comparisons of the proposed solvers with the one-vs.-rest
implementation by LIBLINEAR [13] on text classification data taken from the LSHTC
corpus [14].

The main contributions of this paper are the following:

« We propose the first distributed, exact solver for WW and LLW.
« We provide both multi-core and truly distributed implementations of the solver.

o We give the first comparison of WW, LLW, and OVR on the DMOZ data from the LSHTC
‘10-"12 corpora using the full feature resolution.

We expect that the present work starts a line of research on parallelization of exact training
of various all-in-one MC-SVMs, including Crammer and Singer, multi-class maximum mar-
gin regression [15], and the reinforced multicategory SVM [16], enabling comparison of all
these methods on large datasets.

The paper is structured as follows. In the next section we discuss the problem setting and
preliminaries. In Section Distributed Algorithms, we present the proposed distributed algo-
rithms for LLW and WW, respectively. We analyze their convergence empirically in Section
Experiments. Followed by sections Discussion of related work and Conclusion.

Preliminaries

We consider the following problem. We are given data (x;, yy), - - ., (x,,, ¥,,) with x, € R? and
y; € {1, ..., C}. Each class has in average 7 samples. The largest number of samples for a single
class is 71,,,,,. We are predicting using the model

(x) = argmax w!x, (1)

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161

June 1,2017 2/18

https://doi.org/10.1371/journal.pone.0178161

o ®
@ : PLOS | ONE Distributed optimization of multi-class SVMs

where W = (w,, .., w,) € R*“ are unknown parameters. The aim is to efficiently find good
parameters in order to predict well on new data using Eq (1).

To address this problem setting, a number of generalizations of the binary SVM [17] have
been proposed. We are specifically studying the following two formulations, dropping the bias
terms in both. Throughout this paper, I(x) = max{0, 1 — x} will denote the hinge-loss.

Lee, Lin, and Wahba (LLW) [4]

mle Iwl*+CD I(—w]

ity;#c (2)
s.t. ch =0

Weston and Watkins (WW) [5]

mmZ[|w,||? —l—CZl x—wx] (3)

o

Both formulations lead to very similar dual problems, as shown below. For the dualization
of WW, we refer to [18]. The LLW dual is given below, where we introduce an auxiliary vari-
able w that is exploited by our distributed algorithm, as explained in the next section.

¢
zeRr"rxlganf(eRd Z[——H—th +W|| +Z°‘;c‘|

c=1 iy #c

s.t. Viio, =0,Ve#y:0<0, <C

max, Z[——ll - Xo I +Z%c]

iy;Fc
s.t. Viioo,, = onci‘c, (%)
]

Ve#y,: 0<e, <C

Derivation of lagrangian dual problems for Lin, Lee, and Wahba. Using slack variables,
the primal LLW problem reads

C
min 3+ 05
c=1

izy;#c
éi,c >1+ Wchi

Vi
Ve#y,: & 20.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 3/18

https://doi.org/10.1371/journal.pone.0178161

o ®
@ : PLOS | ONE Distributed optimization of multi-class SVMs

We introduce Lagrangian multipliers o € R, B € R", and w € R with a;, 8; > 0.
L(W, & o B,) = Z Ll S(CE, 4+ m, (14wl — &) — Bé,)
o ")
—w(Y_w)

Slater’s condition holds; therefore, we have strong duality and can use the dual
max min L(W, & a, B, w)
B8 w,¢

st. ViVe: B.. > 0.

tc’

The partial derivatives are given by

%L(W,f,a,ﬁ, ﬁ/) = C - ai,: - ﬁz‘,c
iL(Wéocﬂ w—i—Zocx—i—w
aWC PR-X R 43 7 - P ic’vi

Setting those to zero leads to

Vive: 0 < o, <C

WC - : al Cxl + W

izyite
= —Xo, +w.

And plugging in into the lagrangian, finally gives the dual

C

aeREerCaiv(eRd Z 77||7Xoc er” +ZO‘”

c=1 iy 7#c

Vi
Ve#y: 0<a, <C.

Distributed algorithms

In this section, we derive algorithms that solve (LLW) and (WW) in a distributed manner.
With start by addressing LLW.

Algorithm for Lee, Lin, and Wahba
First note the following optimality condition in (LLW):

18
w=—=>» Xo.
e

Which was exploited by prevalent solvers to remove the variable w from the optimization.
In contrast, the core idea of our LLW solver is to actually keep this auxiliary variable, as it

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 4/18

https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

decouples the objective function into the following sum:
4
obj(o) = Zsubobj(occ, w).
c=1

Then we perform dual block coordinate ascent (DBCA) [18, Algorithm 3.1] with a specially
tailored block structure, considering as blocks w as well as each single coordinate ¢; .. As we
observe from Eq (9), the optimization of the columns ¢. . is mutually independent of each
other, given fixed w. Hence, it can be distributed evenly over C many nodes. On the cth node,
we run coordinate ascend on the subobjective subobj(x,, w) over @;,i =1, .. ., n, as described
in the next paragraph. After one epoch of o computation, the variable w is updated via Eq (9).
The final algorithm is shown in Algorithm 1.

