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Abstract

Several strands of evidence reported a significant overlapping, in terms of clinical symp-

toms, epidemiology and treatment response, between the two major psychotic disorders—

Schizophrenia (SCZ) and Bipolar Disorder (BD). Nevertheless, the shared neurobiological

correlates of these two disorders are far from conclusive. This study aims toward a better

understanding of possible common microstructural brain alterations in SCZ and BD. Mag-

netic Resonance Diffusion data of 33 patients with BD, 19 with SCZ and 35 healthy controls

were acquired. Diffusion indexes were calculated, then analyzed using Tract-Based Spatial

Statistics (TBSS). We tested correlations with clinical and psychological variables. In both

patient groups mean diffusion (MD), volume ratio (VR) and radial diffusivity (RD) showed a

significant increase, while fractional anisotropy (FA) and mode (MO) decreased compared

to the healthy group. Changes in diffusion were located, for both diseases, in the fronto-tem-

poral and callosal networks. Finally, no significant differences were identified between

patient groups, and a significant correlations between length of disease and FA and VR

within the corpus callosum, corona radiata and thalamic radiation were observed in bipolar

disorder. To our knowledge, this is the first study applying TBSS on all the DTI indexes at

the same time in both patient groups showing that they share similar impairments in micro-

structural connectivity, with particular regards to fronto-temporal and callosal communica-

tion, which are likely to worsen over time. Such features may represent neural common

underpinnings characterizing major psychoses and confirm the central role of white matter

pathology in schizophrenia and bipolar disorder.

PLOS ONE | https://doi.org/10.1371/journal.pone.0178089 June 28, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Squarcina L, Bellani M, Rossetti MG,

Perlini C, Delvecchio G, Dusi N, et al. (2017) Similar

white matter changes in schizophrenia and bipolar

disorder: A tract-based spatial statistics study.

PLoS ONE 12(6): e0178089. https://doi.org/

10.1371/journal.pone.0178089

Editor: Dewen Hu, National University of Defense

Technology College of Mechatronic Engineering

and Automation, CHINA

Received: September 13, 2016

Accepted: May 7, 2017

Published: June 28, 2017

Copyright: © 2017 Squarcina et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The dataset is

available and submitted as a Supporting

Information file.

Funding: This study was partly supported by

grants from the Ministry of Health (GR-2010-

2316745) to Paolo Brambilla (GR-2010-2316745)

and to Marcella Bellani (GR-2010-2319022).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0178089
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178089&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178089&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178089&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178089&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178089&domain=pdf&date_stamp=2017-06-28
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0178089&domain=pdf&date_stamp=2017-06-28
https://doi.org/10.1371/journal.pone.0178089
https://doi.org/10.1371/journal.pone.0178089
http://creativecommons.org/licenses/by/4.0/


Introduction

Several studies consistently reported that Bipolar Disorder (BD) and schizophrenia (SCZ)

share clinical, cognitive and genetic aspects [1][2][3][4][5] overcoming the Kraepelinian

dichotomy theory [6] which considers BD and SCZ as two distinct diseases. Indeed, in recent

years, changes in diffusion measures in BD and SCZ have been investigated under the hypoth-

esis that diffusion alterations, particularly in the white matter (WM), can unveil structural con-

nectivity modifications characterizing major psychoses [7].

In this context, Diffusion Tensor Imaging (DTI) enables the investigation of microstruc-

tural alterations in the organization and orientation of WM tracts, through the extraction of

specific diffusion indexes interconnected with each other [8][9]. Specifically, fractional anisot-

ropy (FA) measures how much one direction is prevailing on the others inside a particular

voxel, whereas mean diffusivity (MD) represents the magnitude of the diffusion. Axial (AD)

and radial diffusivity (RD) measure the amount of diffusion that occurs along the principal

axis of the diffusion tensor and perpendicularly to it. Volume ratio (VR) gives a measure of the

ratio between the ellipsoid volume and that of a sphere having a radius equivalent to the mean

diffusivity. Finally, mode (MO) [10], is related to the three-dimensional characteristics of

anisotropy (from linear to planar). The analysis of these indexes provides insight into WM

microstructural alterations.

