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Abstract

The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly

specific patterns of afferent and efferent connectivity. To identify genes that may direct

these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipe-

line to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracel-

lular proteins containing any of a list of motifs found in known guidance or connectivity

molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain

Atlas data to identify genes encoding surface proteins expressed with temporal profiles simi-

lar to known guidance or connectivity molecules. In both cases, we then screened the resul-

tant genes for selective expression patterns in the developing thalamus. These approaches

identified 82 candidate connectivity labels in the developing thalamus. These molecules

include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin,

plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse

members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor

tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large

number of miscellaneous membrane-associated or secreted proteins not previously impli-

cated in axonal guidance or neuronal connectivity. The diversity of their expression patterns

indicates that thalamic nuclei are highly differentiated from each other, with each one dis-

playing a unique repertoire of these molecules, consistent with a combinatorial logic to the

specification of thalamic connectivity.

Introduction

The thalamus, or “inner chamber” of the brain, is a crucial nexus in the brain’s circuitry. It is

not only a relay station that conveys sensory information from the periphery to the cerebral

cortex, it is also a conduit for cortico-cortical communication [1], as well as a central node in

pathways controlling action selection, through cortico-baso-thalamo-cortical loops [2]. In
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Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0177977
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177977&domain=pdf&date_stamp=2017-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177977&domain=pdf&date_stamp=2017-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177977&domain=pdf&date_stamp=2017-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177977&domain=pdf&date_stamp=2017-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177977&domain=pdf&date_stamp=2017-05-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0177977&domain=pdf&date_stamp=2017-05-30
https://doi.org/10.1371/journal.pone.0177977
https://doi.org/10.1371/journal.pone.0177977
http://creativecommons.org/licenses/by/4.0/


addition, the thalamus is interconnected with many other brain structures, including hippo-

campus, hypothalamus, amygdala, inferior and superior colliculus [3], cerebellar nuclei [4],

substantia nigra, brainstem, spinal cord and many others. The thalamus proper, or dorsal thal-

amus, is also intimately interconnected with the prethalamic reticular nucleus [5], which pro-

vides inhibitory regulation of information flow through thalamus.

A striking characteristic of the thalamus is its subdivision into ~30 discrete nuclei, which

subserve distinct functions and which have highly selective connectivity patterns with the

structures mentioned above, most obviously with specific cortical areas. Some nuclei, such as

those conveying primary sensory information, project quite selectively to one or a small num-

ber of cortical areas, while others, which integrate signals from multiple sources, project in a

more diffuse manner across larger areas of cortex. Within each nucleus there are also varying

proportions of distinct cell types that either project to specific areas, driving receptive field

properties in input layers of cortex, such as layer 4, or that project more widely across cortex

and provide modulatory inputs, for example to layer 1 [6, 7].

Different thalamic nuclei thus act as discrete targets for innervation from a wide array of

sources, and, in turn, project their axons to numerous other structures with areal, laminar and

cell-type specificity. In order to establish these connections, growing axons must be guided to

appropriate regions, must recognise the appropriate target and avoid inappropriate ones, and

must make the right kinds of synapses on the right kinds of cells. These processes are mediated

in general by surface and secreted proteins, which act as signals and receptors, enabling cellular

recognition for pathfinding and target selection.

Numerous protein families have been identified as playing important roles in thalamic axon

guidance and connectivity. Many of these, including Ephrins/Eph-receptors, Netrins/DCC/

Unc5s, Slits/Robos, Neuregulin-1/Erbb4, secreted semaphorins/ neuropilins and L1 cell adhe-

sion molecules, mediate general processes such as avoidance of the hypothalamus, projection

into the internal capsule and topographic organisation of thalamocortical and/or corticothala-

mic projections through this intermediate target region (reviewed in [8, 9]). By contrast, very

few molecules have been found so far that mediate more specific connectivity relationships of

particular thalamic nuclei, such as Cdh6 [10], or that control sub-organisation of projections

within thalamic nuclei, such as Lrp8 [11] or Ten-m3/Odz3 [12], which also regulates topogra-

phy of projections to striatum [13].

At earlier stages, a number of studies have described the combinatorial expression patterns

of patterning molecules or transcription factors across the thalamus, many of which are

expressed selectively in some nuclei and not others [14–18]. Some have also documented the

differential expression of selected surface proteins across the thalamus [15, 19, 20], and in

some cases direct links have been shown between transcription factor and surface molecule

expression [21, 22]. However, these analyses have not been performed in a systematic or com-

prehensive fashion. Thus, while we have learned a lot about how the developing thalamus is

patterned and how the fates of different nuclei are specified, we still know relatively little about

the combinatorial code of surface molecules that specifies nuclear connectivity.

Here, we describe two parallel approaches to identify genes encoding surface or secreted pro-

teins expressed in discrete patterns across the developing thalamus. First, we screened the pre-

dicted proteomes of human, mouse, fly and worm for conserved genes encoding predicted

transmembrane proteins with any of a number of protein motifs commonly found in axon

guidance molecules. These genes were screened by in situ hybridization to find those expressed

in selective or differential patterns across the neonatal thalamus. Second, we analysed the Allen

Developing Mouse Brain Atlas (devABA) database for genes encoding surface or secreted pro-

teins, which showed temporal expression profiles similar to known genes for axon guidance or

synaptic connectivity. The expression patterns of these genes were then examined to identify
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selectively or differentially expressed genes at mid or late embryonic stages. Together, these

approaches have identified 82 genes encoding candidate connectivity labels in the developing

thalamus. The expression patterns of these genes are highly diverse, such that individual tha-

lamic nuclei express distinct repertoires of these surface molecules, consistent with a combina-

torial logic to the specification of connectivity.

Results

A bioinformatics and expression screen to identify conserved candidate

connectivity labels

The proteomes of mammals contain many predicted proteins of unknown function. We were

interested to discover genes encoding predicted transmembrane proteins that contain any of a

number of protein motifs found in known axon guidance molecules. As many known axon

guidance molecules are highly conserved from vertebrates to invertebrates, we further concen-

trated on proteins that had predicted orthologues in the fruitfly Drosophila melanogaster and/

or in the nematode Caenorhabditis elegans.
To identify such proteins, we used protein localisation and motif searches to annotate

the predicted proteomes of worm, fly, mouse and human. We also generated a matrix of

pairwise BLAST scores across all the members of these proteomes and clustered them

using the TRIBE-MCL algorithm, as previously described [23]. We screened through the

resultant outputs to find clusters with mammalian and fly or worm members encoding

predicted transmembrane proteins, which also contained any of the following motifs:

immunoglobulin (Ig) domain, fibronectin type 3 domain, cadherin domain, leucine-rich

repeat (LRR), EGF repeat, CUB domain, sema domain, or plexin repeat. We were particu-

larly interested in discovering novel axon guidance or connectivity cues and so excluded

genes or gene families where such a function had already been demonstrated in the fly or

mouse at the time the screen was performed (in 2006). These already known gene families

included, among others: DCC and Neogenin, Robos, Slits, L1CAMs, Contactins, Eph-

receptors, Ephrins, FGFs and FGFRs, receptor protein tyrosine phosphatases, Cadherins,

Protocadherins, Semaphorins, Plexins and Integrins. (Leucine-rich repeat family members

have been previously described [23]). Using this approach, we prioritized a set of 42 less

well-investigated genes for expression screening (S1 Table).

We performed in situ hybridization for these genes on P0 mouse brain sections, as previ-

ously described for genes encoding LRR proteins [23]. Here we concentrate on members of

other gene families that show selective or differential expression across the thalamus (Table 1

Column A).

Immunoglobulin superfamily members. We found three Ig superfamily members with

selective expression across the thalamus: Igsf9b, Kirrel3, and Sdk2 (Fig 1; S1 Fig). Igsf9b (Immu-

noglobulin Superfamily, Member 9B) is an orthologue of the Drosophila gene turtle, which has

been implicated in various aspects of axon guidance (reviewed in [24]). Both Igsf9b and Igsf9
have recently been shown to play roles in inhibitory synapse development in mammals [25,

26]. Igsf9b is more strongly expressed in some thalamic nuclei than others, but we detected

only weak expression of Igsf9 in thalamus (not shown).

Kirrel3 (Kin Of IRRE Like 3 (Drosophila), also known as NEPH2) is an orthologue of the fly

gene irregular chiasm (IrreC), which functions in axonal pathfinding and target selection

(reviewed in [27]) and the C. elegans gene SYG-1, which is implicated in selective synaptogen-

esis [28]. Kirrel3 has recently been implicated in axon guidance in the vomeronasal system

[29] and synapse formation in the hippocampus [30], but functions in the developing thalamus

Connectivity labels in developing thalamus
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have not been described. Kirrel1 and Kirrel2 both showed only weak/background expression

in thalamus (not shown).

Sdk2 (Sidekick2) is an orthologue of the fly gene sidekick, which regulates cellular differenti-

ation in the fly eye [31]. An important role for Sidekicks has also been demonstrated in the ver-

tebrate retina in specifying lamina formation and synaptic connectivity [32, 33]. Sdk2 is quite

selectively expressed across thalamic nuclei while Sdk1 is expressed at high levels across the

whole dorsal thalamus (not shown).

Odz (Teneurin) genes. We found that all four members of the Odz/Teneurin family are

expressed in selective fashion across the developing thalamus at P0 (Fig 2; S2 Fig) and at E15

(S3 and S4 Figs). These genes are orthologues of the fly odd oz/teneurin genes ten-a and ten-m,

which function in synaptic connectivity in the olfactory and neuromuscular systems (reviewed

in [34]). In mammals, they have both homophilic and heterophilic interactions. Odz2 (Ten-
m2) and Odz4 (Ten-m4) are expressed in similar, but not identical patterns, and Odz3 (Ten-
m3) expression overlaps substantially with them. Odz1 (Ten-m1) is expressed in a broadly

complementary pattern to the other three genes. These genes also show graded expression

across cortex and striatum at E15 and P0 (S2 and S4 Figs). Roles for Odz2 and Odz3 have been

demonstrated in establishing the topography and segregation of ipsilateral and contralateral

Table 1. Candidate connectivity labels.

