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Abstract

Pyruvate kinase (PKLR) deficiency protects mice and humans against blood-stage malaria.

Although mouse strain AcB62 carries a malaria-protective PklrI90N genetic mutation, it is phe-

notypically susceptible to blood stage malaria induced by infection with Plasmodium cha-

baudi AS, suggesting a genetic modifier of the PklrI90N protective effect. Linkage analysis in a

F2 cross between AcB62 (PklrI90N) and another PK deficient strain CBA/Pk (PklrG338D) maps

this modifier (designated Char10) to chromosome 9 (LOD = 10.8, 95% Bayesian CI = 50.7–

75Mb). To study the mechanistic basis of the Char10 effect, we generated an incipient con-

genic line (Char10C) that harbors the Char10 chromosome 9 segment from AcB62 fixed on

the genetic background of CBA/Pk. The Char10 effect is shown to be highly penetrant as the

Char10C line recapitulates the AcB62 phenotype, displaying high parasitemia following P.

chabaudi infection, compared to CBA/Pk. Char10C mice also display a reduction in anemia

phenotypes associated with the PklrG338D mutation including decreased splenomegaly,

decreased circulating reticulocytes, increased density of mature erythrocytes, increased

hematocrit, as well as decreased iron overload in kidney and liver and decreased serum iron.

Erythroid lineage analyses indicate that the number of total TER119+ cells as well as the

numbers of the different CD71+/CD44+ erythroblast sub-populations were all found to be

lower in Char10C spleen compared to CBA/Pk. Char10C mice also displayed lower number

of CFU-E per spleen compared to CBA/Pk. Taken together, these results indicate that the

Char10 locus modulates the severity of pyruvate kinase deficiency by regulating erythroid

responses in the presence of PK-deficiency associated haemolytic anemia.

Introduction

Malaria is one of the clearest and best studied examples of an infectious disease which intensity

and outcome are strongly influenced by genetic factors of the host[1,2]. This includes loss-of-

function variants of erythrocyte-specific proteins (so-called hemoglobinopathies), which cause
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severe and life-threatening disease in the homozygous state, but which heterozygosity exerts a

protective effect against blood-stage or cerebral malaria. This is the case of hemoglobin vari-

ants associated with sickle cell anemia (HbS), or α and β thalassemias, HbC, HbE, as well as

G6PD deficiency, Duffy negativity, and Melanesian ovalocytosis (Band 3 protein)[3–5]. In

addition, in the major blood groups, A and B have been found to be associated with a greater

risk of severe malaria in some studies, suggesting a protective role of the O blood group[6].

Finally, genome wide studies, and numerous studies with candidate genes have identified vari-

ants in genes involved in host inflammatory (TNFα, IFNγ, NOS2A, LTA, IRF1) and immune

responses (HLA, FCGR2A) that are associated with malaria severity and/or outcomes[1,2].

Finally, these complex genetic effects are further modulated by poorly identified environmen-

tal factors, including density of the insect vector populations, virulence determinants of the

Plasmodium parasites (including resistance to anti-malarial drugs), poor nutritional status of

the host (anemia), and co-infection with other accidental or endemic bacterial or helminth

pathogens[7,8].

Genetic studies in mouse models of blood stage (Plasmodium chabaudi AS) and cerebral

malaria (Plasmodium berghei ANKA) have proven valuable to identify genetic determinants of

susceptibility or resistance to infection[9–24]. The relevance of these candidate genes to patho-

genesis and host response to the human malarial parasite (Plasmodium falciparum) can then

be tested in human population studies. A striking example is the Char4 locus, one of the 11

mapped Char loci (Chabaudi resistance), which control susceptibility (parasitemia at the peak

of infection, overall survival) to P. chabaudi AS in inbred, recombinant inbred, and recombi-

nant congenic strains of mice. The Char 4 locus was identified as protective against blood stage

malaria in strains AcB55 and AcB61. These two strains are derived from the highly susceptible

A/J parental strain and harbor susceptibility alleles at the major Char1 and Char2 loci[15,16].