Algorithm 1 Lee, Lin, and Wahba
1: functionsowve-LLW (C, X, Y)

2: forc=1.Cdoinparallel
3: we— 0

4: a.+— 0

5: forie€ Ido

6 ki —xlx,

7 whilenotoptimaldo

8 optimal <+ True

9: shuffleData ()

10: forie I\I.do

11: solvelDimLLW (i, c)
12: w < Reduce () w,./C)
13: We— W, — W

As necessary step within Algorithm 1, we need to update every single ¢; .. Optimizing o; . is
solving the problem

argmax D(o. + Oe, , W)
1)

ic)

)
st. 0< o, +0<C,

where e, € R is one at the (i, c)th coordinate and zero elsewise. Set w, := —Xo_ + w; then
the gradient for §is 2 [D(x + de;)| = x"w, — xx,0 + 1. Hence, the optimal solution of

Eq (9) is given by 6 = min {C — o, , max {—a,,, — %}} The corresponding pseudo-code

i)

can be found in Algorithm 2.
Algorithm 2 Solving 1-dim sub-problem of LLW

1: functionsoLvel DiMLLW (1,)

2: global(C, X, k, oo, w., optimal

g—wix —1

ifg<-eanda;,.<Cthen
S—min{C—- oy, o —g/ki}
optimal « False

ifg>eanda;,.>0 then
S« max{-a;, o —g/k;}

: optimal « False

0: wee—w.+0x;

1: oy, c—a;,c1+6

P ©O oo Jo U b W

Convergence. It is well known that the block coordinate ascent method converges under
suitable regularity conditions e.g. [19, 20]. Our objective is continuously differentiable and

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 5/18

https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

strictly convex. The constraints are solely box constraints, hence the feasible set decomposes as
a Cartesian product over the blocks. Algorithm 1 traverses the two blocks in cyclic order.
Under these conditions, the DBCA method provably converges (e.g. Prop. 2.7.1 in [20]).

Note that in practice, we observed speedups by updating w in Algorithm 1 after each tenth
of an epoch, breaking the cyclic order. The blocks of coordinates are then traversed in so-called
essentially cyclic order e.g. Section 2 in [19], meaning that there exists T € N such that each
block is traversed at least once after T iterations. Closer inspection of the proof in Prop. 2.7.1
in [20] reveals that the result holds also under this slightly more general assumption.

Further, we drop variables ¢; . in the optimization (shrinking) if they are not updated in
three subsequent epochs. Once the stopping condition holds, we run another epoch of optimi-
zation over all variables (including the ones that were dropped). If the stopping criterion is
then met, we terminate the algorithm and continue optimization elsewise.

Implementation details. Our implementation uses OpenMPI for inter-machine (MPI)
[21] and OpenMP (MC) [22] for intra-machine communication. Note that Algorithm 1 has
very mild communication requirements: the only communication needed is the sum of all
weight vectors w =) w,. Hence, MPI suffers very little from communication overhead
between the various machines. In practice, we may not be able to fully parallelize to the maxi-
mum of C cores; therefore our algorithm will divide the set of classes into number-of-cores
many chunks and optimize each class sequentially.

Recall, d is the average number of non-zero entries per sample and 7 is the average number
of samples per class. Given ¢ cores and I iteration steps, the optimization has an asymptotic
runtime estimate of O(I - (¢- 7 - d+d log,c)), where the first part of the sum amounts for
the gradient updates and the second for the model communication and update. Given an aver-
age dual sparsity as 1 — a the algorithm needs at each node an asymptotic space complexity of
O(¢-(d+n-a) + d) to store the weight matrix, the dual coefficients and the weight vector
used for averaging.

Algorithm for Weston and Watkins

In this section, we propose a distributed algorithm for WW, which draws inspiration from the
1-factorization problem of a graph. The approach is presented below.

Preliminaries. Our approach is based on running dual coordinate ascend, e.g. algorithm
3.11in [18], over @, on the (WW) objective function as follows. Denote the objective in Eq (5)
by D(e) and recall from [18] that optimizing ¢ . is solving the problem

argmax D(o + Je;)
é

(10)
st. 0< o, +0<C.

Setting w. = Sy +(—Xi0ti,c + Se.cry, Xihi) the gradient for 8 is given by 2 [D(a + de;)| =

—x[(w, —w,) — x[x,0 + 1. Which is optimal at:

T(w, —w)—1
0 = min <C — o, max (—oc,‘c,x’(wy"WC))> (11)

2xTx;
This computation is summarized in Algorithm 3.

Algorithm 3 Solving 1-dim sub-problem of WW
1: functionsoLvel DiMWW (1, C)
2: globalc(, X, Wy s Wer Qe optimal
31 ge(wy —whx, —1

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 6/18

https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

3
4
8
5
6
r=1

5\') «—°

4: ifg<-eanda;,.<Cthen
5: S«—min{C-a;, o —g/2k;}
6: optimal « False

7: ifg>eanda;,.>0 then

8: S«—max{-a;i,. —9/2k;}
9: optimal « False

10: wy, < w, +06x;

11: we—we— 0x;

12: oaj,c+— 0,10

Core observation. We observe from above that optimizing with regard to ¢; . will require
only the weight vectors w,, and w.. In other words, given four different classes c;, ¢, ¢3, ¢4, the
optimization of the block of variables (e, ¢1);,y,—co—according to Eq (11)—is independent of
the optimization of the block (e, ¢3);)-c4. Hence it can be parallelized. In the next section we
describe how we exploit this structure to derive a distributed optimization algorithm.

Excursus: 1-factorization of a graph. Assume that C is even. The core idea now is to

form ¢ many disjoint blocks (o, ¢,) -+ (0 €¢_1) 4y, Of variables. Each of these blocks

iyj=cp? " *
can be optimized in parallel. The challenge is to derive a maximally distributed optimization
schedule where each block (;, ¢;);., -« for any j # k is optimized.

To better understand the problem, we consider the following analogy. We are given a foot-
ball league with C teams. Before the season, we have to decide on a schedule such that each
team plays any other team exactly once. Furthermore, all teams shall play on every matchday
so that in total we need only C — 1 matchdays. This problem is the I-factorization problem in
graph theory, e.g. [12]. The solution to this problem, illustrated in Fig 1, is as follows.

We arrange one node centrally and all other nodes in a regular polygon around the center
node. At round r, we connect the centered node with node r and connect all other nodes
orthogonal to this line. The pseudocode to compute the partner of a given node ¢ at a certain
round r is given in Algorithm 5. Note that in case of an uneven number of classes, we intro-
duce a dummy class C + 1, making the number of classes even. We run the algorithm, but skip
all computations involving the dummy class.