Several studies observed similar alterations in cortical areas in SCZ and BD, within prefron-

tal, temporal and parietal lobes [11][12][13][14][15] and in subcortical regions, including the

amygdala, the basal ganglia and the thalamus [16][17][18][14][19]. Furthermore, SCZ and BD

have both been considered as “dysconnection syndromes” [20][21][22], being the symptoms

sustained by abnormal regional interactions. However, SCZ has been investigated using DTI

more widely than BD [12], both at region of interest (ROI) and at a voxel level. In particular, it

has been reported that SCZ patients showed widespread lowered FA compared to healthy sub-

jects in several brain regions, including frontal and parietal WM [11][12], internal capsule [23]

[24], temporal and occipital WM [11], corpus callosum [23][25][26], longitudinal fasciculus

[27][28], anterior cingulate bundle [29] and uncinate fasciculus [27]. Additionally, changes

were found also in terms of increased RD in the temporal gyrus [30] and increased MD in

fronto-temporal areas [11], corpus callosum [31], amygdala [32], and thalamus [33].

With regard to BD, findings are not always in agreement, as suggested by previous studies

from our group [34][35] and other independent studies [36][37]. Nonetheless, the majority of

these studies detected a decrease in FA, which could be related to disruption of WM. Further-

more, similarly to SCZ, decreased FA was found in BD, both at ROI and at a voxel level, in var-

ious WM regions, including frontal WM tracts [38], corona radiata [39], anterior cingulum

[40], corpus callosum and arcuate and uncinate fasciculi [36][41]. Although other DTI indexes

are less investigated than FA, an increase in MD has been found in WM tracts [7][42] and in

the frontal gyri [43], whereas increases in AD and RD have been reported in the fornix [44].

Finally, TBSS (Tract—Based Spatial Statistics [45]) studies also showed an involvement of

all major WM tracts [46], located in the frontal, temporal [36][47][48], parietal and occipital

WM areas [49] as well as corpus callosum and longitudinal fasciculus [50][51].

Despite the similarities in WM alterations in either BD or SCZ, these two psychiatric ill-

nesses have rarely been studied together in terms of brain diffusion. In most cases no differ-

ences were found [13][37][49][52][53], except for a DTI study carried out by Lu and

colleagues [54] reporting reduced FA in BD in selective ROIs, including the cingulum, internal

capsule, posterior corpus callosum, posterior thalamic radiation and inferior longitudinal fas-

ciculus/inferior fronto-occipital fasciculus WM compared to SCZ. Moreover, a recent TBSS

study reported similar WM connectivity abnormalities in callosal, paralimbic and fronto-
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occipital regions in both SCZ and BD and also that dysconnectivity predicted functional out-

come in both illnesses [49].

In this work we aim to delineate common and distinct WM abnormalities between BD and

SCZ patients. Specifically, we directly compared BD, SCZ and healthy controls (HC) taking

into account the whole set of DTI indexes simultaneously. This approach, differently from pre-

vious studies, where mostly FA and MD are analyzed, provides a comprehensive insight on the

changes in diffusion characterizing BD and SCZ. Specifically, in respect to Kumar and col-

leagues [49], who also compared BD and SCZ with TBSS, we specifically aimed at finding

regions where all diffusion indexes are compromised, instead of comparing other indexes were

FA shows differences between healthy and patients, with the intent of exploiting all the infor-

mation we can get with the DTI model.

To our knowledge, this is the first study applying TBSS on all the DTI indexes at the same

time. Finally, the impact of age and clinical variables on diffusion values for both groups of

patients was explored.

Materials and methods

Participants

Thirty-three patients with DSM-IV BD (18 type I, 15 type 2), 19 patients with SCZ and 35 HC

were recruited. The recruitment of patients was made by means of the South-Verona Psychiat-

ric Care Register (PCR) [55], a community-based mental health register. Diagnoses for SCZ

and BD were obtained using the Item Group Checklist of the Schedule for Clinical Assessment

in Neuropsychiatry (IGC-SCAN) (World Health Organization, 1992) and confirmed by the

clinical consensus of two staff psychiatrists. The duration of illness was determined in years

since symptoms onset. The clinical symptomatology was evaluated with the Brief Psychiatric

Rating Scale (BPRS) in both disorders as well as with the Hamilton Depression Rating Scale

(HDRS) and the Bech-Rafaelsen Mania Rating Scale (BRMRS) in patients with BD. All patients

with other Axis I disorders, alcohol or substance abuse, history of traumatic head injury with

loss of consciousness, epilepsy or other neurological or medical diseases, including hyperten-

sion and diabetes, were excluded from the study.