Char4-determined malaria-resistance in AcB55 and AcB61 was shown to be caused by homo-

zygosity for a loss-of-function mutation at the Pklr gene (PklrI90N) that encodes the erythrocyte

specific pyruvate kinase[25]. Pyruvate kinase catalyses the last step of glycolysis, converting

phosphoenolpyruvate to pyruvate with the generation of one molecule of ATP. PK-deficiency

in AcB55/AcB61 causes hemolytic anemia, extramedullary erythropoiesis, reticulocytosis, and

protection against infection (low parasitemia, survival) [25,26]. The malaria-protective pheno-

type of PK-defciency was found to be recapitulated in an independent mutant variant

(PklrG338D) from the CBA/N-Pkslc strain (referred to as CBA/Pk later in the text)[27].

Pyruvate kinase deficiency is the most frequent abnormality of the glycolytic pathway and is

the second most common cause of non-spherocytic hereditary hemolytic anemia in humans.

Importantly, studies of human erythrocytes from 3 PK-deficient patients infected ex vivo with

P. falciparum showed that homozygosity for PK-deficient alleles causes a dramatic reduction in

parasite replication and increased phagocytosis of parasitized erythrocytes. P. falciparum infected

erythrocytes from heterozygotes were also more avidly phagocytozed than control infected eryth-

rocytes[28]. Finally, re-sequencing the PKLR gene in human populations (21 ethnic groups, 6

geographical clusters) from current or ancestral areas of malaria endemicity (Africa, South-East

Asia) identified a rich genetic diversity at human PKLR, and have suggested that the gene may be

under selection[29,30].

AcB62 is another recombinant congenic strain that carries the malaria-protective PklrI90N

mutation. Yet, AcB62 is susceptible to P. chabaudi with high peak parasitemia (~60%) com-

pared to AcB55/61 (~35%) and to C57BL/6J resistant controls (~35%), suggesting the presence

of a genetic modifier of the PklrI90N malaria-protective effect in this strain[19]. A genome scan

in PK-deficient [AcB62 X CBA/Pk]F2 mice infected with P. chabaudi was conducted using peak

parasitemia as a quantitative measure of susceptibility. These F2 mice are informative for map-

ping this modifier, as they are fixed for PK deficiency, although the CBA/Pk allele (PklrG338D) is
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more severe than the PklrI90N allele of AcB62[27]. Linkage analysis identified a major locus on

chr 9 controlling parasitemia in infected animals, that we designated Char10 (LOD = 10.8; 95%

confidence interval 51.3Mb-68.3Mb). There was an additional effect on chr 3 (LOD = 3.8; near

Pklr), due to Pklr mutant alleles of different severity segregating in this cross[19,27].Hence the

Char10 locus is a modifier of the malaria-protective effective effect of PK-deficiency.

In this study, we have studied the mechanism by which the Char10 locus modulates the

penetrance and expressivity of pyruvate kinase deficiency in the AcB62 mouse strain.

Materials and methods

Mice

A/J and C57BL/6J mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA).

The AcB recombinant congenic strain AcB62 was generated according to a breeding scheme

of Demant and Hart[31] and has been described previously[15]. CBA/Pk mice were provided

by the Japan SLC Animal Facility (Mr H Asai). Char10C incipient congenic mice were gener-

ated from CBA/Pk (background strain) and AcB62 (donor strain) using marker-assisted back-

crossing (Fig 1A); Markers D9Mit25, D9Mit4, D9Mit208, D9Mit336, D9Mit341, D9Mit51 were

used to monitor presence of the AcB62 alleles at the Char10 locus in the Char10C line. All

strains were maintained under pathogen-free conditions in the animal facility of McGill Uni-

versity and handled according to the guidelines and regulations of the Canadian Council on

Animal Care. Mice experimentation protocol was approved by the McGill Facility Animal

Care Committee (P. Gros, Principal Investigator; protocol number: 5287), and includes proce-

dures to minimize distress and improve welfare. All mice were gender-matched in each indi-

vidual experiments to control for gender effects.

Parasite and infection

A lactate dehydrogenase virus-free isolate of P. chabaudi chabaudi AS, originally obtained

from Dr Walliker (University of Edinburgh), was maintained by weekly passage in A/J mice

by intraperitoneal infection with 106 parasitized red blood cells (pRBCs) suspended in 1mL of

pyrogen-free saline. Experimental mice were infected intravenously with 105 pRBCs and the

percentage of pRBCs was determined daily on thin blood smears stained with Diff-Quick

(Dade Behring, Newark, DE, USA) on days 4 to 21 after infection. Survival from infection was

monitored twice daily, everyday of the experiment, and moribund animals were sacrificed. A

monitoring log, placed in the mouse room, was signed by research personnel following each

check. We did not experience any unexpected deaths. Humane endpoints were used during all

of our animal survival studies, and in accordance with the McGill University FACC (Facility

Animal Care Committee). At any time, if any of our experimental mice exhibited signs of dis-

tress such as weight loss exceeding more than 20% body weight, a body condition score (BCS)

< 2, moderate to severe dehydration, decreased mobility, loss of appetite, ruffled fur with loss

of grooming behavior, lethargy and or hunched posture, these mice were immediately eutha-

nized (carbon dioxide exposure) following anesthesia with isoflurane.