A. Conserved candidate connectivity labels B. devABA candidate connectivity labels

Clstn1 Alcam EfnA2 Mdga1

Clstn2 Astn2 EfnA5 Nrn

Igsf9b Bmp3 EfnB3 Ntng1

Kirrel3 Cadm1 EphA1 Ntng2

Neto1 Cbln2 EphA3 Ntrk2

Neto2 Cbln4 EphA4 Ntrk3

Odz1 Cd47 EphA6 Pcdh1

Odz2 Cdh2 EphA8 Pcdh10

Odz3 Cdh4 EphA10 Pcdh11X

Odz4 Cdh6 EphB1 Pcdh19

Sdk2 Cdh7 EphB2 Pcdh21

Cdh8 EphB6 PlxnA1

Cdh9 Fat3 PlxnA2

Cdh10 Flt3 PlxnC1

Cdh11 Fzd7 Ptpru

Cdh12 Gfra1 Ret

Cdh13 Gfra2 Rtn4rl1

Cdh24 Gpc3 Sema3F

Clstn1 Igfbp5 Sema6A

Clstn2 Inhba Sema7A

Cntn6 Kit Odz3

Cntnap4 Lgi2 Tgfb2

Dlk1 Lrp8 Trp53i11

Dner Lrrn3 Vgf

Lypd1 Wif1

Table 1 lists all genes for which we present expression patterns. Clstn1, Clstn2 and Odz3 appear on both lists. The total number of candidate connectivity

labels with expression documented here is 82.

https://doi.org/10.1371/journal.pone.0177977.t001
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Fig 1. In situ hybridization patterns for immunoglobulin superfamily genes in dorsal thalamus at P0. Two coronal sections are shown for Kirrel3,

Igsf9b and Sdk2, one rostral and one more caudal. The entire corresponding sections are shown in S1 Fig, for context. CL, centrolateral nucleus; DLG,

dorsolateral geniculate nucleus; DM, dorosmedial hypothalamic nucleus; LD, laterodorsal nucleus; MHb, medial habenula; Po, posterior thalamic nuclear

group; PV, paraventricular nucleus; Re, reuniens nucleus; Rh, rhomboid nucleus; Rt, reticular nucleus; VG, ventral geniculate nucleus; VP, ventral posterior

nucleus; VPPC, ventral posterior nucleus parvicellular part. Scale bar: 500 μm.

https://doi.org/10.1371/journal.pone.0177977.g001
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Fig 2. In situ hybridization patterns for Odz family genes in dorsal thalamus at P0. Two coronal sections are

shown for Odz1, Odz2, Odz3 and Odz4, one rostral and one more caudal. The entire corresponding sections are

Connectivity labels in developing thalamus
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afferents in the dLGN and of thalamic afferents in visual cortex (reviewed in [35]). More

recently, Odz3 has also been shown to control topography of thalamostriatal projections [13].

Neto genes. The neuropilin and tolloid-like genes Neto1 and Neto2, orthologues of the fly

gene neto, also showed discrete expression in the thalamus, with Neto2 more widely expressed

(Fig 3; S5 Fig). In some parts of the thalamus, their expression was strikingly complementary,

particularly in the ventrobasal complex, which expresses high levels of Neto1 but not Neto2,

while many other nuclei show the opposite pattern. The Neto proteins function as auxiliary

subunits for kainate receptors in mammals (reviewed in [36]) and in glutamate receptor clus-

tering at the neuromuscular junction in flies [37]. No role in axon guidance or synaptic con-

nectivity has been demonstrated for these genes, but their early expression (S6 Fig) and

protein similarity to neuropilins would certainly be consistent with such a function.

Calsyntenins. Calsyntenins are transmembrane proteins with two extracellular cadherin

domains [38]. They have recently been implicated in synaptogenesis through interactions with

neurexins [39]. As with previous reports, we find Clstn1 to be broadly (but not ubiquitously)

expressed across the thalamus [38, 39], while Clstn2 is expressed more selectively (Fig 4), in

contrast to report by Hintsch et al. of only background expression. Clstn3mRNA was not

detectable.

Clustering analyses of developmental gene expression patterns in the

thalamus

As a complementary strategy to identify candidate connectivity labels, we analysed data from

the devABA, extending our search beyond genes conserved between vertebrates and inverte-

brates. The devABA provides qualitative and quantitative data on expression of 2002 genes

based on mRNA in situ hybridization. These genes were chosen based on functional relevance

to brain development or disorders of the brain. The expression density values for each gene in

the atlas have been mapped to a three-dimensional digital template, with individual voxels

attributed to different brain regions. We therefore extracted the expression density values for

voxels attributed to the dorsal thalamus for 2002 genes at each of seven ages: embryonic day

11.5 (E11.5), E13.5, E15.5, E18.5, postnatal day 4 (P4), P14 and P28 (S2 Table). These time-

points are developmentally relevant to regional specification/patterning (E11.5), axon path-

finding (E13.5, E15.5 and E18.5), synaptogenesis (P4 and P14) and cortical plasticity (P28).

Because we were more interested in comparing temporal profiles than relative levels across

genes, we normalised these data for each gene by dividing by the average expression value for

that gene across all ages (S3 Table Columns B-H).

In order to find genes with similar temporal expression profiles we used k-means clustering,

which clusters elements of a matrix into a user-defined number of clusters (the k value). Since

there is not necessarily a “correct” number of clusters, we performed k-means clustering with

values of k from 6 to 18 and examined the flux in clustering outputs across these levels. As the

input value of k increased, clusters tended to get subdivided as opposed to reshuffled, giving a

roughly hierarchical organisation (S3 Table Columns I-U; Fig 5). We selected k = 10 for fur-

ther data analysis, since the data segregated into clusters differentially peaking at all embryonic

and postnatal time-points, while leaving large enough clusters for statistical analyses of enrich-

ment (Fig 6). Lower k values gave poorer separation across the embryonic and early postnatal

shown in S2 Fig, for context. AM, anteromedial nucleus; DLG, dorsolateral geniculate nucleus; LD, laterodorsal

nucleus; MD, mediodorsal nucleus; Po, posterior thalamic nuclear group; Re, reuniens nucleus; Rt, reticular

nucleus; VA, ventral anterior nucleus; VG, ventral geniculate nucleus; VM, ventromedial nucleus; VP, ventral

posterior nucleus. Scale bar: 500 μm.

https://doi.org/10.1371/journal.pone.0177977.g002
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Fig 3. In situ hybridization patterns for Neto family genes in dorsal thalamus at P0. Three coronal sections are shown for Neto1 and Neto2, one rostral,

one at an intermediate level (mid) and one more caudal. The entire corresponding sections are shown in S5 Fig, for context. Expression of the Neto genes is

notably complementary in some places (compare mid sections) and overlapping in others (e.g., PF). DLG, dorsolateral geniculate nucleus; LD, laterodorsal

nucleus; MD, mediodorsal nucleus; PF, parafscicular nucleus; Po, posterior thalamic nuclear group; STh, subthalamic nucleus; VM, ventromedial nucleus;

VP, ventral posterior nucleus; ZIR, zona incerta rostral part. Scale bar: 500 μm.

https://doi.org/10.1371/journal.pone.0177977.g003
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ages of highest interest to us, while higher values gave increasing refinement only at later post-

natal stages (S7 Fig).

Gene annotation and enrichment analyses

We used two different approaches to annotate genes, based on known or predicted localisation

of the protein product or on known biological function. First, we screened protein products

for cellular localisation with an emphasis on the extracellular environment by assessing the

outputs of several software tools available online (PSORTII, SignalP, Big-PI Predictor and

TMHMM; S4 Table), along with manual curation based on literature sources. The devABA

dataset predominantly comprises proteins found in the nucleus (907 proteins), followed by

293 secreted proteins, 286 GPI-anchored or single-pass transmembrane proteins, 267 cyto-

plasmic (or in organelles) proteins and 240 multi-pass transmembrane proteins (S5 Table Col-

umn K). Three genes could not be annotated: C030002O17Rik,LOC433436and mCG146432.

Second, we grouped genes by ascribed functions, using GO term annotations and system-

atic manual curation (S5 Table Column M). The dataset was divided into 6 groups: Group 1:

axon guidance pathway and cell adhesion; Group 2: synapse; Group 3: receptor tyrosine

kinases and their ligands, and patterning; Group 4: neurotransmission pathway (G-protein-

coupled receptors, ion channels, gap junctions); Group 5: chromatin and transcription factor

activity; Group 6: other (cytoskeleton, extracellular matrix, myelin, metabolic enzymes and sig-

nal transduction) and unannotated.

When a gene fell into more than one group, an order of priority was used (the order in

which the groups are presented); for example, a gene encoding a receptor tyrosine kinase that

is involved in axon guidance would appear in Group 1 and not in Group 3. Our dataset pre-

dominantly included genes involved with chromatin and transcription factor activity (677

genes in Group 5); followed by 360 genes expressing receptor tyrosine kinases and their

ligands, and genes involved in patterning (Group 3); 286 genes involved in the axon guidance

Fig 4. In situ hybridization patterns for Calsyntenin family genes in dorsal thalamus at P0. One coronal section for Clstn1 and Clstn2 is shown. MD,

mediodorsal nucleus; VG, ventral geniculate nucleus; VM, ventromedial nucleus. Scale bar: 500 μm.

https://doi.org/10.1371/journal.pone.0177977.g004
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pathway and cell adhesion (Group 1); 270 in the neurotransmission pathway (Group 4); and,

91 genes involved with synapses (Group 2; S5 Table). Group 6 contained 107 genes involved

with or part of the cytoskeleton, extracellular matrix, myelin, signal transduction pathways or

expressed metabolic enzymes. This group also included 205 unannotated genes to bring the

total to 312 genes.

We hypothesized that different types of proteins would be enriched in clusters with peak

expression at time-points relevant to specific developmental functions. In order to test this, we

compared the observed numbers for each category in each cluster to the expected value by nor-

mal distribution.