HC were recruited through word of mouth and advertisements in the local communities

and had no history of head injury or psychiatric disorders, no psychiatric disorders among

first-degree relatives, and no history of substance or alcohol abuse. The absence of psychiatric

disorders was tested using an interview modified from the non-patient version of the SCID-IV.

For all demographic and clinical details please refer to Table 1.

All the procedures were approved by the Biomedical Ethics Committee of the Azienda

Ospedaliera di Verona and are in accordance with the Helsinki Declaration of 1975. All sub-

jects signed a written informed consent to the protocol.

MRI scanning

DTI images were acquired with a 1.5 T Siemens Symphony (Siemens Healthcare, Erlangen, Ger-

many) scanner along 12 non-collinear directions with a single non-diffusion weighted image S0.

The parameters used for the acquisition were as follows: repetition time (TR) = 8900 ms, echo

time (TE) = 104 ms, matrix size 256 x 256x50, voxel size 0.92 x 0.92 x 3 mm3, b = 1000 s/mm2.

Data analysis

Distortions due to eddy currents and small head motion were corrected aligning the diffusion-

weighted images to the S0 using affine transformations utilizing the eddy currents correction
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tool from FSL [56][57]. The images were then skull-stripped using the brain extraction tool of

FSL [58] for all the subjects. Subsequently, the data were fitted to the tensor model, as imple-

mented in the function FDT in FSL [59][60], and FA, MD, RD, RA, and VR indexes were

obtained. MO was calculated with an in-house MatLab script (MATLAB R2011b, The Math-

Works Inc., Natick, MA, 2011) according to the work of Ennis and colleagues [10].

Patients were divided into two distinct groups according to the diagnosis. We compared

age and gender between groups. We investigated differences in diffusion between patients

affected by BD HC, and between patients affected by SCZ and HC. We also investigated if

there were differences, in terms of diffusion, between BD I and BD II patients. Then, we com-

pared SCZ with BD.

TBSS consists in various steps. Briefly, all FA images from all subjects were non-linearly

registered to the FMBRIB-FA standard space using FNIRT [61] and a mean FA image was cre-

ated. Then, the center of the WM tracts were delineated by thinning, to obtain a “skeleton”

representing the brain WM tracts common to all subjects belonging to the group. The result-

ing data were processed applying voxel-wise cross-subject statistics, using FSL randomise

function [62] (p<0.05). We corrected the results for multiple comparisons using threshold-

free cluster enhancement (TFCE [63]), an approach similar to cluster-based thresholding. Age

was treated as a nuisance variable to avoid spurious results related with the natural changes in

diffusion associated with aging. Also gender was considered as a covariate of no interest.

Moreover, mean values and standard deviations of the considered diffusion indexes in the

affected WM tracts, identified using the JHU ICBM-DTI-81 (http://cmrm.med.jhmi.edu/)

tract atlas, have been compared with the healthy population. We tested if diffusion indexes

came from different statistical populations, using the Wilcoxon-Mann-Whitney rank-sum test

(p = 0.05) for both comparisons.

Table 1. Demographic and clinical details of subjects participating to the study.

Healthy controls

(N = 35)

Patients with Bipolar Disorder

(N = 33,18 BD I, 15 BD II)

Patients with Schizophrenia

(N = 19)

Mean (SD) Mean (SD) Mean (SD)

Age (years, mean(SD)) 39.0 (12.6) 48.9 (8.3) 46.1 (11.5)

Sex (males/females)* 19/16 8/25 13/6

Duration of Illness (years, mean(SD)) - 20.8 (10.5) 20.8 (12.6)

BPRS total score (mean(SD)) - 33.0 (8.3) 34.3 (6.7)

HDRS total score (mean(SD)) - 11.5 (11.8) -

BRMRS total score (mean(SD)) - 3.1 (4.4) -

Psychotic symptoms (yes/no) - 20/13 19/0

Number of hospitalizations (mean(SD)) - 5.3 (4.8) 4.1 (4.9)

Medication AP typical (chlorpromazine equivalents, yes/

no, mean(SD)*
- 15/18 99.2 (104.1) 7/12 68.4 (41.6)

AP atypical (chlorpromazine equivalents,

yes/no, mean(SD)*
- 7/26 255.0 (142.0) 12/7 280.6 (123.8)

AD (PDD/DDD, yes/no, mean(SD)) - 13/20 1.64 (0.63) 9/10 1.16 (0.65)

BZD (PDD/DDD, yes/no, mean(SD)* - 12/21 2.42 (3.84) 9/10 3.83 (4.87)

STAB (PDD/DDD, yes/no, mean(SD)* - 11/22 0.91 (0.24) 0/19

Demographic and clinical details of our sample. BD = bipolar disorder; SD = standard deviation; BPRS = Brief Psychiatric Rating Scale; HDRS = Hamilton

Depression Rating Scale; BRMRS = Bech-Rafaelsen Mania Rating Scale; AP = Antipsychotics; AD = Antidepressants; BZD = benzodiazepines;

STAB = Mood stabilizers.