Algorithm. The algorithm, shown in Algorithm 4, performs DBCA over the variables o;
using the schedule derived in Section and the coordinate updates derived in Section.

2 3 2 3
4 4/
1 1 1
8 s
6 6 7 6
r =2 r=3 r="17

Fig 1. 1-factorization. lllustration of the solution of the 1-factorization problem of a graph with C = 8 many nodes. Node 8 gets arranged centrally
and at each step the pattern is rotated by one.

https://doi.org/10.1371/journal.pone.0178161.g001

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 7/18

https://doi.org/10.1371/journal.pone.0178161.g001
https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

Algorithm 4 Watkins-Weston
1: function SoLve-WW (¢, X, Y)

2: forc=1.Cdoinparallel

3: we+— 0

4: a.+— 0

5: forie€Ido

6: ki —xlx;

7: whilenotoptimaldo

8: optimal « True

9: shuffleData ()

10: forr=1.C—1do

11: forc=1..Cdoinparallel
12: ¢ +—matchClass (C,c,r)
13: if ¢ > cthen

14: forie I.do

15: solvelDimWW (i,c)
16: forie Icdo

17: solvelDimWW (1, c)

Algorithm 5 Solving the graph 1-factorization problem. Indices start with one.

1: functionMarcuCrass (C, ¢, r)
2 ifCisevenandc=_C then
3 return r

4 if c=rthen

5: if Cis even then
6 return(C

7 else

8 returnc

9 returnmod(2r — ¢,C — 1)

Convergence and implementation details. Furthermore, note that our algorithm per-
forms the same coordinate updates as Algorithm 3.1 in [18]. Hence, they share the same favor-
able convergence behavior. Formally, convergence is guaranteed for exactly the same reasons
discussed in Section. We also employ the same speedup tricks, i.e. shrinking and updating
every tenth of an epoch.

In practice, because of limitations of computational resources, we might not be able to fully
parallelize to the maximum of C/2 cores. In that case, our algorithm divides the set of classes
into number-of-cores many chunks and solves each bundle sequentially. For optimal speedup,
it is advisable to arrange the classes into chunks of equal number of classes and data points.

Given the average number of non-zero entries per sample d and the average number of
samples per class 7, ¢ cores and I iteration steps, the optimization has an asymptotic runtime
estimate of O(I - C- (¢- 7 - d + d)), where the first part of the sum amounts for the gradient
updates and the second for the model communication. Given an average dual sparsityas 1 — a
the algorithm needs at each node an asymptotic space complexity of O(¢- (d + 71 - a)) to store
the weight matrix and the dual coefficients.

As with LLW, we implemented a mixed MPI-OpenMP solver for WW. However, note that,
while LLW has mild communication needs, WW needs to pair the weight vectors of the
matched classes ¢ and ¢ in each epoch, for which C/2 weight vectors needs to communicated
among computers. Therefore it is crucial to communicate efficiently.

We tackled the problem as follows. First of all, we use OpenMP for computations on a sin-
gle machine (efficiently parallelizing among cores). Here, due to the shared memory, no

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 8/18

https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

weight vectors need to be moved. The more challenging task is to handle inter-machine com-
munication efficiently. Our approach is based on two key observations.

If the data is high-dimensional data, yet sparse, we keep the full weight matrix in memory
for fast access, yet communicating only the non-zero entries between computers. Regardless of
the increased computational effort, this takes only a fraction of time compared to sending the
dense data.

Furthermore, we relax the WW matching scheme. Coming back to a football, consider each
country hosts a league, and inside the league, we match the teams as known. Now we would
like to match teams across leagues. In order to do so, we first match the countries with the
scheme from Section. For each pair of countries, call them A and B, every team from country
A plays any other team from country B. Coming back to classes and machines, this means we
transfer bundles of classes (countries) between computers. This drastically reduces the net-
work communication.

Experiments

This section is structured as follows. First we empirically verify the soundness of the proposed
algorithms. Then we introduce the employed datasets, on which we investigate the conver-
gence and runtime behavior of the proposed algorithms as well as the induced classification
performance.

Each training algorithm was run three times, using randomly shuffled data, and the results
were averaged. Note that the training set is the same in each run, but the different order of
data points can impact the runtime of the algorithms.

Setup

For our experiments we use two different types of machines. Type A has 20 physical cpu cores,
128 GB of memory and a 10 GigaBit Ethernet network. Type B has 24 physical cpu cores and
386 GB of memory. On type B we ran the experiments involving CS due to the memory
requirements.

Training repetitions were run on training sets with a random order of the data (note that
the training set is the same in each run; only the order of points is shuffled, which can impact
the DBCA algorithm). For LIBLINEAR solvers we use the newest available version as of April
2016 with the default settings.

We implemented our solveres using OpenMP, OpenMPI, and the Python-ecosystem. In
more detailed we used [23, 24], and [25].

Validation of solver

In our first experiment, we validate the correctness of the proposed solvers. We downloaded
data from the LIBLINEAR (https://www.csie.ntu.edu.tw/ ~ ¢jlin/liblinear/) [13] and UCI
(https://archive.ics.uci.edu/ml/datasets.html) [26] dataset repositories. Where training and test
splits are unavailable, we split the data once into 90% train and 10% test sets. For each dataset,
the optimal feature scaling was selected, in order to maximize the average accuracy on the test
sets. Datapoints in iris and news were thus normalized to unit norm, letter and satimage were
normalized to unit variance. All other data was considered unnormalized.