Fig 5. Excerpt of k-means clustering analyses. Clustering of a small subset of genes is shown to illustrate

the method. Gene names are shown in column 1. Columns 2 to 8 show normalised expression densities per

gene per time-point. Heatmap’s 3 colour scale of gene expression data: 0.2, red; 1, white; 5, blue. Columns 9 to

14 show cluster numbers assigned under k = 10 to k = 15 clustering, with clusters colour-coded to facilitate

visualisation. Clusters are sorted at k = 10, followed by k = 11, followed by k = 12 and so on until k = 15. As the

input value of k increases, clusters tend to get subdivided as opposed to reshuffled, giving a roughly hierarchical

organisation. A clear difference in expression pattern between clusters 8 and 9 at k = 10 is evident, with cluster 8

showing peak expression at P4, and cluster 9 showing peak expression at P14. Within cluster 8, additional

subclusters become apparent at k = 12 and above. The full clustering output for all 1996 genes is shown in S3

Table.

https://doi.org/10.1371/journal.pone.0177977.g005
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A variety of trends emerged from these data (Figs 7 and 8). Chi square statistics on the whole

dataset showed deviation from expected by random distribution at p-value< 0.001 for either loca-

lisation or function (Tables 2 and 3). Further statistics were done on individual categories to estab-

lish which ones were enriched in particular clusters. The Bonferroni correction was taken into

account due to multiple testing, lowering the threshold to p-value� 0.01 and p-value� 0.008 for

localisation and function, respectively. For localisation, the trends observed with secreted and cyto-

plasmic proteins did not reach statistical significance (p-value> 0.1). However, the distribution of

single-pass transmembrane and GPI-anchored proteins, multi-pass transmembrane proteins and

nuclear proteins were significant at p-value< 0.0001, p-value< 0.001 and p-value< 0.001, respec-

tively. For functional groups, all trends observed reached statistical significance, at p-value< 0.005

for Group 2, p-value< 0.001 for Group 1, and p-value< 0.0001 for Groups 3 to 6.

By plotting the relative enrichment for each category across clusters, ordered by time-

point of highest expression, it was possible to discern what relationships were driving

these deviations from a random distribution (Figs 7 and 8), and to assess their biological

plausibility. For the localisation data, nuclear proteins were enriched in clusters peaking at

early time-points, whereas single-pass transmembrane and GPI-anchored proteins were

enriched in clusters peaking from E15.5 to P4, and multi-pass transmembrane proteins in

clusters peaking from P4 to P28 (Fig 7). This nicely correlates with the extensive require-

ment of transcription factors during patterning and differentiation early on (localised in

the nucleus), followed by axon guidance molecules expressed extracellularly during axon

pathfinding, and finally synaptogenesis and neurotransmission postnatally (including

many multi-pass neurotransmitter receptors and ion channels). These inferences were

supported by enrichment of functional groups: chromatin and transcription factors early

on, axon guidance and synapse molecules in later embryogenesis, and neurotransmission

pathway genes at later postnatal stages (Fig 8).

Taken together, these protein localisation and functional enrichment analyses provide a

powerful and independent validation of our clustering analyses, indicating that the clusters

we have identified with k = 10 track valid biological trends. They further suggest that clusters

enriched for known molecules involved in axon guidance or synaptic connectivity may also

contain novel molecules with these functions. In order to specifically search for such genes, we

focused on clusters 2, 4, 0 and 8, which show enrichment for single-pass and GPI-linked pro-

teins and for proteins involved in axon guidance or synaptogenesis. These have peak expres-

sion at E15.5 (cluster 2), E18.5 (cluster 4) and P4 (clusters 0 and 8).

Fig 6. Summary of expression profiles at k = 10. Normalised expression densities were averaged per

cluster to see the trends of expression at k = 10. Clusters were organised chronologically with those showing

early peaks of expression at the top and later peaks of expression at the bottom. Heatmap’s 3 colour scale of

gene expression data: 0.2, red; 1, white; 5, blue. Number of genes per cluster is shown in the rightmost

column.

https://doi.org/10.1371/journal.pone.0177977.g006
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Fig 7. Enrichment of protein localisation categories across clusters. Relative enrichment across clusters

is shown by plotting observed/expected numbers of proteins per cluster for each of five groups: secreted
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Identifying candidate connectivity labels

Clusters 2, 4, 0 and 8 had a total count of 896 genes of which 426 encode extracellular proteins.

We screened through them by visual inspection of the devABA expression data at their peak

expression to identify those with selective or differential expression across the thalamus. Genes

showing uniform expression were not considered further. We generated a list of 215 genes

that potentially encode specific connectivity information (S6 Table). This dataset includes

numerous genes already implicated in thalamocortical connectivity (such as Chl1,DCC,

L1CAM,NCAM1,Ntn1, Robo1 and Robo2), which we did not characterize further. However,

where previously implicated genes were part of larger families (e.g., cadherins, Ephrins and

Eph-receptors, semaphorins), they were included for comparison with other members. Some

genes had previously demonstrated roles in axon guidance or synapse formation in other con-

texts and were of high interest to us, as were those encoding surface proteins not previously

implicated in these processes. However, we did not pursue any of the large number of neuro-

transmitter receptor and ion channel genes, given a lower prior probability of involvement as

direct axon guidance or synaptic connectivity labels.

In order to present a summary of the expression patterns of these genes and to enable com-

parison across genes, we extracted images for each gene from the devABA database of a consis-

tent lateral and/or a more medial or parasagittal section at E18.5 (S8 Fig and Figs 9–20). As the

borders between nuclei are still developing at E18.5, it is not possible to definitively match

expression patterns to specific nuclei at this stage. These figures are not intended to be com-

prehensive, as the full dataset can be viewed on the devABA website. They do, however, allow

a survey of the general trends of expression patterns across the thalamus and a comparison of

multiple members of specific gene families, while also highlighting numerous individual genes

with strikingly selective patterns.

In general, the expression patterns were extremely diverse–in fact, we did not detect any

two patterns that were identical across these genes. Some genes showed highly selective expres-

sion patterns, on in some developing nuclei and off in others. Others showed differential

expression, higher in some nuclei than others, with substantial variation in extent of expres-

sion across the thalamus. Within developing nuclei, some genes appeared to be expressed at

uniform levels, while others showed an uneven or graded distribution. Below, we consider the

expression patterns of 73 genes organised by protein family or general function (Table 1 Col-

umns B-C).

Ephrins and Eph-receptors. Twelve members of the Eph and Ephrin gene families show

differential or selective expression across the developing thalamus (Fig 9). Multiple members of

the EphA and -B receptor and Ephrin-A and -B families have been implicated in diverse aspects

of thalamic connectivity. The most extensively investigated have been EphA4, EphA7, EphrinA2
(Efna2) and EphrinA5 (Efna5). Roles for these genes have been demonstrated in parcellation of

thalamic nuclei [19], target selection and topography of retinal axons into the thalamus [40],

topographic guidance of thalamic axons through the ventral telencephalon [41], areal and layer-

specific targeting and topography (reviewed in [42]), reciprocal corticothalamic axon guidance

proteins (A), single-pass transmembrane or GPI-anchored proteins (B), multi-pass transmembrane proteins

(C), cytoplasmic proteins (D) and nuclear proteins (E). A value of 1 indicates observed data matches expected

values, whereas a value below or above 1 indicates decreased or increased counts compared to expected

values, respectively. The ten clusters (C0-C9) are organized according to age of peak expression, as in Fig 6.

P-values from chi square analyses are shown in upper right corner of each graph. Genes encoding nuclear

proteins are enriched in clusters defined by strong early embryonic expression, single-pass transmembrane

and GPI-linked protein-encoding genes are enriched in clusters expressed at mid-embryonic stages and multi-

pass transmembrane proteins are enriched in clusters expressed at postnatal stages.

https://doi.org/10.1371/journal.pone.0177977.g007
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Fig 8. Enrichment of functional groups across clusters. Relative enrichment across clusters is shown by

plotting observed/expected numbers of proteins per cluster for each of six groups: Group 1—axon guidance
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and target selection [43, 44] and even influences on cortical progenitor proliferation and differ-

entiation dynamics [45]. EphB1 and -B2 have also recently been shown to mediate thalamic

axon guidance through the ventral telencephalon [46]. The selective expression of several other

members in the thalamus, including EphA3, -A5, -A6 and -A8 has also previously been noted

[20, 47]. The devABA data confirm these findings and allow a direct comparison of expression

patterns across members of these families. In addition, we find that EphA1, EphA10, EphB6 and

Efnb3 are also differentially expressed across the developing thalamus.

Cadherins. We report differential or selective expression of twelve members of the cad-

herin family across the developing thalamus (Fig 10). A number of cadherins have been

implicated previously in thalamic connectivity. Takeichi and colleagues showed differential

expression of Cdh6, Cdh8 and Cdh11 in both cortex and thalamus and used dye-tracing to

demonstrate that Cdh6- or Cdh8-positive cortical areas are specifically connected with

Cdh6- or Cdh8-positive thalamic nuclei, respectively [48]. Similarly, but for afferent con-

nections to the thalamus, Cdh6 has been shown to act as a homophilic targeting molecule

for a subset of retinal ganglion cells which project to nuclei mediating non-image-forming

visual functions [10]. N-Cadherin (Cdh2) is required for proper termination of thalamic

axons in layer 4 of the cortex [49], and Cdh2 and Cdh8 differentially label thalamic termina-

tions in somatosensory cortex barrel center and septal compartments, respectively [50].

Differential expression across thalamic nuclei of the remaining cadherins in this group,

Cdh4, 7, 9, 10, 12, 13, 24 and the atypical cadherin Fat3, has not, to our knowledge, been

previously reported and greatly expands the possible involvement of this gene family in

specifying thalamic connectivity. The diversity of expression patterns is particularly note-

worthy; even in this single parasagittal section, no two members of this family show an

identical pattern. Given the known potential for heteromeric complex formation between

cadherins, these overlapping patterns generate a very large potential combinatorial code.