Hematological parameters

Fresh whole blood was collected in heparinized tubes by cardiac puncture from nine to ten

animals per strain. Red blood cell counts, haemoglobin, haematocrit, and Mean Corpuscular

Volume (MCV) were determined by the Diagnostic and Research Support Service of the Ani-

mal Resources Centre of McGill University. Reticulocytes counts were performed on methy-

lene-blue-stained thin blood smears; four fields of 100 cells were counted per mouse.
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Histology

Spleen, liver and kidney were obtained from CBA/Pk, Char10C and C57BL/6 mice, fixed over-

night in 10% formalin (neutral buffered), dehydrated in ethanol/xylene, and embedded in paraf-

fin wax. Histology sections were cut on a microtome at 4 μm and fixed to glass slides. Sections

were de-paraffinized in xylene, rehydrated in a series of ethanol baths, and then stained for iron

using Perl’s Prussian blue solution, dehydrated in ethanol/xylene, and mounted with Acrytol

(Leica Biosystems, Canada).

Iron-related and erythropoietin (EPO) measurements

Iron biochemical determination in spleen, liver and kidney was performed according to

the method described by Torrance and Bothwell[32]. Briefly, iron quantification was done

by acid digestion of tissue samples at 65˚C for 20h, followed by colorimetric measurement

of the absorbance of the iron-bathophenanthroline complex at 535nm. Quantitative mea-

surements of plasma iron, total iron binding capacity (TIBC) and transferrin saturation

were performed at the Molecular Diagnostic laboratory of the Jewish General Hospital,

Montreal, Canada. Plasma EPO levels were quantified using a sandwich enzyme-linked

Fig 1. Construction and phenotyping of the Char10C incipient congenic line. (A) Physical delineation of the chromosome 9

(Char10) segment from the AcB62 strain backcrossed onto the genetic background of the CBA/Pk strain. The LOD trace was

adapted from Min-Oo et al. 2010[19]. The schematic representation of the recombinant chromosome 9 is shown below for the

Char10C incipient congenic line and for parental CBA/Pk and AcB62. The positions of informative markers used for genotyping

and the length of the chromosome 9 transferred are given in megabases and are drawn to scale. (B) Course of Plasmodium

chabaudi AS infection (blood parasitemia) in CBA/Pk, AcB62 and Char10C mice over a period of 20 days. Five to eleven animals

per group were profiled. (C) Peak parasitemia levels are shown for strains CBA/Pk, AcB62 and Char10C. Each dot represents one

mouse. Statistical significance (two-tailed Student’s t-test; compared to CBA/Pk) is indicated by stars: ****P<0.0001.

https://doi.org/10.1371/journal.pone.0177818.g001
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immunosorbent assay (ELISA) (R&D Systems, Minneapolis, MN, USA) according to the

manufacturer’s guidelines.

Flow cytometry

Spleens and bone marrow were harvested. Single cell suspensions were prepared in PBS supple-

mented with 2% FBS and 2mM EDTA and filtered through a 40μm cell strainer (BD Biosciences,

Mississauga, ON, Canada) to remove cell aggregates. Single cell suspensions were counted man-

ually and viability determined by trypan blue exclusion was always>95%. Cells (1x106) were

then incubated with 0.5 μg of anti-CD16/CD32 monoclonal antibodies (eBioscience Inc, San

Diego, CA, USA) prior to staining with the following fluorescence-conjugated antibodies pur-

chased from eBioscience: anti-mouse TER119-PE (clone TER119), anti-mouse CD71-FITC

(clone R17217) and anti-mouse CD44-APC (clone IM7). Non-viable cells were excluded using

7-AAD viability staining solution (eBioscience Inc, San Diego, CA, USA). Cells were acquired

using BD FACSCanto II (BD Biosciences, Mississauga, ON, Canada) and data were analysed

using FlowJo version 9.3.3.