Then we compare our LLW and WW solvers with the state-of-the-art implementation con-
tained in the ML library Shark [27]. We implemented the same stopping criteria as [27]. The
results (averaged over 10 runs) are shown in Table 1. We observe good accordance of the
results and model sparsity of the proposed solvers and the reference implementation from the

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 9/18

https://www.csie.ntu.edu.tw/cjlin/liblinear/
https://archive.ics.uci.edu/ml/datasets.html
https://doi.org/10.1371/journal.pone.0178161

o @
@ : PLOS | ONE Distributed optimization of multi-class SVMs

Table 1. Comparison to existing solver.

Dataset: D-LLW S-LLW D-ww S-ww

Err. Den. Err. Den. Err. Den. Err. Den.

SensIT (com.)
log(C): -1 21.34 100.0 21.34 100.0 19.88 100.0 19.88 100.0
0 20.95 100.0 20.95 100.0 19.51 100.0 19.51 100.0
1 20.78 100.0 20.78 100.0 19.38 100.0 19.38 100.0

glass
log(C): -1 66.67 100.0 66.67 100.0 38.10 100.0 38.10 100.0
0 61.90 100.0 61.90 100.0 19.05 100.0 19.05 100.0
1 33.33 100.0 33.33 100.0 19.05 100.0 19.05 100.0

iris
log(C): -1 13.33 100.0 13.33 100.0 6.67 100.0 6.67 100.0
0 26.67 100.0 26.67 100.0 13.33 100.0 13.33 100.0
1 26.67 100.0 26.67 100.0 13.33 100.0 13.33 100.0

letter
log(C): -1 87.04 100.0 87.04 100.0 28.25 100.0 28.26 100.0
0 87.24 100.0 87.24 100.0 29.04 100.0 29.03 100.0
1 61.91 100.0 87.24 100.0 28.92 100.0 28.93 100.0

news20
log(C): -1 29.23 97.24 29.23 97.24 15.32 51.16 15.30 49.72
0 22.97 97.24 22.97 97.24 14.80 44.74 14.80 42.70
1 16.15 97.17 16.15 97.04 15.98 45.97 15.98 43.47

rcvi
log(C): -1 47.96 78.00 47.96 78.00 11.31 26.42 11.31 23.45
0 33.27 78.00 33.41 77.98 11.52 22.93 11.52 20.12
1 12.03 78.00 12.03 77.98 12.03 23.05 12.03 20.06

satimage
log(C): -1 26.75 100.0 26.73 100.0 15.80 100.0 15.80 100.0
0 26.80 100.0 26.80 100.0 15.47 100.0 15.53 100.0
1 26.90 100.0 26.90 100.0 15.96 100.0 16.00 100.0

splice
log(C): -1 16.29 100.0 16.37 100.0 16.16 100.0 16.16 100.0
0 16.09 100.0 16.15 100.0 16.37 100.0 16.28 100.0
1 16.34 100.0 16.28 100.0 16.32 100.0 16.24 100.0

usps
log(C): -1 31.84 100.0 31.84 100.0 8.17 100.0 8.17 100.0
0 30.09 100.0 30.04 100.0 9.37 100.0 9.37 100.0
1 28.00 100.0 28.00 100.0 10.51 100.0 10.51 100.0

Error on the test set and density in % of the Shark solver (denoted S) and the proposed solver (denoted D). The results across solver implementations show
good accordance.

https://doi.org/10.1371/journal.pone.0178161.t001

Shark toolbox, thus confirming that our respective solvers are indeed exact solvers of LLW and
WW.

At random we tested whether the duality-gap closes or not. We did this for both solvers
with different C values and datasets. In any case the duality gap closed, i.e. decreased by an
order of two magnitudes. Based on this we chose our stopping criteria € equal to 0.1 for the
LSHTC datasets.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 10/18

https://doi.org/10.1371/journal.pone.0178161.t001
https://doi.org/10.1371/journal.pone.0178161

o ®
@ : PLOS | ONE Distributed optimization of multi-class SVMs

Datasets

We experiment on large classification datasets, where the number of classes ranges between
451 and 27,875. The relevant statistics of the datasets are shown in Table 2. The LSHTC-* data-
sets are high-dimensional text datasets taken from the well-known LSHTC corpus [14]. The
datasets belong to the released competition rounds 1 to 3, i.e. ‘10-’12. LSHTC-2011 and
LSHTC-2012 originate from the DMOZ corpus. The features were extracted using TF/IDF
representation and we use the full feature resolution for training.

Speedup

In order to measure the speedup provided by increasing the number of machines/cores, we
run a fix amount of iterations over the whole LSHTC-large dataset. We use 10 runs over 10
iterations with a fixed parameter C equal 1 without shrinking. While the MC execution works
on one machine, the MPI executes on two or four machines, i.e. spreading the used cores
evenly on each node.

The results are shown in Fig 2. Both solvers exhibit linear speedup regardless if distributed
or not, due to the small communication cost. Yet the speedup of WW is bounded by a larger
constant compared to LLW.

Timing and classification results

Now we evaluate and compare the proposed algorithms on the LSHTC datasets for a range of
C values, i.e. we perform no cross-validation. For comparison we use a solver from the well-
known LIBLINEAR package, namely the multi-core implementation with L2L1-loss (OVR)
[28]. For completeness we also include the single-core Crammer-Singer implementation (CS)
[13]. Due to the lack of performance we do not compare to the LLW and WW implementation
in the Shark ML library.

For the multi-core solvers, i.e. OVR and WW-MC, we use 16 cores. MPI spreads over 2 or
4 machines using 8 and 4 cores respectively at each node, thus trains the model distributed.
Table 3 shows the error and the model sparsity for the compared solutions. We further provide
the Micro-F1 and Macro-F1 score in Table 4.

For all datasets the canonical multi-class formulations, i.e. CS and WW, perform signifi-
cantly better than OVR. On one hand the error is smaller and the F1-scores better. On the
other hand the learned models are much sparser, i.e. up to a magnitude. The results justify the
increased solution complexity of canonical formulations.

Table 2. Dataset properties.