*gender significantly different between samples (Chi-squared test, p < 0.05).

https://doi.org/10.1371/journal.pone.0178089.t001
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We then investigated if there were areas or clusters of voxels where all diffusion indexes

showed abnormal behavior simultaneously. To achieve this, the results obtained with the dif-

ferent indexes have been intersected, considering the voxels where the differences between

healthy subjects and patients were statistically significant (p<0.05) for each index.

Finally, we investigated if diffusion indexes variations in the pathological population corre-

lated with the duration of illness, use of medication, BPRS, HDRS and BRMRS score in the

case of BD, and with length of disease, BPRS scores, medication and number of hospitaliza-

tions in SCZ subjects. Also in this case results were corrected for multiple comparisons consid-

ering only voxels with p< 0.05, identified using TFCE.

Results

We found widespread white matter alterations both in BD and in SCZ. In particular, FA

decreased, while MD, VR, AD and RD increased in both groups of patients in respect to

healthy controls (TFCE, p < 0.05). In BD patients MO showed a decrease in small regions.

The affected areas overlap substantially in BD and SCZ. In a direct comparison between BD

and SCZ and between BD I and BD II no differences have been found in diffusion indexes

(TFCE, p> 0.05). Gender differed between samples (Chi-squared test, p< 0.05), while age did

not show a significant difference (Wilcoxon rank-sum test, p> 0.05).

Direct comparisons of patients affected by SCZ and BD with HC

SCZ vs HC. For patients with SCZ, after multiple comparison correction (TFCE, p = 0.05)

FA showed a decrease in respect to HC, while MD, VR, AD and RD showed an increase in

widespread WM areas, including corpus callosum, corona radiata, longitudinal fasciculus,

internal and external capsule, thalamic radiation (values in Table 2). Coherently, the Wilcoxon

rank-sum test identified all indexes values to be different in all tracts (Table 2).

Areas where FA, MD, VR, AD and RD differ from HC are corpus callosum, right anterior

thalamic radiation, left posterior thalamic radiation, superior and posterior corona radiata,

longitudinal fasciculus (Fig 1).

BD vs HC. In BD patients FA, MD, VR, AD, MO and RD showed, after correction for

multiple comparisons (TFCE, p = 0.05), significant differences (mean values in Table 3) in

many areas, including bilateral internal capsule and corpus callosum, bilateral external capsule,

corona radiata, internal capsule and longitudinal fasciculus. Additionally, MO decreased only

in small areas located in the corpus callosum and in the internal capsule.

Due to the small amount of voxels where MO was found to be sensitive to pathology, we

did not consider MO in the computation of the areas which showed a variation of all indexes

simultaneously. FA, MD, VR, AD and RD showed significant changes in respect to HC in par-

ticular in the corpus callosum, external capsule and internal capsule.(Fig 2).

BD vs SCZ. The direct comparison between the two groups of patients, after correction

for multiple comparisons, did not show statistically relevant differences. Also, no differences

in diffusion indexes were found between BD I and BD II patients.

2. Correlations of diffusion values of patients affected by SCZ and BD

with clinical indexes

In patients affected by SCZ, we did not find any statistically significant correlation with clinical

variables after multiple comparison correction (TFCE, p = 0.05).

In patients affected by BD, length of illness showed statistically significant negative correla-

tions with FA in internal and external capsule and corona radiata as well as positive correlations

Tract-based spatial statistics in bipolar disorder and schizophrenia
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Table 2. Brain areas where diffusion indexes are different in schizophrenia patients in respect to

healthy controls.