Erythroid colony-forming unit (CFU-E) assays

Single cell suspensions were prepared from CBA/Pk, Char10C and C57BL/6J spleen and bone

marrow in IMDM (Life Technologies, ON, Canada) supplemented with 10% FBS and 100U/

mL penicillin/streptomycin (Thermo Scientific, UT, USA). Spleen or bone marrow were har-

vested from 3 mice per group and pooled. Cells were plated into 1% methylcellulose medium

supplemented with 15% FBS, 1% BSA, 10 μg/mL insulin and 200 μg/mL transferrin (M3234,

Stem Cell Technologies, BC, Canada). Various concentrations (0–200 mU/mL) of erythropoie-

tin (R&D Systems, Minneapolis, MN, USA) as well as 2 mM of L-glutamine (Life Technolo-

gies, ON, Canada) were added to the medium. Cells were plated in 35 mm dishes (Sarstedt,

Montreal, Canada) at a density of 4x104 cells/mL for spleen and 2x104 cells/mL for bone mar-

row. CFU-E were scored after 2.5 days of culture in a 5% CO2 humidified incubator kept at

37˚C.

Biotinylation of RBCs

In vivo biotinylation of erythrocytes was performed as we have described[27]. Briefly, the

entire RBC population was biotinylated at t = 0 following i.v. injection of 0.1 ml of sulfo-NHS-

biotin (Pierce, Rockford, IL) at a concentration of 50 mg/mL and the frequency of biotinylated

RBCs in the blood was determined by flow cytometry. Five microliters of blood was taken

from tail vein and diluted in 1 mL of PBS. Cells were counted and approximately 1 × 108 RBCs

were stained with 3 μg PE-streptavidin (BD Biosciences, Mississauga, ON) in 0.2 ml PBS for 30

min at 4˚C. After washing with PBS, the stained cells were analyzed by FACSCalibur using

CellQuestPro software. The frequency of the biotinylated RBCs in the blood was followed at

regular intervals during a period of 30 days.

Adoptive transfer of biotinylated RBC was performed as described previously[33].

Briefly, blood from CBA/N donor was collected and washed three time in PBS supple-

mented with 0.1% glucose and was then incubated for 15 min in 0.1 mg/mL biotin-NHS at

room temperature. It was then washed once with PBS supplemented with 0.1% glucose and

100mM glycine, and a second time with PBS alone. 1.9x109 RBCs in 0.3 mL were injected i.v

in each recipient mouse. The frequency of biotinylated RBCs was analysed during a period

of 50 days.
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Statistical analysis

Statistical significance between groups was tested by an unpaired, two-tailed Student t-test.

The data were analysed using GraphPad Prism 6.0 statistical software. P-values <0.05 were

considered significant. �P<0.05; ��P<0.01; ���P<0.001; ����P<0.0001.

Results

Creation and characterization of a Char10 incipient congenic mouse line

Char10 was previously shown to regulate parasitemia levels at the peak of infection in pyruvate

kinase deficient [AcB62xCBA/Pk] F2 mice, and was mapped to the proximal portion of chro-

mosome 9[19]. This cross segregates two Pklr mutations, the PklrI90N allele from AcB62 and

the more severe PklrG338D mutation from CBA/Pk[27]. This complicates the study of the

mechanism of action of the Char10 locus and its effect on the malaria-protective phenotypes

imparted by PK-deficiency in these F2 mice. To initiate the identification of the cellular and

biochemical pathways underlying the Char10 effect, we used a marker-assisted strategy to con-

struct a incipient congenic line in which the chromosome 9 portion overlapping the Char10
locus from AcB62 (donor strain) was transferred by serial backcrossing (4 generations) to the

genetic background of CBA/Pk. The resulting line, designated Char10C, was genotyped for

informative markers on chromosome 9, and was found to be homozygote for an AcB62 chro-

mosome 9 segment spanning from 35.21Mb to 74.88Mb (Fig 1A). The Char10C line is also

homozygote for CBA/Pk derived PklrG338D mutant alleles on chromosome 3, as expected. In

all subsequent experiments, comparative studies in the Char10C and CBA/Pk lines were per-

formed to gain insight into the function of Char10.