Protocadherins. A number of members of the unclustered protocadherin family show dif-

ferential expression across the thalamus at E18.5, including Pcdh1, 10, 11X, 19 and 21 (Fig 11).

pathway and cell adhesion (A); Group 2—synapse (B); Group 3—receptor tyrosine kinases and their ligands,

and patterning (C); Group 4—neurotransmission pathway (GPCRs, ion channels, gap junctions; D); Group 5

—chromatin and transcription factor activity (E); and, Group 6—other (cytoskeleton, extracellular matrix,

myelin, metabolic enzymes and signal transduction) and unannotated (F). A value of 1 indicates observed

data matches expected values, whereas a value below or above 1 indicates decreased or increased counts

compared to expected values, respectively. Clusters 0–9 are organized chronologically. P-values from chi

square analyses are shown in upper right corner of each graph. All groups showed statistically significant

deviation from expected distributions.

https://doi.org/10.1371/journal.pone.0177977.g008

Table 2. Enrichment analyses per localisation.

Cluster Chi Square Degrees of Freedom P-Value Bonferroni Correction Conclusion

All 122.694 36 < 0.001 No Enrichment

Secreted 16.328 9 > 0.1 Yes No Enrichment

Single-Pass and GPI 42.006 9 < 0.0001 Yes Enrichment

Multi-Pass 31.815 9 < 0.001 Yes Enrichment

Cytoplasm 13.559 9 > 0.1 Yes No Enrichment

Nucleus 65.758 9 < 0.0001 Yes Enrichment

Degrees of freedom: All, (columns #—1) (row #—1) = (5–1) (10–1) = 36; Per Localisation, (c—1) (r—1) = (10–1) (2–1) = 9. Bonferroni correction: p� α / #

tests = 0.05 / 5 = 0.01

https://doi.org/10.1371/journal.pone.0177977.t002
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Table 3. Enrichment analyses per group.

Cluster Chi Square Degrees of Freedom P-Value Bonferroni Correction Conclusion

All 206.160 45 < 0.001 No Enrichment

Group 1 30.770 9 < 0.001 Yes Enrichment

Group 2 26.554 9 < 0.005 Yes Enrichment

Group 3 46.368 9 < 0.0001 Yes Enrichment

Group 4 41.989 9 < 0.0001 Yes Enrichment

Group 5 73.622 9 < 0.0001 Yes Enrichment

Group 6 37.325 9 < 0.0001 Yes Enrichment

Degrees of freedom: All, (columns #—1) (row #—1) = (6–1) (10–1) = 45; Per Group,(c—1) (r—1) = (10–1) (2–1) = 9. Bonferroni correction: p� α / #

tests = 0.05 / 6 = 0.008

https://doi.org/10.1371/journal.pone.0177977.t003

Fig 9. Ephrin and Eph-receptor expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at E18.5

obtained from the devABA revealed differential patterns of expression of Eph-receptor (Eph) A1, A3, A4, A6, A8, A10, B1, B2, B6, and Ephrin (Efn) A2,

A5 and B3. See text for details. A representative and equivalent section of medial thalamus is shown for each gene (see S8 Fig for details on how the

sections were selected). Scale bar in EphA1: 317 μm.

https://doi.org/10.1371/journal.pone.0177977.g009
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We note that Pcdh18 also shows differential thalamic expression at this stage (not shown) but is

not included in our clusters of interest due to an earlier time-point of peak expression. These

results replicate previous findings reported by Kim et al. (2007), who also noted differential

expression across thalamus of additional members of this family that are not in the devABA

dataset (Pcdh7, 8, 9, 15 and 17) [51]. The functional importance of these genes in thalamic con-

nectivity has not been directly tested. Though defects in thalamocortical axon projections occur

in Pcdh10-/- mice, they have been attributed to functions in patterning of the ventral telencepha-

lon and not to activity in thalamic axons themselves [52]. Many of the protocadherins are also

expressed in selective patterns across cortical areas and layers [51], suggesting a possible interac-

tion code between interconnected regions.

Semaphorins and plexins. Among the members of the semaphorin and plexin gene fami-

lies in the devABA dataset, the ones showing the most selective or differential expression across

the thalamus are: Sema3F, Sema6A, Sema7A, PlxnA1, PlxnA2 and PlxnC1 (Figs 12 and 13).

Fig 10. Cadherin expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at E18.5 obtained from the

devABA revealed differential patterns of expression of Cadherin (Cdh) 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 24 and Fat3. See text for details. A representative

and equivalent section of medial thalamus is shown for each cadherin (see S8 Fig for details on how the sections were selected). Scale bar in Cdh2:

351 μm.

https://doi.org/10.1371/journal.pone.0177977.g010
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PlxnB1 and Sema6D are also expressed in developing thalamus, but weakly and more uniformly

(not shown). Sema3F has been previously implicated in thalamic axon guidance through the

ventral telencephalon, and Sema7A in regulating thalamocortical axon branching in layer 4 of

cortex [53, 54]. However, these functions depend on expression of the semaphorins in these

other regions, not in the thalamus itself, where differential expression has not been previously

reported. Null mutants of Sema6A show misrouted thalamocortical axons [55], specifically

from the dLGN [56]; this function may depend on expression of Sema6A in the thalamus itself

or in the ventral telencephalon. No roles in thalamic axon guidance or connectivity have yet

been described for PlxnA1, PlxnA2 or PlxnC1. The expression of Sema7A and its receptor

PlxnC1 are notably complementary, while Sema6A and its binding partner PlxnA2 are expressed

in an overlapping fashion, with Sema6Amore widespread and PlxnA2 restricted to medial

regions. Neuropilins also act as co-receptors for secreted semaphorins and have been implicated

in thalamic axon guidance in response to Sema3F, signaling through Neuropilin-2-NrCAM co-

receptor complexes [57] or Sema3A, acting through Neuropilin-1-CHL1 co-receptors [58].

Npn2 is not in the ABA developmental dataset butNpn1 is found in cluster 4 and is differentially

expressed across thalamic nuclei, as previously described (not shown).

Receptor tyrosine kinases and phosphatases. In addition to the Eph family of receptor

tyrosine kinases, we identified a number of other members of this superfamily and one recep-

tor tyrosine phosphatase showing quite selective expression in the thalamus (Fig 14). Kinases

Flt3, Kit (cKit) and Ret have well-documented functions in the immune system and in various

cancers, while their functions in the nervous system have been explored to varying extents. No

functions for Flt3 in the nervous system have been reported. Kit has been shown to have effects

on cortical neuronal migration and axonal extension [59], but has not been functionally impli-

cated in thalamic development, though Kit-ligand (Steel) is also highly expressed in developing

thalamus [20]. Ret has multiple, well-described roles in development of the enteric nervous

system, as a receptor for GDNF, and mutations in this gene are an important cause of Hirsch-

sprung disease. While expression in thalamus has been noted before [60], this has not been

Fig 11. Protocadherin expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at E18.5 obtained from the

devABA revealed differential patterns of expression of Protocadherin (Pcdh) 1, 10, 11X, 19 and 21. See text for details. Two representative and equivalent

sections are shown for each protocadherin, one lateral and the other medial (see S8 Fig for details on how the sections were selected). Scale bar in Pcdh1:

424 μm.

https://doi.org/10.1371/journal.pone.0177977.g011
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described in detail nor has a functional role in thalamic development been established. The

neurotrophin receptors Ntrk2 (TrkB) and Ntrk3 (TrkC) have been studied in this context,

with a demonstration that TrkB in particular is required for normal segregation of thalamic

afferents in barrel cortex [61]. Ptpru (also called RPTP-lambda or PTP-RO) is closely related

to RPTP-kappa and RPTP-mu and similarly mediates homotypic adhesion [62]. Ptpru has also

been shown to associate with c-Kit and to negatively regulate its signaling [63]; however, the

expression of these genes in thalamus appears largely non-overlapping (Fig 14). There are no

published reports of Ptpru function in the nervous system, though many other members of the

RPTP family play important roles in axon guidance and synaptic connectivity [64].

Immunoglobulin superfamily. Multiple Ig superfamily molecules have been implicated

in axon guidance or neuronal connectivity in the developing thalamus, including Robo pro-

teins, DCC, various cell adhesion molecules (NCAM, L1, CHL1. . .) and others (reviewed in

[9]). Here, we highlight the selective expression of five Ig superfamily members not previously

implicated in thalamocortical development (Fig 15). Alcam (also known as CD166, Neurolin,

or DM-GRASP/SC1/BEN) plays a role in guidance and fasciculation of motor and retinal

axons [65], and in topographic mapping of retinal axons across the superior colliculus, possi-

bly through interaction with adhesion molecule L1 on retinal ganglion cells [66]. Cadm1 (bet-

ter known as SynCAM) is involved in synapse organisation [67] and axon guidance [68]. Cd47

Fig 12. Semaphorin expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at E18.5 obtained from the

devABA revealed differential patterns of expression of semaphorins (Sema) Sema3F, Sema6A and Sema7A. See text for details. Two representative

and equivalent sections are shown for each semaphorin, one lateral and the other medial (see S8 Fig for details on how the sections were selected).

Scale bar in Sema3F: 235 μm.

https://doi.org/10.1371/journal.pone.0177977.g012
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is a multi-pass transmembrane molecule with a single extracellular Ig domain. It acts as a

receptor for presynaptic organising molecule SIRPalpha [69] and has been implicated in vari-

ous processes in cerebellar development [70]. Cntn6 (NB3) is a member of the contactin family

of adhesion molecules, which have widespread roles in neural development [71]. Cntn6 null

mutants have defects in synapse formation in cerebellum [72] and hippocampus [73]. Our

results replicate previous reports of expression of Cntn6 in anterior thalamic nuclei [74, 75].

Mdga1 is expressed in a layer- and area-specific manner in the cortex [76] and mutation of the

gene leads to a delay in cortical neuronal migration [77]. More recently, Mdga1 has also been

found to interact with neuroligin-2 to negatively regulate inhibitory synapse formation [78,

79].