FA

Tract SCZ patients Healthy controls rank-sum (p)

mean (SD) x10 2 mean (SD) x10 2

Corpus callosum 0.70 (0.12) 0.73 (0.12) <10−3

Corona radiata L 0.51 (0.10) 0.53 (0.099) <10−3

Corona radiata R 0.51 (0.098) 0.53 (0.095) <10−3

Longitudinal fasciculus L 0.51 (0.097) 0.53 (0.099) <10−3

Longitudinal fasciculus R 0.51 (0.095) 0.53 (0.099) <10−3

External capsule L 0.46 (0.11) 0.48 (0.11) <10−3

External capsule R 0.47 (0.11) 0.48 (0.11 <10−3

Thalamic radiation L 0.62 (0.10) 0.65 (0.11) <10−3

Thalamic radiation R 0.62 (0.10 0.65 (0.11) <10−3

MD

Tract SCZ patients Healthy controls rank-sum (p)

mean (SD) x10 4 mean (SD) x10 4

Corpus callosum 8.17 (2.23) 7.63 (1.26) <10−3

Corona radiata L 7.40 (0.94) 7.18 (0.85) <10−3

Corona radiata R 7.43 (0.50) 7.17 (0.83) <10−3

Internal capsule L 7.31 (0.81) 7.19 (0.77) <10−3

Internal capsule R 7.37 (1.07) 7.22 (0.79) <10−3

Longitudinal fasciculus L 7.25 (0.80) 7.02 (0.76) <10−3

Longitudinal fasciculus R 7.29 (0.84) 7.05 (0.80) <10−3

External capsule L 7.82 (0.83) 7.63 (0.76) <10−3

External capsule R 7.77 (0.84) 7.64 (0.75) <10−3

Thalamic radiation L 8.23 (.1.41) 7.72 (1.42) <10−3

Thalamic radiation R 8.22 (2.69( 7.60 (1.30) <10−3

VR

Tract SCZ patients Healthy controls rank-sum (p)

mean (SD) mean (SD)

Corpus callosum 0.44 (0.19) 0.41 (0.19) <10−3

Longitudinal fasciculus R L 0.70 (0.11) 0.67 (0.12) <10−3

External capsule L 0.76 (0.12) 0.74 (0.12) <10−3

External capsule R 0.75 (0.12) 0.74 (0.12) <10−3

AD

Tract SCZ patients Healthy controls rank-sum (p)

mean (SD) x10 3 mean (SD)

Corpus callosum 1.74 (0.48) 1.69 (0.45) <10−3

Internal capsula R 1.35 (0.15) 1.34 (0.15) <10−3

Corona radiata L 1.26 (0.21) 1.23 (0.17) <10−3

Corona radiata R 1.27 (0.21) 1.23 (0.18) <10−3

RD

Tract SCZ patients Healthy controls rank-sum (p)

mean (SD) x10 4 mean (SD) x10 4

Corpus callosum 3.96 (1.57) 3.57 (1.47) <10−3

Corona radiata L 5.16 (1.03) 4.85 (0.95) <10−3

Corona radiata R 5.15 (0.97) 4.83 (0.91) <10−3

Internal capsule L 4.25 (0.94) 4.11 (0.93) <10−3

(Continued)
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Table 2. (Continued)

Internal capsule R 4.24 (0.97) 4.12 (0.95) <10−3

Longitudinal fasciculus L 5.03 (0.84) 4.76 (0.81) <10−3

Longitudinal fasciculus R 5.05 (0.84) 4.79 (0.84) <10−3

External capsule L 5.70 (1.06) 5.45 (1.02) <10−3

External capsule R 5.65 (1.07) 5.45 (1.01) <10−3

Thalamic radiation L 4.91 (1.35) 4.42 (1.44) <10−3

Thalamic radiation R 4.59 (1.32) 4.24 (1.32) <10−3

Brain areas where diffusion indexes are statistically different between patients affected by schizophrenia

and healthy controls, mean and standard deviations of their values (FA = fractional anisotropy, MD = mean

diffusivity, VR volume ratio, RD = radial diffusivity, L = left, R = right, SD = standard deviation) and results of

the Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pone.0178089.t002

Fig 1. Areas with multiple altered DTI indexes in schizophrenia. White Matter tracts areas where fractional anisotropy, mean diffusivity, axial diffusivity,

volume ratio and radial diffusivity show all a significant change in patients affected by schizophrenia, in respect to healthy individual (in red, p = 0.05, corrected

with threshold-free cluster enhancement). Areas where all the considered indexes differ from values of healthy controls are corpus callosum, corona radiata,

superior longitudinal fasciculus. The white matter skeleton is depicted in blue.

https://doi.org/10.1371/journal.pone.0178089.g001
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Table 3. Brain areas where diffusion indexes are different in bipolar disorder patients in respect to

healthy controls.