Dataset ntrain ntest C d
LSHTC-small 4,463 1,858 1,139 51,033
LSHTC-large 128,710 34,880 12,294 381,581

LSHTC-2012 383,408 103,435 11,947 575,555
LSHTC-2011 394,754 104,263 27,875 594,158

The used datasets from the LSHTC-corpus and their properties. n train and n test denote the number of samples in the training and test set respectively, C
the number of classes and d the number of dimensions. The most challenging dataset is given by LSHTC-2011. It contains the most samples, classes and
dimensions.

https://doi.org/10.1371/journal.pone.0178161.t002

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 11/18

https://doi.org/10.1371/journal.pone.0178161.t002
https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

LSHTC-large

—eo— LLW-MC R
- m- LLW-MPI-2 .
4 LLW-MPI-4 e
10| |—e— WW-MC - .
- |- m- WW-MPI-2 y Y
- | & WW-MPI-4 S

Speedup

100 | S | [
20 21 22 23 24 25
Number of Nodes

Fig 2. Speed-up. Speed-up of our solver averaged over 10 repetitions respectively in the number of cores.
For *-MPI-2 and *-MPI-4 the number of cores is split evenly on 2 and 4 machines respectively. We observe a
linear speedup in the number of cores for both solvers.

https://doi.org/10.1371/journal.pone.0178161.9002

Comparing CS and WW, CS performs as well or slightly better at classifying. Though WW
leads to a sparser model. To the best of our knowledge this is the first comparison of these
well-known multi-class SVMs on the studied LSHTC data.

From Fig 3, we observe that the runtime of our solver outperforms the one of OVR and CS
by up to two orders of magnitude. Even when distributed our solver outperforms multi-core
OVR in all except one case.

All WW experiments use the same amount of cores, but with a varying degree of distribu-
tion. We observe that the communication imposes a modest overhead. This overhead is influ-
enced by the model density which is higher for smaller C values and effect of shrinking which
is higher with larger C values. Yet in the regime with best classification results, e.g. C equal 0.1
and 1, the overhead is small.

Lin, Lee, & Wahba. Knowing that LLW converges to the correct solution, as the duality-
gap closes, the results indicate that the chosen C range is not suitable. For LSHTC-small we
conducted experiments with much larger C values. And indeed, as shown in Table 5, LLW per-
forms best in a nearly unconstrained setting. In our experiments we observed that the model
learned by LLW is never sparse, neither in the weight matrix W, nor in dual factors o.
Resource limitations and slow convergence properties hindered us to conduct experiments
with even larger C values. It is left to future work to explore this space or even develop a uncon-
strained version of LLW.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 12/18

https://doi.org/10.1371/journal.pone.0178161.g002
https://doi.org/10.1371/journal.pone.0178161

o ®
@ : PLOS | ONE Distributed optimization of multi-class SVMs

Table 3. Test error and model density.

Dataset: Error Model-Density
OVR CS ww LLW OVR CS ww LLW
LSHTC-small
log(C): -3 93.00 59.74 72.82 93.00 92.74 11.11 69.73 92.74
-2 85.36 59.74 65.34 93.00 81.54 11.13 16.44 92.74
-1 74.54 59.74 57.59 93.00 46.76 11.12 6.06 92.74
0 64.37 55.49 54.57 93.00 38.20 11.76 5.74 92.74
1 57.75 54.57 54.41 93.00 38.63 11.69 5.73 92.74
LSHTC-large
log(C): -3 88.12 58.57 66.47 95.86 75.26 2.53 18.50 100.0
-2 85.21 58.57 60.58 95.86 45.14 2.53 4.45 100.0
-1 77.96 57.82 55.28 95.86 25.28 2.55 1.71 100.0
0 63.11 53.61 53.98 95.86 18.33 2.69 1.61 100.0
1 57.18 54.18 54.41 * 18.55 2.67 1.66 *
LSHTC-2012
log(C): -3 83.66 49.81 58.02 92.63 72.60 1.73 16.97 99.52
-2 75.15 49.65 50.20 92.63 46.20 1.71 4.06 99.52
-1 60.38 46.14 44.94 92.63 25.87 1.76 1.52 99.52
0 47.33 42.67 44.01 * 18.20 2.06 1.42 *
1 46.83 45.60 46.15 * 18.46 2.09 1.47 *
LSHTC-2011
log(C): -3 87.95 59.09 68.19 96.18 72.38 1.57 13.49 100.0
-2 85.85 59.09 62.14 96.18 45.97 1.57 3.16 100.0
-1 76.78 58.18 57.31 96.18 25.97 1.55 1.19 100.0
0 63.11 55.58 56.94 * 18.24 1.69 1.11 *
1 60.01 57.78 58.32 * 18.46 1.70 1.14 *

Test set error and model density (in %) as achieved by the OVR, CS, WW, and LLW solvers on the LSHTC datasets. For each solver the result with the best
error is in bold font. For LLW entries with a **’ did not converge within a day of runtime.

https://doi.org/10.1371/journal.pone.0178161.t003

Discussion of related work

Most approaches to parallelization of MCSVM training are based on OVO or OVR [29],
including a number of approaches that attempt to learn a hierarchy of labels [30-36] or train
ensembles of SVMs on individual subsets of the data [37-39].

There is a line of research on parallelizing stochastic gradient (SGD) based training of
MC-SVMs over multiple computers [40, 41]. SGD builds on iteratively approximating the loss
term by one that is based on a subset of the data (mini-batch). In contrast, batch solvers (such
as the ones proposed in the present paper) are based on the full sample. In this sense, our
approach is completely different to SGD. While there is a long ongoing discussion whether the
batch or the SGD approach is superior, the common opinion is that SGD has its advantages in
the early phase of the optimization, while classical batch solvers shine in the later phase. In this
sense, the two approaches are complementary and could also be combined.