To validate the modulating effect of Char10 on PK-deficiency associated malaria phenotype,

we infected AcB62, CBA/Pk and Char10C mice with P. chabaudi chabaudi AS and followed

blood parasitemia over time. Char10C mice were found to be susceptible to P. chabaudi cha-
baudi AS infection, with peak parasitemia levels (43.5%) resembling those seen in the parental

AcB62 (57%), and clearly distinct from those detected in the CBA/Pk mutant (12.48%) (Fig 1B

and 1C). These results demonstrate that the Char10 locus (AcB62-derived alleles) is sufficient to

suppress the malaria-protective effect of PK-deficiency (PklrG338D) in CBA/Pk. Furthermore,

the Char10 effect is fully penetrant as the incipient congenic line recapitulates the phenotype of

the AcB62 parental line (peak parasitemia).

Char10 modulates the extent of the PK deficiency-associated anemia

Protection against blood-stage malaria in PK-deficient AcB55, AcB61 and CBA/Pk has been

linked to anemia, and to altered properties of PK-deficient erythrocytes, such as high reticulo-

cytosis and shortened half-life or mature red cells in peripheral blood. In addition, we have

observed a quantitative correlation between intensity of anemia phenotypes (reticulocytes)

and resistance to malaria (peak parasitemia) in individual [AcB62xCBA/Pk] F2 and [AcB55 x

A] F2 mice[25–27]. Therefore, we investigated the effect of the Char10 locus on the anemia-

associated phenotypes characteristic of PK-deficiency, initially by comparing haematological

profiles of Char10C and CBA/Pk (Fig 2). Char10C mice are significantly less anemic than

CBA/Pk mice. They show higher numbers of erythrocytes (6.3 vs 5.1 x 1012/L), higher hemato-

crit (0.37 vs. 0.33L/L), and lower numbers of circulating reticulocytes (31.1% vs. 42.4%).

Char10C mice also have a lower mean corpuscular volume (MCV) of total RBCs, which is

probably due to the lower proportion of reticulocytes. Finally, and although tissue section

identified intense expansion of the spleen red pulp and associated secondary erythropoiesis in

both mouse strains, Char10C mice show a highly significant reduction in splenomegaly when
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compared to CBA/Pk (Fig 2F). This initial haematological profiling suggests that the Char10
locus modulates intensity of PK-deficiency in CBA/Pk.

Char10 modulates the extent of PK-deficiency-induced iron overload in

peripheral tissues

Hemolytic anemia in conditions such as PK-deficiency are often accompanied by iron over-

load in peripheral tissues[34,35]. We investigated whether Char10 had an effect on iron metab-

olism at such sites. Staining of tissue sections with Perls’ Prussian blue showed reduced iron in

liver and kidney of Char10C mice (but not spleen), when compared to CBA/Pk (Fig 3A). In

liver, iron deposits appeared mostly in mononuclear phagocytes (Kupffer cells), while in kid-

ney, iron deposits appeared mostly at the apex of epithelial cells of proximal tubules. Further

quantification of iron in organ extracts confirmed results of histochemistry and identified sig-

nificantly lower iron stores in liver and kidney in Char10C mice compared to CBA/Pk (Fig 3B,

3C and 3D). Char10C mice also showed lower plasma iron levels and lower plasma transferrin

saturation than in CBA/Pk mice (Fig 4A and 4C), while total iron binding capacity (TIBC) was

similar in both strains (Fig 4B). Erythropoietin (EPO) is critical for erythrocyte production in

response to anemia[36]. We determined that plasma levels of EPO in Char10C mice were

about half that of CBA/Pk (Fig 4D). Taken together, iron and EPO measurements in tissue

and plasma provide complementary information that Char10 modulates the severity of hae-

molytic anemia caused by Pklr deficiency.

Fig 2. Comparative hematological profile of the Char10C incipient congenic line. Hematological parameters were obtained in

naïve adult mice (>8 weeks of age). Abbreviations: RBCs, red blood cells; MCV, mean corpuscular volume. Each dot represents

one mouse. Statistical significance (two-tailed Student’s t-test; compared to CBA/Pk) is indicated by stars: *P<0.05; **P<0.01;

***P<0.001; ****P<0.0001.

https://doi.org/10.1371/journal.pone.0177818.g002
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Effect of Char10 regulation on metabolism of PK-deficient erythrocytes