FA

Tract BD patients Healthy controls rank-sum (p)

mean (SD) x10 2 mean (SD) x10 2

Corpus callosum 0.69 (0.13) 0.73 (0.12) <10−3

Corona radiata L 0.49 (0.097) 0.53 (0.099) <10−3

Corona radiata R 0.50 (0.098) 0.53 (0.095) <10−3

Internal capsule L 0.63 (0.095) 0.65 (0.094) <10−3

Internal capsule R 0.63 (0.093) 0.65 (0.095) <10−3

Longitudinal fasciculus L 0.51 (0.098) 0.53 (0.099) <10−3

Longitudinal fasciculus R 0.51 (0.099) 0.53 (0.099) <10−3

MD

Tract BD patients Healthy controls rank-sum (p)

mean (SD) x10 4 mean (SD) x10 4

Corpus callosum 8.13 (1.51) 7.63 (1.26) <10−3

Corona radiata L 7.50 (0.93) 7.18 (0.85) <10−3

Corona radiata R 7.49 (0.92) 7.17 (0.83) <10−3

Internal capsule L 7.39 (0.85) 7.19 (0.77) <10−3

Internal capsule R 7.43 (0.83) 7.22 (0.79) <10−3

Longitudinal fasciculus L 7.24 (0.76) 7.02 (0.76) <10−3

Longitudinal fasciculus R 7.29 (0.78) 7.05 (0.80) <10−3

External capsule L 7.84 (0.81) 7.63 (0.76) <10−3

External capsule R 7.74 (0.79) 7.64 (0.75) <10−3

Thalamic radiation L 8.18 (.1.37) 7.72 (1.42) <10−3

Thalamic radiation R 8.21 (2.57) 7.60 (1.30) <10−3

VR

Tract BD patients Healthy controls rank-sum (p)

mean (SD) mean (SD)

Corpus callosum 0.47 (0.20) 0.41 (0.19) <10−3

Corona radiata L 0.73 (0.11) 0.68 (0.12)

68

<10−3

Corona radiata R 0.72 (0.11) 0.68 (0.12) <10−3

Longitudinal fasciculus R L 0.70 (0.12) 0.68 (0.12) <10−3

External capsule L 0.77 (0.12) 0.74 (0.12) <10−3

External capsule R 0.76 (0.12) 0.73 (0.12) <10−3

Cingulum L 0.65 (0.13) 0.59 (0.15) <10−3

AD

Tract BD patients Healthy controls rank-sum (p)

mean (SD) x10 3 mean (SD) x10 3

Corona radiata R 1.20 (0.16) 1.19 (0.15) <10−3

Longitudinal fasciculus R 1.18 (0.17) 1.16 (0.18) <10−3

Internal capsule R 1.35 (0.16) 1.34 (0.15) <10−3

RD

Tract BD patients Healthy controls rank-sum (p)

mean (SD) x10 4 mean (SD) x10 4

Corpus callosum 4.21 (1.73) 3.57 (1.47) <10−3

Corona radiata L 5.30 (1.01) 4.85 (0.95) <10−3

Corona radiata R 5.25 (1.00) 4.83 (0.91) <10−3

Internal capsule L 4.35 (0.99) 4.11 (0.93) <10−3

(Continued)
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with VR in internal and external capsule, corona radiata, corpus callosum (S1 Table, S1 and S2

Figs).

Discussion

In this work, we have taken into account the whole set of DTI indexes (FA, MD, VR, RD, AD

and MO), with the aim of reaching a comprehensive understanding of brain diffusion in BD

and SCZ. Diffusion resulted to be affected both in BD and in SCZ patients, whereas no signifi-

cant differences were found between the two groups of patients. In particular, patients suffer-

ing from BD and SCZ showed widespread reduction of FA and a significant increase in all the

other indexes in all major WM connections compared to healthy subjects. Only for patients

affected by SCZ, AD did not show significant differences when compared with HC.

These results suggest that the alterations underlying the pathophysiology of SCZ and BD

are similar when structural connectivity, in terms of diffusion of water in the brain, is consid-

ered. Specifically, in this study, BD and SCZ patients showed similar dysfunctional patterns in

MD and FA values, in respect to HC, further suggesting that structural connectivity is similarly

affected in these two diseases, in line with previous findings [7][11][27][30][49][64].