Leucine-rich repeat superfamily. Many members of the extracellular leucine-rich repeat

(LRR) superfamily have been implicated in axon guidance, synaptic target selection and other

aspects of neural development [23, 80]. LRR superfamily genes are highly under-represented

in the devABA dataset, with no members of the Lrfn, Slitrk, NGL, Elfn or LINGO subfamilies

and only one representative of each of the Lrrtm, Lrrc, Lrrn and Amigo subfamilies. Amongst

the LRR genes that are represented, we identified three with selective expression in developing

thalamus: Lgi2, Lrrn3 and Rtn4rl1 (Fig 16). Lgi2 encodes a secreted LRR protein of the Lgi sub-

family that has been implicated in synaptic development and epilepsy [81]. Lgi1 regulates

Fig 13. Plexin expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at E18.5 obtained from the

devABA revealed differential patterns of expression of plexins (Plxn) PlxnA1, PlxnA2 and PlxnC1. See text for details. Two representative and equivalent

sections are shown for each plexin, one lateral and the other medial (see S8 Fig for details on how the sections were selected). Scale bar in PlxnA1:

248 μm.

https://doi.org/10.1371/journal.pone.0177977.g013
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synapse formation and function through interactions with postsynaptic Adam22 and presyn-

aptic Adam23 proteins [82, 83]. Lgi2 likely has similar functions as it also interacts with these

Adam proteins and mutations in the gene cause epilepsy in dogs [84]. Lrrn3 (or Nlrr3) is a

member of the LRR-Ig-FN3 group [23]. Roles for Lrrn1 and Lrrn2 have been described in

hindbrain development in chick [85, 86]; otherwise this family remains poorly characterised.

Selective expression in dorsal thalamus has been commented on previously, in particular its

complementarity to the expression pattern of Slitrk6 [87]. Rtn4rl1 is also known as Nogo-recep-
tor-3, NgR3. NgR’s were first isolated as receptors for the inhibitory myelin protein Nogo-66,

but also function as receptors for chondroitin proteoglycans [88] and have been implicated in

synaptic development in hippocampus [89].

Small gene families. A number of small gene families were identified with compelling

expression patterns in developing thalamus (Figs 17 and 18).

Calsyntenins. The devABA data replicate our own in situ hybridization results (Fig 17

and see Fig 4), with widespread, but not ubiquitous expression of Clstn1 and much more selec-

tive expression of Clstn2.

Cerebellins. Cerebellins are secreted molecules with synaptogenic activity. They interact

with multiple partners including the glutamate receptor subunits GluRδ2 and neurexins [90]

Fig 14. Expression of receptor tyrosine kinases and phosphatases in the thalamus at E18.5. In situ hybridization data from sagittal sections of

the thalamus at E18.5 obtained from the devABA revealed differential patterns of expression of Flt3, Kit, Ntrk2, Ntrk3, Ret and Ptpru. See text for

details. A representative and equivalent section of medial thalamus is shown for each gene (see S8 Fig for details on how the sections were selected).

Scale bar in Flt3: 216 μm.

https://doi.org/10.1371/journal.pone.0177977.g014
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as well as the netrin receptor DCC [91]. We find strong and selective expression of Cbln2 and

Cbln4 across thalamic nuclei (Fig 17). Their differential expression across the brain has been

documented previously, including in the developing thalamus [92]. By contrast, Cbln3 is not

expressed outside the cerebellum. Cbln1 is not in the devABA dataset but is also expressed in

subsets of thalamic nuclei [92].

Netrin-Gs. Netrin-G1 and 2 are GPI-anchored proteins related to netrins. They act as

synaptic cell adhesion molecules via interactions with the transmembrane leucine-rich repeat

proteins Netrin-G-ligand (NGL) -1 and -2 [93]. The devABA data match previous reports of

broad Ntng1 expression across the dorsal thalamus and Ntng2 expression restricted to the

habenula (Fig 18) [94]. Ntng1 expression is not uniform; however; it displays significantly

higher expression in some thalamic nuclei than others.

Miscellaneous genes. In addition to the gene families described above, there is a large

set of miscellaneous genes encoding surface or secreted proteins with differential expression

patterns (Fig 19). These include: Astn2, Cntnap4, Dlk1,Dner, Fzd7,Gpc3, Lrp8, Lypd1 (also

known as Lynx2), Odz3 and Trp53i11 (also known as Tp53i11 or PIG11). These display varying

degrees of specificity., For example, Fzd7 is highly restricted to what may become a single tha-

lamic nucleus, while Gpc3, is expressed in a small number of scattered cells throughout the

thalamus (and strongly in the reticular nucleus, not shown). Astn2, Cntnap4, Dlk1, Lypd1 all

show quite selective expression in some developing nuclei and not others, while Dner, Lrp8
and Trp53i11 are expressed more widely, but still differentially. The Odz3 expression pattern

documented in the devABA mirrored that seen in our own in situ hybridization experiments

extremely faithfully (S9 Fig).

Lrp8 (low-density lipoprotein receptor 8) has been previously directly implicated in specify-

ing thalamic connectivity. Mutation of Lrp8, along with the related gene Vldlr (very low-den-

sity lipoprotein receptor), alters retinogeniculate innervation, through mechanisms that

appear independent of the function of these proteins as Reelin receptors [11]. Mutation of

Cntnap4 affects synaptic outputs from GABAergic interneurons and ventral tegmental area

Fig 15. Expression of immunoglobulin superfamily molecules in the thalamus at E18.5. In situ hybridization data from sagittal sections of the

thalamus at E18.5 obtained from the devABA revealed differential patterns of expression of Alcam, Cadm1, Cd47, Cntn6 and Mdga1. See text for details.

Two representative and equivalent sections are shown for each gene, one lateral and the other medial (see S8 Fig for details on how the sections were

selected). Scale bar in Alcam: 386 μm.

https://doi.org/10.1371/journal.pone.0177977.g015
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dopaminergic neurons [95]. Gpc3 (Glypican-3) has been shown to bind to the synaptogenic

molecule LRRTM4 [96] and, by analogy, with its close relative Gpc4, may actively specify syn-

apse formation. Fzd7 (Frizzled7) has not been directly implicated in synaptic connectivity but

many other members of the Frizzled family have been [97], including Fzd5, which is required

for the synapse-organising activity of Wnt7a [98]. Fzd5 is extremely selectively expressed in

the parafascicular nucleus of thalamus [99], which we also find here (data not shown).

A variety of other functions in neural development or function have been shown for Astn2
(Astrotactin-2) [100], Dlk1 (Delta-like-1 homolog) [101], Dner (Delta/Notch-Like EGF Repeat

Containing) [102] and Lypd1/Lynx2 (LY6/PLAUR Domain Containing 1) [103] but these

genes have not been directly implicated in axon guidance or synaptic connectivity. The func-

tions of Trp53i11 remain largely unknown.

Growth factors and receptors. A variety of growth factors and receptors show selective

or differential expression across the late embryonic thalamus (Fig 20). These include: Bmp3
(Bone morphogenetic protein-3), Igfbp5 (Insulin-like growth factor binding protein 5), Inhba
(Inhibin/Activin, beta A subunit), Gfra1 and Gfra2 (GDNF Family Receptor Alpha 1 and 2),

Nrn (Neuritin or Neuritin-1/Nrn1), Tgfb2 (Transforming growth factor, beta 2), Vgf (VGF

nerve growth factor inducible) and Wif1 (WNT inhibitory factor 1).

Fig 16. Expression of leucine-rich repeat superfamily members in the thalamus at E18.5. In situ hybridization data from sagittal sections of the

thalamus at E18.5 obtained from the devABA revealed differential patterns of expression of Lgi2, Lrrn3 and Rtn4rl1. See text for details. Two representative

and equivalent sections are shown for each gene, one lateral and the other medial (see S8 Fig for details on how the sections were selected). Scale bar in

Lgi2: 256 μm.

https://doi.org/10.1371/journal.pone.0177977.g016
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Differential expression of the GDNF receptors Gfra1, Gfra2 and Ret has been reported pre-

viously in postnatal rat thalamus, with notable overlap in the reticular nucleus [104], also seen

in embryonic mouse [105]. These proteins have well defined roles in enteric nervous system

formation but their functions in developing thalamus have not been elucidated. Selective

expression of Neuritin-1 and VGF across thalamic nuclei has also been noted previously and

these secreted molecules may play a role in regulating cortical differentiation in areas inner-

vated by these thalamic axons [106]. Igfbp5, Inhba, Tgfb2 and Wif1 all have known roles in dif-

ferentiation, proliferation and apoptosis in the developing brain but have not been directly

implicated in axon guidance or synaptic connectivity. There are no described roles for Bmp3

in nervous system development.

Discussion

Our dual screening approach has identified 82 genes encoding candidate connectivity labels in

the developing thalamus. Several lines of evidence make these molecules highly plausible can-

didates to be involved in specifying some aspects of thalamic connectivity: (i) they encode pro-

teins with motifs that are common in known connectivity molecules; (ii) some of them are

members of gene families with already known functions in axon guidance or synaptic connec-

tivity; (iii) they cluster with known axon guidance or synaptogenesis molecules based on their

temporal pattern of expression in the embryonic thalamus; and (iv) they are selectively or dif-

ferentially expressed across dorsal thalamic nuclei at stages when connectivity is being

established.

The genes we have identified include multiple members of large families where some genes

have been previously implicated, such as Ephrins and Eph receptors, cadherins and protocad-

herins, semaphorins and plexins, and Odz/teneurin genes, where we have expanded the

Fig 17. Calsyntenin and cerebellin expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at E18.5

obtained from the devABA revealed differential patterns of expression of Calsyntenin (Clstn) 1 and 2, and Cerebellin (Cbln) 2 and 4. See text for details.

Two representative and equivalent sections are shown for each gene, one lateral and the other medial (see S8 Fig for details on how the sections were

selected). Scale bar in Clstn1: 332 μm.

https://doi.org/10.1371/journal.pone.0177977.g017
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number of candidates potentially involved. Our findings also highlight the selective expression

in thalamus of a number of genes or gene families recently implicated in synaptic connectivity

in other regions, including several Ig and LRR family members, calsyntenins, cerebellins and

Netrin-Gs. In addition, we have found strikingly selective expression of many genes from

diverse families not previously implicated in either thalamocortical development or neuronal

connectivity.