The related work that is the most closest to the present work is by [42]. They build on the
alternating direction method of multipliers (ADMM) [43] to break the Crammer and Singer
optimization problem into smaller parts, which can be solved individually on different com-
puters. In contrast to our approach, the optimization problem is parallelized over the samples,
not the optimization variables. In our problem setting, high-dimensional sparse data, the

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 13/18

https://doi.org/10.1371/journal.pone.0178161.t003
https://doi.org/10.1371/journal.pone.0178161

®'PLOS | one

Distributed optimization of multi-class SVMs

Table 4. F1-Scores.

Dataset: Micro-F1 Macro-F1
OVR CS ww LLW OVR CS ww LLW
LSHTC-small
log(C):-3 7.00 40.26 27.18 7.00 0.61 22.08 10.73 0.61
-2 14.42 40.26 34.66 7.00 2.70 22.08 16.15 0.61
-1 25.46 40.26 42.41 7.00 8.72 22.08 24.71 0.61
0 35.47 44.46 45.43 7.00 16.42 26.70 28.75 0.61
1 42.41 45.48 45.59 7.00 25.09 28.73 29.15 0.61
LSHTC-large
log(C): -3 11.77 41.35 33.53 4.14 0.88 25.43 15.05 0.09
-2 14.80 41.52 39.42 4.14 1.51 25.41 20.83 0.09
-1 22.02 42.19 44.72 4.14 3.35 25.83 27.90 0.09
0 36.86 46.41 46.02 * 14.76 30.99 31.29 *
1 42.80 45.83 45.59 * 25.87 31.13 31.12 *
LSHTC-2012
log(C): -3 16.34 50.19 41.98 7.37 0.28 20.55 8.08 0.01
-2 24.85 50.35 49.80 7.37 0.69 20.72 16.17 0.01
-1 39.62 53.86 55.06 7.37 2.64 23.76 25.94 0.01
0 52.67 57.33 55.99 * 12.46 32.57 32.06 *
1 53.17 54.40 53.85 * 24.41 31.84 30.95 *
LSHTC-2011
log(C): -3 12.05 40.91 31.81 3.82 0.46 22.44 10.47 0.05
-2 14.15 40.91 37.86 3.82 0.62 22.46 16.48 0.05
-1 23.22 41.82 42.69 3.82 1.89 23.37 23.17 0.05
0 36.89 44.42 43.06 * 10.60 26.97 27.25 *
1 39.99 42.22 41.86 * 21.30 26.31 26.97 *

Micro-F1 and Macro-F1 scores (in %) as achieved by the OVR, CS, WW, and LLW solvers on the LSHTC datasets. For each solver and each metric the
best result across C values is in bold font. For LLW entries with a ‘*’ did not converge within a day of runtime.

https://doi.org/10.1371/journal.pone.0178161.1004

-e- OVR
—m— CS
- WW-MP
- m- WW-MPI-2
-o- WW-MPI-4

5,000

4,000

S

= 3,000

Time

2,000

1,000

LSHTC-large

Time [s]

LSHTC-2011

-1 0 -2 -1 1
log(C) log(C)
Fig 3. Training times. Training time averaged over 10 repetitions per C for the various solvers.
https://doi.org/10.1371/journal.pone.0178161.g003
PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 14/18

https://doi.org/10.1371/journal.pone.0178161.t004
https://doi.org/10.1371/journal.pone.0178161.g003
https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

Table 5. Results for LLW-Solver.

log(C): 2 3 4
Error: 87.73 66.74 59.31
Micro F1: 2.08 15.07 40.69
Macro F1: 12.27 33.26 24.58
W-Density: 92.74 92.74 92.74
a-Density: 99.88 99.87 99.90

Error, Micro-F1, and Macro-F1 on the test set and model density in % of the LLW solver on the LSHTC-small
dataset.

https://doi.org/10.1371/journal.pone.0178161.t005

model size is vary large. Because each node holds the whole model in memory, this algorithm
hardly scales with large label spaces. E.g. consider Table 2; the model for LSHT'C-2011 contains
~216 * 10° parameters. Note also that it is unclear at this point whether the approach of [42]
could be adapted to LLW and WW, which are the object of study in the present paper.

Note that beyond SVMs there is a large body of work on distributed multi-class [44, 45]
and multi-label learning algorithms [46], which is outside of the scope of the present paper.

When the performance of single solvers saturates one can consider to refine them, e.g. by
considering the reliability of single class estimates [47] to enhance the prediction accuracy, or
to learn ensembles of SVMs to get better prediction by combining several estimates. This can
be done by bagging [48] or boosting [49] them or by exploiting smart compositions of solvers,
e.g. with LibD3C [50].

Conclusion

We proposed distributed algorithms for solving the multi-class SVM formulations by Lee et al.
(LLW) and Weston and Watkins (WW). The algorithm addressing LLW takes advantage of an
auxiliary variable, while our approach to optimizing WW in parallel is based on the 1-factori-
zation problem from graph theory.

The experiments confirmed the correctness of the solver (in the sense of an exact solver)
and show linear speedup when the number of cores is increased. This speedup allows us to
train LLW and WW on LSHTC datasets, for which results were lacking in the literature.

Our analysis contributed to comparing MC-SVM formulations on rather large data sets,
where comparisons were still lacking. In comparison to OVR we showed that WW can achieve
competitive classification results in less time, while still leading to a much sparser model.
Unexpectedly, LLW shows clear disadvantages over the other MC-SVMs. Yet the favorable
scaling properties make further research interesting, for instance regarding the development
of an unconstrained algorithm. We ease further research by publishing the source code under
https://github.com/albermax/xcsvm.

Overcoming the limitations of a single machine, i.e. distribution, is a key problem and a key
enabler in large scale learning. To best of our knowledge, we are the first to train an exact, all-
in-one MC-SVMs in a distributed manner. We hope this first step inspires further research in
this context.