It is to be noted that more than half BD patients who took part to this study have a lifetime

history of psychosis. Psychotic symptoms have recently been seen as representing an interme-

diate phenotype between bipolar disorder with no psychotic symptoms and schizophrenia [65;

66; 67]: this could partly explain our results. Interestingly, as can be seen in Table 1, medication

intake is similar in the two patient groups, thus this should not add any major bias to our

findings.

Indeed, FA and MD have been found to decrease in both groups of patients in many brain

areas, especially in prefrontal cortex (PFC), corpus callosum, corona radiata, longitudinal fas-

ciculi and internal capsule [11][49]. Moreover, a relationship between the alteration of those

tracts and specific cognitive profiles has been largely reported in both disorders [39][68][69]

[70][71]. In particular, Karbasforoushan and colleagues [68] found that decreases in the integ-

rity of corpus callosum, cingulum, superior and inferior frontal gyri, and precuneus, are

related with processing speed impairment, whereas Bauer and colleagues [39] showed that BD

patients with alterations of FA, RD and MD within the internal capsule, the superior and ante-

rior corona radiata, and the corpus callosum had low performances on verbal fluency tasks.

Similarly, emotional and cognitive processes involved in SCZ have been linked to modifica-

tions in the internal capsule and its fronto-thalamic network [24][37][72], potentially support-

ing dysfunctional connectivity and altered executive functions [69].

Table 3. (Continued)

Internal capsule R 4.38 (0.97) 4.13 (0.95) <10−3

Longitudinal fasciculus L 5.05 (0.84) 4.76 (0.81) <10−3

Longitudinal fasciculus R 5.05 (0.87) 4.79 (0.84) <10−3

MO

Tract BD patients Healthy controls rank-sum (p)

mean (SD) mean (SD)

Corpus callosum 0.86 (0.18) 0.88 (0.16) <10−3

Brain areas where diffusion indexes are statistically different between patients affected by bipolar disorder

and healthy controls, mean and standard deviations of their values ((FA = fractional anisotropy, MD = mean

diffusivity, VR volume ratio, RD = radial diffusivity, MO = mode, L = left, R = right, SD = standard deviation)

and results of the Wilcoxon rank-sum test.

https://doi.org/10.1371/journal.pone.0178089.t003
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Moreover, a decrease in FA, coupled with the increase in MD, RD and VR, which has been

found in both SCZ and BD in our sample, could be the consequence of disrupted brain con-

nections and/or demyelination [9]. Increases in AD, VR, MD, observed in BD, might indicate

that the structure of tissues is damaged, with a consequent impact on the boundaries needed

for the diffusion. These findings are in line with a previous work from our research network

[50], which reported a decrease in FA and an increase in MD and AD in an independent

group of patients with BD. Furthermore, a decrease in FA coupled with an increase in RD

observed in corpus callosum, thalamic radiation, corona radiata in SCZ, and in widespread

WM areas in BD, could indicate that most damage has been done to myelin sheaths and barri-

ers perpendicular to the main axis of the axons [9]. Finally, an alteration also in AD, as can be

seen in our group of BD patients, indicates that damage occurs also along the main direction

of diffusion, i.e. along the axons and neural pathways.

Our results also showed a significant WM impairment in corpus callosum in both diseases,

which our group already demonstrated in terms of volume reduction and signal intensity in

BD [73][74]. These findings confirm that inter-hemispheric connectivity is hindered in both

Fig 2. Areas with multiple altered DTI indexes in bipolar disorder. White matter tracts areas where fractional anisotropy, mean diffusivity, volume ratio,

axial diffusivity and radial diffusivity show all a significant change in respect to healthy individual (in red, p = 0.05, corrected with threshold-free cluster

enhancement) in patients with bipolar disorder. It can be noted that clusters of voxels, located in particular in the corpus callosum, in the external capsule and

internal capsule show abnormalities in all the considered diffusion indexes. The white matter skeleton is depicted in blue.

https://doi.org/10.1371/journal.pone.0178089.g002
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the disorders [7], representing a common neural underpinning of major psychoses [35][75]

[76]. The corpus callosum is known to play a fundamental role by modulating inter-hemi-

spheric communication and cognitive processes [77][78]. In particular, the anterior callosal

fibers connect the bilateral frontal cortices including the cortices associated with several cogni-

tive domains such as memory, attention, and executive functions [78]. The integrity of the cor-

pus callosum is therefore crucial for sustained attention, context processing and language,

which are frequently impaired in BD and SCZ [68][77][79].