The systematic nature of the devABA data provides the opportunity to collate and compare

these expression patterns across gene families, and to draw some general inferences about the

molecular logic specifying thalamic connectivity. The most striking aspect of these patterns is

how unique they all are. Across these 82 genes, even when considering only one or two ana-

tomical sections, we did not observe any two patterns that we would say are identical. This

clearly did not have to be the case. There might well have been trends or consistent sub-pat-

terns that many genes fell into. Most of the differentiation of expression levels (at E15.5 or

Fig 18. Netrin-G expression in the thalamus at E18.5. In situ hybridization data from sagittal sections of the thalamus at

E18.5 obtained from the devABA revealed differential patterns of expression of Netrin-G (Ntng) 1 and 2. See text for details.

Two representative and equivalent sections are shown for each netrin-G, one medial and the other adjacent medially (see

S8 Fig for details on how the sections were selected). Scale bar in Ntng1: 255 μm.

https://doi.org/10.1371/journal.pone.0177977.g018
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E18.5) reflects discrete protonuclear divisions, rather than broad gradients across the whole

dorsal thalamus, which, a priori, was just as likely an outcome. This indicates that thalamic

nuclei are highly differentiated from each other, with each one displaying a unique repertoire

of these molecules. There is, in addition, clear evidence of non-uniform gene expression within

nuclei, reflecting the known sub-differentiation of these fields. Thus, while initial guidance of

thalamic axons may be defined by general topography (reviewed in [9]), later connectivity

decisions are likely regulated by combinations of more spatially discrete labels.

Fig 19. Expression of genes encoding miscellaneous surface or secreted molecules in the thalamus at E18.5. In

situ hybridization data from sagittal sections of the thalamus at E18.5 obtained from the devABA revealed differential

patterns of expression of Astrotactin2 (Astn2), Contactin-associated protein-4 (Cntnap4), Delta-like-1 homolog (Dlk1),

Delta/Notch-Like EGF Repeat Containing (Dner), Frizzled7 (Fzd7), Glypican-3 (Gpc3), Low-density lipoprotein receptor 8

(Lrp8), LY6/PLAUR Domain Containing 1 (Lypd1) and Trp53i11. See text for details. A representative and equivalent

section is shown for each molecule (see S8 Fig for details on how the sections were selected). Dlk1 expression is shown

laterally, while the other gene expression patterns are shown medially with Gpc3 more medial than the rest (parasagittal).

Scale bar in Astn2: 314 μm.

https://doi.org/10.1371/journal.pone.0177977.g019
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There is indeed strong evidence for combinatorial interactions, both within and between

the gene families identified. For example, co-expression of Ephrins and Eph-receptors in cis

can alter responses to these proteins in trans [107]. Similar modulatory interactions in cis have

been observed for Class 6 Semaphorins and Plexin-A proteins, thus generating combinatorial

functional diversity [108–110]. Cadherins and protocadherins can also form heteromeric com-

plexes, either within or across these two subfamilies [111, 112], which can alter function, as

with a cis interaction between Pcdh19 and Cdh2, which generates a novel trans-adhesive com-

plex [113]. Ig superfamily members of the L1 and Cntn families can mediate homophilic

Fig 20. Expression of growth factors and receptors in the thalamus at E18.5. In situ hybridization data from sagittal

sections of the thalamus at E18.5 obtained from the devABA revealed differential patterns of expression of Gfra1 and Gfra2

(GDNF Family Receptor Alpha 1 and 2), Vgf (VGF nerve growth factor inducible), Bmp3 (Bone morphogenetic protein-3),

Igfbp5 (Insulin-like growth factor binding protein 5), Inhba (Inhibin/Activin, beta A subunit), Nrn (Neuritin or Neuritin-1/Nrn1),

Tgfb2 (Transforming growth factor, beta 2) and Wif1 (WNT inhibitory factor 1). See text for details. A representative section is

shown for each gene (see S8 Fig for details on how the sections were selected). Gfra1, Gfra2 and Vgf expression is shown

laterally, while the other gene expression patterns are shown medially. Scale bar in Gfra1: 299 μm.

https://doi.org/10.1371/journal.pone.0177977.g020
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adhesion, but also modulate signaling of semaphorin and Ephrin pathways in cis [71, 114],

while Cntns and Cntnaps also form functional complexes that regulate connectivity (reviewed

in [115, 116]). Multiple proteins in our dataset also interact with Neuroligin-Neurexin com-

plexes implicated in synaptic development, including cerebellins [90], calsyntenins [39], Igsf9b

[25], Mdga1 [78, 79] and Gpc3 [96]. This pathway may thus represent a convergence point

for combinatorial functions of multiple regulators of synaptogenesis, also including diverse

members of the LRR superfamily and LAR protein tyrosine phosphatases not surveyed here

(reviewed in [115, 116]).

Whether the genes we have identified actually encode connectivity labels will, of course,

require functional experiments, but the list here is at least likely highly enriched for such mole-

cules. It is by no means comprehensive, however, as both of our strategies had important limi-

tations. The first approach concentrated on genes that are conserved from vertebrates to

invertebrates, based on the simple rationale that many of the major families of axon guidance

molecules are conserved. Such molecules may be expected to play more important and thus

more obvious roles in nervous system development than newly evolved ones, with concomi-

tantly stronger phenotypes when mutated. In addition, functional analyses of such gene fami-

lies may be further simplified in invertebrate model systems, which often only have one gene

copy, whereas mammals often have multiple genes with possibly redundant functions. Thus,

while this strategy identified plausible genes that are highly amenable to functional analyses, it

excluded the large fraction of the mammalian proteome that is not obviously conserved in

invertebrates.

Our second strategy took advantage of the Allen Brain Atlas database of expression in the

developing mouse brain [117]. This database enabled a systematic and quantitative compari-

son of expression profiles across seven embryonic and postnatal stages, which highlighted sev-

eral clusters enriched for known or putative connectivity labels. We integrated annotations on

protein topology, structural motifs and localisation to better characterise the genes in this data-

set and enable us to recognise possible surface labels. However, the dataset is limited to 2002

genes, which were selected on the basis of functional relevance to brain development and neu-

rodevelopmental disorders, and which fall into several categories: (i) transcription factors, (ii)

known regional or cell-type-specific markers, (iii) neurotransmitters and receptors, (iv) genes

associated with patterning or axon guidance signaling pathways and (v) highly studied com-

mon drug targets, including GPCRs, ion channels, cell adhesion molecules and genes associ-

ated with neurodevelopmental disorders. While this set is thus itself likely enriched for

connectivity labels, it is also certain that many others are not represented. For example, extra-

cellular leucine-rich repeat (LRR) proteins are a major class of neuronal connectivity labels

[118], with 135 such genes in the mouse genome [23], but only a small number are included in

the devABA dataset.

In summary, the extensive set of genes identified here as candidate connectivity labels pro-

vides a strong starting point and context for functional analyses of single molecules and of

their potential combinatorial interactions, which may coordinately specify the complex con-

nectivity patterns of thalamic nuclei.

Materials and methods

Ethical approval

All animal work was approved by the Ethics Committee of Trinity College Dublin and the ani-

mal licence to KJM (Ref. B100/3527) from the Department of Health and Children. Newborn

mice were sacrificed by decapitation.
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Mouse in situ hybridization

Digoxigenin (DIG)-labeled antisense cRNA probes for in situ hybridization were designed to

encompass a section of coding sequence and 3’UTR >500bp in length. Briefly this involved

TA cloning of PCR products into the TOPO vector (Invitrogen) and simultaneous synthesis

and DIG-labeling of RNA transcripts from linearised vector using T7- or Sp6- RNA polymer-

ase. Some cRNA probes were transcribed directly from the PCR products amplified with a

sense primer and an antisense primer with T7 promoter sequence at its 5’-end. Primers used

were:

Kirrel1_for TGACTATGGCACAGAGCCTA
Kirrel1_rev GAAGGAGAGGAAAGGGCA
Kirrel2_for CAAAAGAACTTGGTCCGGAT
Kirrel2_rev CACTTGGAGAGATGGATTCAC
Kirrel3_for TACGTGCAGTTTGACAAGGC
Kirrel3_rev AGGCTGCAAGGAATACAGAC
Igsf9_for AGACTCACCTCCTGCAAATC
Igsf9_T7Rev GCGGTAATACGACTCACTATAGGGCATTCCTGTTCAGCTCCCA
Igsf9b_for TGACACATTCCACAACGG
Igsf9b_T7Rev GCGGTAATACGACTCACTATAGGGCCCTTATTCCACTTCACCACAG
Sdk1_for CATCATACACTGTGGACCTG
Sdk1_T7rev GCGGTAATACGACTCACTATAGGGAGAAGTTCTGCACCCGTC
Sdk2_for AATGGTGGTTCTTAGTGGTCA
Sdk2_T7rev GCGGTAATACGACTCACTATAGGGCAAACGAAGGATGAGAACC
Odz1_for CATTCAGTGTGAGCTCCAGA
Odz1_T7rev GCGGTAATACGACTCACTATAGGGCTGACGCAAAGGCAGAGAT
Odz1_2_for TGAGGTCCAATATGAGATCC
Odz1_2_T7rev GCGGTAATACGACTCACTATAGGGCAACATCATAATCTCTTTGCCC
Odz2_for AGAGTCAAGCAAGCGAGAA
Odz2_T7rev GCGGTAATACGACTCACTATAGGGCGAGGTGGCAGCAGGTTAT
Odz2_2_for GTGCAATATGAGATGTTCCG
Odz2_2_T7rev GCGGTAATACGACTCACTATAGGGCAGTAAAGTGGACGAGCTTGG
Odz3_for GAAGAGTCAACAGTGGGAAGA
Odz3_T7rev GCGGTAATACGACTCACTATAGGGCTGCTACAGGAGAATCTGCAC
Odz3_2_for CAACCAAATCATTTCCACG
Odz3_2_T7rev GCGGTAATACGACTCACTATAGGGCTGGATTAGTTTGGTGAGCG
Odz4_for TTCAGAAGCAACTCAAGGC
Odz4_T7rev GCGGTAATACGACTCACTATAGGGCCAACACAGTCAGGAATACGG
Odz4_2_for AGAAGGAGCTGAAGGTGG
Odz4_2_T7rev GCGGTAATACGACTCACTATAGGGCCACGATGCTGTTGCTACTC
Neto1_for GGCTCCAGAACTGTGTATATCC
Neto1_T7rev GCGGTAATACGACTCACTATAGGGCGAGTCTTGCCGAAGGAATA
Neto1_2_for AGAAGTCAGTGCAGTGTGG
Neto1_2_T7rev GCGGTAATACGACTCACTATAGGGCGAGCTGCTTCCGTCATAG
Neto2_for CATCAGGAATTGTCTTGGTC
Neto2_T7rev GCGGTAATACGACTCACTATAGGGCCTGCTCTGCCTGACTTAACA
Neto2_2_for GAATCAAGCACATTCCTGC
Neto2_2_T7rev GCGGTAATACGACTCACTATAGGGCGGATCACTCCGACTCCTG
Clstn1_for CACCCTGAACATCGATCC
Clstn1_T7rev GCGGTAATACGACTCACTATAGGGCTCACCCTCTGTCGACAAG
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Clstn2_for GCCACTGTCGTCATCATTATC
Clstn2_T7rev GCGGTAATACGACTCACTATAGGGCATGGTGACATCATCTCCAGA
Clstn3_for TCCCAGTCATGTGCTCAGT
Clstn3_T7rev GCGGTAATACGACTCACTATAGGGCAGTAGAGAAGGACACAGCAGC
In situ hybridization (ISH) was carried out on vibratome-sectioned C57BL6 mouse brains