Results so far indicate that Char10 alleles impact the severity of anemia phenotypes (erythro-

cyte and reticulocyte numbers, plasma iron and tissue iron stores) in PK-deficient CBA/Pk

and Char10C mice. This could reflect differential fragility of PklrG338D deficient erythrocytes

produced in CBA/Pk vs. Char10C mice, perhaps resulting in haemolytic signals of different

intensities. Alternatively, this could suggest Char10-regulated hematopoietic responses of dif-

ferent intensities in response to the same PklrG338D associated haemolytic insult. To distinguish

between these two possibilities, we determined the half-life of PklrG338D deficient erythrocytes

produced in CBA/Pk vs. Char10C mice using an in vivo biotinlylation assay we have previously

described[27]. In this protocol, biotin is injected intravenously, and the disappearance of bio-

tin-labeled erythrocytes is monitored daily by FACS, and erythrocytes half-life is determined

(Fig 5A). These experiments showed an identical half-life of ~5 days for erythrocytes produced

in both mouse lines. The half-life of erythrocytes can also be influenced by the pace at which

they are removed from the circulation. Hence, we used a modification of this protocol to assess

the capacity of the reticulo-endothelial system (macrophages) of CBA/Pk and Char10C to

eliminate normal erythrocytes (from wild type PK-sufficient CBA/N) labelled ex vivo with bio-

tin and injected back in both mouse strains (Fig 4B and 4C). These experiments showed that

CBA/Pk and Char10C mice could eliminate normal RBCs at the same rate. Hence the Char10
locus does not modulate erythrocytes half-life either directly, or through differential rates of

removal by the reticuloendothelial system.

Char10 regulation of erythropoiesis in PK-deficient mice

We investigated a possible effect of Char10 alleles on erythroid response to haemolytic anemia.

For this, we used FACS analysis to distinguish and to quantify the different populations of

maturing erythroblasts from spleen, the major site of ertyhropoiesis in PK-deficient mice. In

these studies, TER119 was used as a general marker of the erythroid lineage and CD71 (transfer-

rin receptor; data not shown) and CD44 (hyaluronic acid receptor) as maturation markers for

the erythroid lineage. The expression of CD71 and CD44 in TER119+ erythroblasts decreases

with maturation, and when combined with analysis of cell size, this previously described strat-

egy[37,38] permits the identification of four erythroblast maturation stages (Fig 6A and 6B).

The number of total TER119+ cells, as well as the numbers of the different erythroblast sub-pop-

ulations (labelled I to IV) were all found to be lower in Char10C spleen compared to CBA/Pk

controls (Fig 6C and 6D). This is consistent with the higher splenomegaly of CBA/Pk compared

to Char10C, and strongly suggests increased erythropoiesis in the former CBA/Pk compared to

Char10C. Interestingly, we noted that the relative percentage of TER119+ cells in the spleen, or

the respective percentage of each erythroblast sub-populations was similar in CBA/Pk and

Char10C (Fig 6E and 6F).

To determine whether the Char10 effect on both the splenic TER119+ erythroid cell

populations and circulating reticulocytes may be linked to altered maturation of early ery-

throid progenitors, we measured the potential of splenic cells from both strains to form

CFU-E in vitro in response to EPO. Dose-response experiments suggested that 10U/mL

EPO was sub-optimal and non-saturating, and was selected for our assay conditions (Fig

7A). The total number of CFU-E per spleen was found to be lower in Char10C than in

CBA/Pk (Fig 7B). This result suggests more robust erythropoiesis in CBA/Pk than in

Char10C mice, in agreement with the higher number of TER119+ erythroid precursors

detected in the spleen of these mice by FACS analysis (Fig 6). On the other hand, the rela-

tive frequency of CFU-E formed per 4x104 cells plated was found to be the same in the two

strains (Fig 7C).
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Fig 3. Iron determination in peripheral tissues. Spleen, liver and kidney of CBA/Pk, Char10C and C57BL/6 mice were harvested and

used for histochemical and biochemical determination of iron content. (A) Histochemical staining of spleen, liver and kidney sections

Char10 regulates severity of pyruvate kinase deficiency and malaria

PLOS ONE | https://doi.org/10.1371/journal.pone.0177818 May 18, 2017 9 / 18

https://doi.org/10.1371/journal.pone.0177818


Taken together, these results strongly suggest that the Char10 locus differentially modulates

erythroid response to the same PK-deficiency haemolytic stimulus. The Char10 effect appears

to be at the level of global erythroid response as opposed to the intrinsic ability of erythroid

precursors to fully differentiate into erythrocytes.