In the future, we would like to study extensions of the concepts presented in this paper to
various more MC-SVMs, including the Crammer and Singer MC-SVM [51], the [,-norm
MC-SVM [52], and scatter based MC-SVMs [53].

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 15/18

https://github.com/albermax/xcsvm
https://doi.org/10.1371/journal.pone.0178161.t005
https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

Acknowledgments

We thank Rohit Babbar, Shinichi Nakajima, and Klaus-Robert Miiller for helpful discussions.
We thank Giancarlo Kerg for pointing us to the graph 1-factorization problem. We thank
Ioannis Partalas for help regarding the LSHTC datasets.

Author Contributions

Conceptualization: MA JZ UD MK.

Data curation: MA JZ.

Methodology: MA JZ MK.

Software: MA.

Writing - original draft: MA JZ MK.

Writing - review & editing: MA MK.

References

10.

11.

12
13.

14.

15.

16.

17.

Vapnik V. Statistical Learning Theory. John Wiley and Sons; 1998.

Rifkin R, Klautau A. In defense of one-vs-all classification. Journal of Machine Learning Research.
2004; 5:101-141.

Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines.
Journal of Machine Learning Research. 2002; 2:265-292.

LeeY, Lin Y, Wahba G. Multicategory Support Vector Machines: Theory and Application to the Classifi-
cation of Microarray Data and Satellite Radiance Data. Journal of the American Statistical Association.
2004; 99(465):67—-82. https://doi.org/10.1198/016214504000000098

Weston J, Watkins C. Support vector machines for multi-class pattern recognition. In: Verleysen M, edi-
tor. Proceedings of the Seventh European Symposium On Artificial Neural Networks (ESANN). Evere,
Belgium: d-side publications; 1999. p. 219-224.

Allwein EL, Schapire RE, Singer Y. Reducing multiclass to binary: A unifying approach for margin classi-
fiers. Journal of Machine Learning Research. 2001; 1:113—-141.

Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Transactions
on Neural Networks. 2002; 13(2):415-425. https://doi.org/10.1109/72.991427 PMID: 18244442

Hill SI, Doucet A. A framework for kernel-based multi-category classification. Journal of Artificial Intelli-
gence Research. 2007; 30(1):525-564.

Liu Y. Fisher consistency of multicategory support vector machines. In: Meila M, Shen X; editors. Elev-
enth International Conference on Atrtificial Intelligence and Statistics (AISTATS). vol. 2 of JMLR W&P;
2007. p. 289-296.

Guermeur Y. VC Theory for Large Margin Multi-Category Classifiers. Journal of Machine Learning
Research. 2007; 8:2551-2594.

Dogan U, Glasmachers T, Igel C. A Unified View on Multi-class Support Vector Classification. Journal
of Machine Learning Research. 2016; 17(45):1-32.

Bondy JA, Murty USR. Graph theory with applications. vol. 290. Macmillan London; 1976.

Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ. LIBLINEAR: A library for large linear classification.
Journal of Machine Learning Research. 2008; 9:1871-1874.

Partalas |, Kosmopoulos A, Baskiotis N, Artiéres T, Paliouras G, Gaussier E, et al. LSHTC: A Bench-
mark for Large-Scale Text Classification. CoRR. 2015;abs/1503.08581.

Szedmak S, Shawe-Taylor J, Parado-Hernandez E. Learning via linear operators: Maximum margin
regression. PASCAL, Southampton, UK; 2006.

Liu'Y, Yuan M. Reinforced Multicategory Support Vector Machines. Journal of Computational and
Graphical Statistics. 2011; 20(4):901-919. https://doi.org/10.1198/jcgs.2010.09206

Cortes C, Vapnik V. Support-vector networks. Machine Learning. 1995; 20(3):273-297. https://doi.org/
10.1007/BF00994018

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 16/18

https://doi.org/10.1198/016214504000000098
https://doi.org/10.1109/72.991427
http://www.ncbi.nlm.nih.gov/pubmed/18244442
https://doi.org/10.1198/jcgs.2010.09206
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

18.

19.

20.

21.

22,

23.

24,

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42,

Keerthi SS, Sundararajan S, Chang KW, Hsieh CJ, Lin CJ. A Sequential Dual Method for Large Scale
Multi-class Linear Svms. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. KDD’08. New York, NY, USA: ACM; 2008. p. 408—416. Available
from: http://doi.acm.org/10.1145/1401890.1401942

Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. Jour-
nal of optimization theory and applications. 2001; 109(3):475-494. https://doi.org/10.1023/
A:1017501703105

Bertsekas DP, Homer ML, Logan DA, Patek SD. Nonlinear programming. Athena scientific. 1995;.

Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable implementation of the MPI mes-
sage passing interface standard. Parallel computing. 1996; 22(6):789-828. https://doi.org/10.1016/
0167-8191(96)00024-5

Dagum L, Enon R. OpenMP: an industry standard API for shared-memory programming. Computa-
tional Science & Engineering, IEEE. 1998; 5(1):46-55. https://doi.org/10.1109/99.660313

Van Der Walt S, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical compu-
tation. Computing in Science & Engineering. 2011; 13(2):22-30. https://doi.org/10.1109/MCSE.2011.
37

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The best of both worlds. Com-
puting in Science & Engineering. 2011; 13(2):31-39. https://doi.org/10.1109/MCSE.2010.118

Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using python. Advances in Water
Resources. 2011; 34(9):1124—-1139. https://doi.org/10.1016/j.advwatres.2011.04.013

Asuncion A, Newman D. UCI machine learning repository; 2007.

Igel C, Glasmachers T, Heidrich-Meisner V. Shark. Journal of Machine Learning Research. 2008;
9:993-996.