(Jackson Laboratories) as described in [119] with modifications. To obtain brains at E15,

timed pregnancy mice were sacrificed by cervical dislocation and embryos were fixed and

stored in 4% paraformaldehyde (PFA)-PBS at 4˚C until use. For P0, brains were dissected out

prior to immersion in 4% PFA-PBS -at 4˚C. P9 brains were fixed by perfusion followed by

immersion in 4% PFA-PBS at 4˚C. Fixed brains were embedded in 3% agarose and 70-μm sec-

tions were obtained on a vibratome (VT1000S Leica). Sections were washed twice in PBST

(PBS containing 0.1% Tween-20), permeabilised in RIPA buffer (150mM NaCl, 50mM Tris-

HCl pH 8.0, 1mM EDTA, 1% Nonidet-P40, 0.5% sodium deoxycholate, 0.1% SDS) and post-

fixed in PBS containing 4% PFA and 0.2% gluteraldehyde. Hybridization was performed in a

humidified environment overnight at 65˚C with 1μg/ml labeled probe in hybridization buffer

(50% formamide, 5X SSC pH4.5, 1% SDS, 50μg/ml yeast tRNA, 50μg/ml heparin). Posthybri-

dization washes were completed at 65˚C using solution I (50% formamide, 5X SSC pH4.5, 1%

SDS) and solution III (50% formamide, 2X SSC pH4.5, 0.1% Tween-20) and at room tempera-

ture using TBST (TBS containing 1% Tween-20). Brain sections were incubated for>1hr in

blocking buffer (TBST, 10% heat-inactivated sheep serum). Immunodetection was carried out

in blocking buffer at 4˚C overnight using an alkaline phosphatase-conjugated anti-digoxigenin

antibody (Roche) at a 1:2000 dilution. Following antibody incubation extensive TBST washes

were performed. Sections were equilibrated in NTMT (100mM Tris-HCl pH 9.5, 100mM

NaCl, 50mM MgCl2, 1% Tween-20) prior to colourimetric detection using 2μl/ml NBT/BCIP

(Roche) in NTMT. Sections were mounted on Superfrost glass slides (VWR international) and

analysed with an Olympus IX51 microscope.

Database pipeline

The database pipeline was used as described in [23]. In summary, the Ensembl database, the

International Protein Index and the Mammalian Gene Collection were used to build prote-

omes for human, mouse, worm and fly. Through automated and manual curation duplicates

were removed and only the longest isoforms were kept. This resulted in non-redundant data

sets for mouse, human, worm, and fly containing 85991, 74866, 22698, and 16857 sequences,

respectively. From an all-against-all Blast search the top 200 hits were used as input for Markov

clustering with the MCL program. The output was combined with rich annotation, including

predictions of motifs and GPI links, as well as transmembrane and signaling sequences.

Data acquisition and preprocessing

The Allen Brain Atlas (ABA) provides a survey of gene expression in the brain from mid-gesta-

tion through aging in different species. Of interest to us is the data on the mouse brain. The

detailed process of mouse brain data acquisition is explained in Lein, Hawrylycz [120]. Briefly,

ISH data was recorded from coronal or sagittal sections and quantified per unit from a given

spatial location for each gene (expression values per voxels). Voxels were assigned regional

labels through age-matched anatomic reference atlases. The developmental dataset on the

ABA portal (www.brain-map.org) comprises expression values of 2002 genes obtained from

ISH images in the sagittal plane across four embryonic (E11.5, E13.5, E15.5 and E18.5) and

three early postnatal ages (P4, P14 and P28) [117]. These time-points are developmentally rele-

vant to regional specification/patterning (E11.5), axon pathfinding (E13.5, E15.5 and E18.5),
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synaptogenesis (P4 and P14) and cortical plasticity (P28). One animal was used per time-point

per gene. Per-region data was quantified from ISH images by combining all voxels with the

same regional label. Liscovitch and Chechik [121] extracted data from 36 anatomically delin-

eated regions of the developing brain, which encompass the entire brain. The data is readily

available for download at http://chechiklab.biu.ac.il/~lior/cerebellum.html. The data is

expressed as expression density. For each brain region R, the expression density is defined as

the sum of expressing pixels in R divided by the total number of pixels that intersect R (taken

from the Technical White Paper: Informatics Data Processing for the Allen Developing Brain

Atlas found at http://developingmouse.brain-map.org/docs/InformaticsDataProcessing.pdf).

Each set of values is dependent on specific gene expression. We normalized the data to reflect

variations of expression for each gene. A value of 1 indicates average expression levels whereas

a value below or above 1 indicates decreased or increased expression levels compared to aver-

age, respectively. With this normalised data, we generated the developmental matrix of 1996

genes x 7 time-points as 6 genes had no expression values throughout. These genes are

Chrna1, Hoxd9, Lef1,Nrp2, Pbx1 and Rnd2.

The genes of the developmental dataset fall into one of these five categories (taken from the

Technical White Paper: Allen Developing Mouse Brain Atlas found at http://

developingmouse.brain-map.org/docs/Overview.pdf):

1. Transcription factors. Approximately one third of the genes are transcription factors, with

extensive coverage of homeobox, basic helix-loop-helix, forkhead, nuclear receptor, high

mobility group and POU domain genes.

2. Neuropeptides, neurotransmitters, and their receptors. Extensive coverage of genes in

dopaminergic, serotonergic, glutamatergic, and gabaergic signaling, as well as neuropep-

tides and their receptors.

3. Neuroanatomical marker genes. Characterising region- or cell type specific marker genes

over development can provide information about the origins of a brain region or cell type,

and may help to identify precursor regions at earlier time-points.

4. Gene ontologies/signaling pathways relevant to brain development. Gene ontologies

include axon guidance, receptor tyrosine kinases and their ligands. Pathways include Wnt

signaling and Notch signaling pathways.

5. Genes of general interest. This category includes highly studied genes such as common

drug targets, ion channels, cell adhesion, genes involved in neurotransmission, G-protein-

coupled receptors, or involved in neurodevelopmental diseases, which are expressed in the

brain in the adult and/or in development.

We screened protein products for cellular localisation with an emphasis on the extracellular

compartment. More specifically, we looked for signal peptides, transmembrane domains and

glycophosphatidylinositol (GPI)-anchors. Since genes were listed with their Allen gene name

in the dataset, we looked for the MGI symbol and Ensembl gene identifiers (through http://

www.ncbi.nlm.nih.gov/gene) to subsequently find their protein counterparts. Where multiple

isoforms exist, the longest sequence was used for further analyses. We screened Fasta format

sequences through PSORTII to find cellular localisation of the protein products and the num-

ber of predicted helices of transmembrane proteins (http://psort.hgc.jp) [122, 123]. PSORTII

predicted protein localisation in the following compartments: cytoplasm, cytoskeleton, endo-

plasmic reticulum, Golgi, mitochondria, nucleus, plasma membrane, peroxisomes, vacuoles

and vesicles of the secretory system. In addition, we ran the SignalP prediction program to

determine whether a protein contains a signal peptide or not—indicative of extracellular
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localisation (http://www.cbs.dtu.dk/services/SignalP/, version 4.1)[124, 125]. A GPI modifica-

tion site prediction, the big-PI predictor was run to identify protein products with potential

GPI-anchors (http://mendel.imp.ac.at/sat/gpi/gpi_server.html, version last modified June 17th

2005) [126–129]. When any of the three programs suggested extracellular localisation, the pro-

tein was deemed found in the extracellular compartment. The TMHMM program was run to

assess the presence and number of transmembrane domains (http://www.cbs.dtu.dk/services/

TMHMM/, version 2.0)[130, 131]. When the number of transmembrane domains varied

between PSORTII and TMHMM results, manual curation was performed (unless both pro-

grams picked up over two transmembrane domains and the protein was simply considered

multi-pass). PFAM (http://pfam.xfam.org)[132] and SMART (http://smart.embl-heidelberg.

de, version 2.12.1 released on August 6th 2012)[133, 134], motif recognition programs, allowed

screening for important protein domains, which can be amalgamated through InterPro

(http://www.ebi.ac.uk/interpro/search/sequence-search, version 49.0 released on November

20th 2014)[135]. For identification of important protein domains we retrieved PFAM,

SMART, Interpro and SignalP information through BioMart version 0.7 [136].