Interestingly, we found AD to be higher in BD patients in respect to healthy controls, while

no significant differences were found for SCZ patients. These changes, in BD patients, are

located particularly in the right fronto-temporal network, in particular in corona radiata, supe-

rior longitudinal fasciculus and internal capsule. AD is often associated with axonal integrity

[73][80] and it has been previously found increased in both BD and SCZ [30][44][54]. This

suggests, especially when coupled with an increase in RD, that water content is augmented out-

side the axons, mirroring a loss of WM integrity [9]. The fact that we found no evidence in

changes in AD for patients with SCZ is also supported by the literature [81][82] and reveals

that damage to axons is more evident in BD than in SCZ. In contrast, both diseases are charac-

terized by damage to myelin, proved by increases in diffusion perpendicularly to the main axis

of axons, i.e. increases in RD [83].

Our results did not show any significant correlation between psychopathological measures

and diffusion in WM tracts, similarly to previous findings [84][85]. However, we found clus-

ters of voxels where the length of disease correlated with FA and VR in bipolar disorder, sug-

gesting that the damage to WM progresses with chronicity. Specifically, the areas where

diffusion disruption was related to length of illness were located in the corpus callosum, in

external and internal capsule, corona radiata and thalamic radiation. All together, these results

suggests that there is a noticeable impairment of inter-hemispheric and fronto-temporal con-

nectivity in BD, particularly worsening with chronicity. Our results may in part be associated

to the long duration of illness of our sample, which could have contributed to the changes

detected in brain tissue integrity. It is to be noted that in our SCZ sample the correlations were

significant before multiple comparison correction, and did not survive the correction, proba-

bly due to small sample size. In order to confirm our speculation, longitudinal DTI studies

would be needed.

Our findings suffer from two major limitations, which may limit the generalizability of the

results. First, the sample size was relatively small and composed by chronic patients, although

it was comparable with most of the available recent studies (e.g. [86][87]). Second, this study

was conducted with a relatively low resolution DTI acquisition, which, even if it does not affect

any of the considerations about water diffusion, could partially detect fine tissue details. More-

over, our dataset was composed of subjects who had a long story of illness that could partially

interfere with the results and cause non-specific WM damage. Finally the age at onset of our

sample was higher than generally expected, even if similar in the two patient groups.

In conclusion, this study shows, through an extensive analysis of DTI indexes, that BD and

SCZ share similar impairments in microstructural connectivity, particularly in fronto-tempo-

ral and callosal communication, which also seem to be affected by the progression of the ill-

nesses. Such features may represent neural common underpinnings characterizing major

psychoses and confirm the central role of WM pathology in SCZ and BD, adding further evi-

dence for a dimensional continuum of these two disorders in the light of searching for neural

biomarkers across the psychosis spectrum [88]. In this perspective, future larger longitudinal

studies should explore both structural and functional connectivity in first episode psychotic

patients to further characterize the etiology of the two diseases.
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Supporting information

S1 Fig. Correlation of fractional anisotropy with length of disease in bipolar disorder.

Areas where fractional anisotropy values significantly negatively correlate (in red, p = 0.05,

corrected with threshold-free cluster enhancement) with length of disease in patients with

bipolar disorder. Some clusters can be identified, located in particular in external capsule and

corona radiata. The white matter skeleton is depicted in blue.

(TIF)

S2 Fig. Correlation of volume ratio with length of disease in bipolar disorder. Areas where

volume ratio values significantly positively correlate (p = 0.05, corrected with threshold-free

cluster enhancement) with length of disease in patients with bipolar disorder. Some clusters

can be identified, located in particular in external capsule, corona radiata, corpus callosum and

internal capsule.

(TIF)

S1 Table. White matter structures and DTI indexes which correlate with length of disease

in bipolar disorder. List of white matter structures and DTI indexes which show a significant

correlation with length of disease (p = 0.05, corrected with threshold-free cluster enhance-

ment) in patients affected by bipolar disorder. Indexes which resulted significant in this analy-

sis are fractional anisotropy (FA) and volume ratio (VR) (L = left, R = right).

(DOCX)

S1 File. List of subjects involved in the study: diagnosis, age, gender and length of disease.

CNT = healthy control; BD = bipolar disorder; SCZ = schizophrenia; F = female; M = male.

(XLSX)
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