Chiang WL, Lee MC, Lin CJ. Parallel Dual Coordinate Descent Method for Large-scale Linear Classifi-
cation in Multi-core Environments. In: Proceedings of the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD’16. New York, NY, USA: ACM; 2016. p. 1485-1494.
Available from: http://doi.acm.org/10.1145/2939672.2939826

Babbar R, Maundet K, Schélkopf B. TerseSVM: A Scalable Approach for Learning Compact Models in
Large-scale Classification. In: Proceedings of the 2016 SIAM International Conference on Data Mining.
SIAM; 2016. p. 234-242.

Bengio S, Weston J, Grangier D. Label embedding trees for large multi-class tasks. In: Advances in
Neural Information Processing Systems; 2010. p. 163-171.

Deng J, Satheesh S, Berg AC, Li F. Fast and balanced: Efficient label tree learning for large scale object
recognition. In: Advances in NIPS; 2011. p. 567-575.

Gao T, Koller D. Discriminative learning of relaxed hierarchy for large-scale visual recognition. In: ICCV.
IEEE; 2011. p. 2072-2079.

Choromanska AE, Langford J. Logarithmic Time Online Multiclass prediction. In: Advances in Neural
Information Processing Systems 28. Curran Associates, Inc.; 2015. p. 55-63.

Zhou D, Xiao L, Wu M. Hierarchical classification via orthogonal transfer. In: ICML; 2011. p. 801-808.

Gopal S, Yang Y. Recursive regularization for large-scale classification with hierarchical and graphical
dependencies. In: ACM SIGKDD. ACM; 2013. p. 257—265.

Madzarov G, Gjorgjevikj D, Chorbev I. A Multi-class SVM Classifier Utilizing Binary Decision Tree. Infor-
matica (Slovenia). 2009; 33(2):225-233.

Govada A, Gauri B, Sahay SK. Distributed Multi Class SVM for Large Data Sets. In: Proceedings of the
Third International Symposium on Women in Computing and Informatics. WCI'15. New York NY, USA:
ACM; 2015. p. 54-58. Available from: http://doi.acm.org/10.1145/2791405.2791534

Govada A, Ranjani S, Viswanathan A, Sahay S. A Novel Approach to Distributed Multi-Class SVM.
arXiv preprint arXiv:151201993. 2015;.

Lodi S, Nanculef R, Sartori C. Single-pass distributed learning of multi-class svms using core-sets.
methods. 2010; 14(27):2.

Gupta MR, Bengio S, Weston J. Training highly multiclass classifiers. Journal of Machine Learning
Research. 2014; 15(1):1461-1492.

Do TN. Parallel multiclass stochastic gradient descent algorithms for classifying million images with
very-high-dimensional signatures into thousands classes. Vietnam Journal of Computer Science. 2014;
1(2):107—115. https://doi.org/10.1007/s40595-013-0013-2

Han X, Berg AC. DCMSVM: Distributed parallel training for single-machine multiclass classifiers. In:
Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE; 2012. p. 3554—
3561.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 17/18

http://doi.acm.org/10.1145/1401890.1401942
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1023/A:1017501703105
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1016/0167-8191(96)00024-5
https://doi.org/10.1109/99.660313
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/j.advwatres.2011.04.013
http://doi.acm.org/10.1145/2939672.2939826
http://doi.acm.org/10.1145/2791405.2791534
https://doi.org/10.1007/s40595-013-0013-2
https://doi.org/10.1371/journal.pone.0178161

@° PLOS | ONE

Distributed optimization of multi-class SVMs

43.

44,

45.
46.

47.

48.

49.

50.

51.

52.

53.

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends® in Machine Learning. 2011; 3
(1):1-122. https://doi.org/10.1561/2200000016

Agarwal A, Chapelle O, Dudik M, Langford J. A Reliable Effective Terascale Linear Learning System.
CoRR. 2011;abs/1110.4198.

Gopal S, Yang Y. Distributed training of Large-scale Logistic models. In: ICML (2); 2013. p. 289-297.

Prabhu Y, Varma M. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning.
In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM; 2014. p. 263-272.

Liu 'Y, Zheng YF. One-against-all multi-class SVM classification using reliability measures. In: Neural
Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference on. vol. 2. IEEE;
2005. p. 849-854.

Breiman L. Bagging predictors. Machine learning. 1996; 24(2):123-140. https://doi.org/10.1007/
BF00058655

Freund Y, Schapire R. A desicion-theoretic generalization of on-line learning and an application to
boosting. In: Computational Learning Theory. Springer; 1995. p. 23-37.

Lin C, Chen W, Qiu C, Wu Y, Krishnan S, Zou Q. LibD3C: ensemble classifiers with a clustering and
dynamic selection strategy. Neurocomputing. 2014; 123:424-435. https://doi.org/10.1016/j.neucom.
2013.08.004

Crammer K, Singer Y. On the learnability and design of output codes for multiclass problems. Machine
Learning. 2002; 47(2):201-233. https://doi.org/10.1023/A:1013637720281

Lei Y, Dogan U, Binder A, Kloft M. Multi-class svms: From tighter data-dependent generalization
bounds to novel algorithms. In: Advances in Neural Information Processing Systems; 2015. p. 2035—
2043.

Jenssen R, Kloft M, Zien A, Sonnenburg S, Muller KR. A scatter-based prototype framework and multi-
class extension of support vector machines. PloS one. 2012; 7(10):e42947. https://doi.org/10.1371/
journal.pone.0042947 PMID: 23118845

PLOS ONE | https://doi.org/10.1371/journal.pone.0178161 June 1, 2017 18/18

https://doi.org/10.1561/2200000016
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://doi.org/10.1016/j.neucom.2013.08.004
https://doi.org/10.1016/j.neucom.2013.08.004
https://doi.org/10.1023/A:1013637720281
https://doi.org/10.1371/journal.pone.0042947
https://doi.org/10.1371/journal.pone.0042947
http://www.ncbi.nlm.nih.gov/pubmed/23118845
https://doi.org/10.1371/journal.pone.0178161