Finally, we updated the gene annotations of the dataset from Thompson, Ng (117). Thomp-

son and colleagues had 1385 genes out of the 2002 falling into one or more of these categories:

axon guidance pathway, cell adhesion, receptor tyrosine kinases (RTKs) and their ligands,

Notch signaling, Wnt signaling, transcription factor activity, basic helix-loop-helix transcrip-

tion factor, forkhead transcription factor, homeobox transcription factor, nuclear receptor,

POU domain genes, neurotransmitter pathway, ion channel, and G-protein coupled receptors

(GPCRs). We screened genes for the following gene ontology (GO) term annotations (http://

www.geneontology.org)[137] through MartView:

1. Axon Guidance GO:0007411;

2. Synapse GO:0045202;

3. Patterning:—Regionalisation GO:0003002;

- Pattern Specification Process GO:0007389;

- Neural Tube Patterning GO:0021532;

- Rostrocaudal Neural Tube Patterning GO:0021903;

4. Transcription Factor Activity:

- Protein Binding Transcription Factor Activity GO:0000988;

- Nucleic Acid Binding Transcription Factor Activity GO:0001071;

- Sequence-Specific DNA Binding Transcription Factor Activity GO:0003700.

Since many genes had more than one annotation, we grouped them as follows:

- Group 1: axon guidance pathway and cell adhesion;

- Group 2: synapse;

- Group 3: receptor tyrosine kinases and their ligands, and patterning;

- Group 4: neurotransmission pathway (GPCRs, ion channels, gap junctions);

- Group 5: chromatin and transcription factor activity

- Group 6: other (cytoskeleton, extracellular matrix, myelin, metabolic enzymes and signal

transduction) and unannotated.
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We only had 206 unannotated genes. Each gene belonged to only one group. When a gene

fell into more than one group, we prioritised the groups as presented.

Clustering analyses

We performed k-means clustering with the Euclidean distance method on the developmental

dataset using the clustering module integrated in ArrayPipe (http://www.pathogenomics.ca/

arraypipe—version 1.7)[138]. Each clustering analysis was iterated a thousand times.

Enrichment analyses

We performed chi square statistics to determine whether our developmental dataset was nor-

mally distributed in regards to cellular localisation and groups across the 10 clusters obtained

during k-means clustering analyses or enriched in particular clusters. Statistical significance

was determined at p-value < 0.05. Where multiple tests were performed on the same dataset,

the Bonferroni correction was taken into account.

Supporting information

S1 Table. Conserved candidate connectivity labels. Genes are organised in clusters defined

by TRIBE-MCL, as described [23]. Genes from Drosophila melanogaster are in blue, from

Caenorhabditis elegans in green and from mouse in black. Signal peptides were predicted

using SignalP, transmembrane domains by a consensus between TMHMM and HMMTOP

and protein motifs by SMART and PFAM, also as described [23].

(XLS)

S2 Table. Developmental dataset. Absolute values of expression densities for 2002 genes from

the devABA database per gene per time-point are shown. NaN stands for Not a Number.

Blank cells indicate absence of data in the devABA.

(XLSX)

S3 Table. Developmental dataset and k-means clustering. Normalised expression densities

per gene per time-point (columns B-H). Thalamic expression densities were obtained for 1996

genes. Heatmap’s 3 colour scale of gene expression data: 0.2, red; 1, white; blue, 5. Normalised

gene expression was clustered by similar patterns of expression using k-means Euclidean dis-

tance 6–18, with 1000 iterations (columns I-U). Clusters are sorted at k = 10, followed by

k = 11, followed by k = 12 and so on until k = 18. Three colour scale of cluster number:

red< yellow< green, for better visualisation.

(XLSX)

S4 Table. Developmental dataset protein characterisation. Each gene was matched to its

MGI symbol and Ensembl gene identifier. From these, protein sequences were obtained—

where multiple isoforms were found, the longest sequence was used for further analyses. Fasta

format sequences were screened through PSORT II for cellular localisation (PSORT II predic-

tion and probability: gol, Golgi; cyt, cytoplasmic; csk, cytoskeletal; end, endoplasmic reticulum;

ext, extracellular, including cell wall; mit, mitochondrial; nuc, nuclear; per, peroxisomal; pla,

plasma membrane; ves, vesicles of secretory system). PSORT II uses two-fold k-nearest neigh-

bor (k-NN) algorithm with k1 = 9 and k2 = 23 [122]. Screens for number of predicted trans-

membrane domains (TMs) with PSORT II were also performed. SignalP detected signal

peptides (sigp) on proteins. Big-PI predictor tested different potential GPI-modification sites

and returned the GPI best score, GPI profile score, GPI profile independent score and GPI

quality [126–129]. GPI quality of P or S indicated a potential GPI-modification site (P:
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predicted; S: second predicted site, more than one predicted site). TMHMM screened for the

presence (Transmembrane Domain) and number of transmembrane domains (PredHel) [130,

131]. Columns AE, AF and AG show SMART ID, PFAM ID and InterPro short description,

respectively. Genes were screened for additional GO terms (see methods).

(XLSX)

S5 Table. Developmental dataset protein localisation and functional annotations. Normal-

ised expression densities per gene per time-point (Columns B-H). Heatmap’s 3 colour scale of

gene expression data: 0.2, red; 1, white; 5, blue. Data is sorted by cluster number at k = 10 fol-

lowed by gene name (Column I). Each gene was matched to its MGI symbol (Column J). Pro-

tein localisation was assessed after combining the data from the different screens performed as

either in the Golgi (gol), cytoplasmic (cyt), cytoskeletal (csk), in the endoplasmic reticulum

(end), extracellular including cell wall (ext), mitochondrial (mit), nuclear (nuc), peroxisomal

(per), on the plasma membrane (pla) or in vesicles of secretory system (ves; Column K). More-

over, when the protein was deemed in the extracellular compartment, it was found to be either

GPI-achored (anchored), secreted, single-pass transmembrane (single-pass) or multi-pass

transmembrane (multi-pass; Column L). Functional assessment was grouped in six different

categories: 1) axon guidance pathway and cell adhesion; 2) synapse; 3) receptor tyrosine

kinases and their ligands, and patterning; 4) neurotransmission pathway (GPCRs, ion chan-

nels, gap junctions); 5) chromatin and transcription factor activity; and 6) other (cytoskeleton,

extracellular matrix, myelin, metabolic enzymes and signal transduction) and unannotated

(Column M). Three colour scale of cluster number and group number: red< yellow < green,

for better visualisation (Columns I and M). See text for details.

(XLSX)

S6 Table. Known and potential connectivity genes. Genes are listed by cluster and grouped

into those with known roles in thalamocortical connectivity, known functions in axon guid-

ance of synaptogenesis more generally or no such known functions (Other).

(XLSX)

S1 Fig. In situ hybridization patterns for immunoglobulin superfamily genes across entire

brain at P0. Two coronal sections are shown for Kirrel3, Igsf9b and Sdk2, one rostral and one

more caudal. Scale bar: 1 mm.

(TIFF)

S2 Fig. In situ hybridization patterns for Odz family genes across entire brain at P0. Two

coronal sections are shown for Odz1,Odz2,Odz3 and Odz4, one rostral and one more caudal.

In addition to restricted expression in dorsal thalamus, there is also graded expression of Odz
genes across cortex (cx) and striatum (str) in differing patterns. Scale bar: 1 mm.

(TIFF)

S3 Fig. In situ hybridization patterns for Odz family genes in dorsal thalamus at E15.5.

Two coronal sections are shown for Odz1,Odz2,Odz3 and Odz4, one rostral and one more

caudal. Differential expression across the dorsal thalamus is already evident at this stage. The

corresponding entire brain sections are shown in Figure S4. Scale bar: 500 μm.

(TIFF)

S4 Fig. In situ hybridization patterns for Odz family genes across entire brain at E15.5.

Two coronal sections are shown for Odz1,Odz2,Odz3 and Odz4, one rostral and one more

caudal. Scale bar: 1 mm.

(TIFF)
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S5 Fig. In situ hybridization patterns for Neto family genes across entire brain at P0. Three

coronal sections are shown for Neto1 and Neto2, one rostral, one at an intermediate level

(mid) and one more caudal. Scale bar: 1 mm.

(TIFF)

S6 Fig. In situ hybridization patterns for Neto family genes across entire brain at E15.5.

Two coronal sections are shown for Neto1 and Neto2, one rostral and one more caudal. Differ-

ential expression across the dorsal thalamus is already evident at this stage. Scale bar: 1 mm.

(TIFF)

S7 Fig. Summaries of expression profiles across k-means values. Normalised expression

densities were averaged per cluster to see the trends of expression for the results of all cluster-

ing analyses from k = 6 to 18 (k indicated at top left corner of each table). Clusters were orga-

nised chronologically with early peaks of expression at the top and later peaks of expression at

the bottom. Heatmap’s 3 colour scale of gene expression data: 0.2, red; 1, white; 5, blue. k = 10

was used for further analyses; the corresponding tableframe is in bold.

(TIF)

S8 Fig. Image extraction of thalamic gene expression from the devABA. In situ hybridiza-

tion data from a sagittal section of the thalamus at E18.5 obtained from the devABA (A and E).

Corresponding section from the anatomic reference atlas (B and F, respectively). Higher mag-

nifications of the thalamus from squared regions in A, B, E and F, respectively (C, D, G and

H). Scale bar in A, B, E and F, 880 μm; C, D, G and H, 214 μm. PT (pretectum) and prethala-

mus (PTh) are labeled within their region bordering the thalamus. p1, prosomere 1 (pretectum

and pretectal tegmentum); p1A, alar plate of prosomere 1; p1B, basal plate of prosomere 1; p2,

prosomere 2 (thalamus and thalamic tegmentum); p2A, alar plate of prosomere 2; p2B, basal

plate of prosomere 2; p3, prosomere 3 (prethalamus and prethalamic tegmentum); p3A, alar

plate of prosomere 3; p3B, basal plate of prosomere 3. Note that voxels were assigned regional

labels for thalamus and thalamic tegmentum separately.

(TIFF)

S9 Fig. Odz3 in situ hybridization compared to devABA data. Two sagittal sections are

shown, one lateral and one more medial. Our in situ hybridizations are on sections from P0

nenonates, while the devABA sections are from E18.5 embryos. Despite this difference of

about a day, there is strikingly good correspondence in expression patterns across the dorsal

thalamus, striatum (str), cortex (cx) and other brain regions. Scale bar: 1 mm.

(TIFF)
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