Discussion

Erythrocyte senescence in haemolytic anemia such as that encountered in pyruvate kinase defi-

ciency and during Plasmodium infection is associated with decreased ATP levels, heme deposi-

tion, and oxidative damage which cause decreased deformability, retention in red pulp splenic

sinuses and phagocytosis by residents macrophages[39–41]. Hemolytic anemia is associated

with compensatory erythropoiesis in the spleen (also in liver and bone marrow), with noticeable

splenomegaly, increased numbers of TER119+ erythroblasts in these organs, and of circulating

stained with Perl’s Prussian blue. (B) Iron biochemical quantification in spleen, liver and kidney extracts. Each dot represents one mouse.

Statistical significance (two-tailed Student’s t-test; compared to CBA/Pk) is indicated by stars: ***P<0.001.

https://doi.org/10.1371/journal.pone.0177818.g003

Fig 4. Iron-related measurements in plasma. Comparative analyses of plasma from CBA/Pk vs Char10C mice. (A)

Iron total concentration. (B) Total iron-binding capacity. (C) Transferrin saturation. (D) Erythropoietin concentration.

Each dot represents one mouse. Statistical significance (two-tailed Student’s t-test; compared to CBA/Pk) is indicated

by stars: *P<0.05; ***P<0.001.

https://doi.org/10.1371/journal.pone.0177818.g004
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Fig 5. Effect of Char10 on turnover of biotinylated erythrocytes. (A) Turnover of in vivo biotinylated

erythrocytes from CBA/Pk and Char10C mice, as determined by flow cytometry. (B) Turnover of ex vivo
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reticulocytes. This chronic compensatory erythropoiesis is associated with increased intestinal

iron uptake and ultimately, iron overload in peripheral tissues. We showed previously that in

mice and humans, PKLR-deficiency is associated with increased resistance to malaria[25,26,28].

biotinylated control CBA/N erythrocytes following adoptive transfer into CBA/Pk and into Char10C mice, and

as measured by flow cytometry over a period of 50 days. (C) Enlargement of the linear portion of the graph

shown in panel B.

https://doi.org/10.1371/journal.pone.0177818.g005

Fig 6. Flow cytometric analysis of the spleen erythroid compartment. (A) Single spleen cells suspensions from

CBA/Pk and Char10C mice were labelled with antibodies against TER119 and CD44. (B) Distribution of CD44

+ populations versus FSC of TER119+ gated cells was used to identify 4 sub-populations of erythroblasts (I to IV) as

described [38]. The total number of Ter119+ erythroblasts (C) and of the 4 sub-populations of erythroblasts (D) is

shown. (F) Erythroblasts expressed as percentage of TER119+ cells. Each dot represents one mouse, and all

experiments were done in triplicate. Statistical significance (two-tailed Student’s t-test; compared to CBA/Pk) is

indicated by stars: ***P<0.001; ****P<0.0001.

https://doi.org/10.1371/journal.pone.0177818.g006
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Fig 7. Enumeration of CFU-E progenitors in spleens. Spleens of three male CBA/Pk, Char10C and

C57BL/6 mice were pooled for analysis. (A) Erythropoietin (EPO) titration was performed on CBA/Pk spleens
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Resistance may be accounted for by a) diminished replication of Plasmodium parasites in the

unfavourable environment of reduced ATP content of PK-deficient erythrocytes[42], or b)

reduced half-life and increased phagocytosis of PK-deficient RBCs, including Plasmodium
infected ones[28], or c) a combination of both. The malaria-protective effect of PK-deficiency is

phenotypically similar to that of inactivation of other erythrocyte proteins (G6PD, Band-3,

DARC), including hemoglobin (sickle cell anemia, thalassemias)[3].

In three recombinant congenic strains that share common ancestry (AcB55, AcB61,

AcB62), we identified a severe loss of function in Pklr (PklrI90N) that accounts for the Char4
locus. This locus is associated with protection against P. chabaudi induced blood-stage malaria

in AcB55 and AcB61[25]. In AcB61, the protective effect of PklrI90N (Char4) is further modified

by the Char9 locus on chromosome 10 which causes increased malaria-susceptibility due to

the loss of pantetheinase activity (Vnn3) and its key metabolic product, cysteamine[17,43,44].

On the other hand, and despite carrying the PklrI90N mutation, AcB62 mice are susceptible to

P. chabaudi infection, and show high parasitemia at the peak of infection with significant mor-

tality[19]. Mapping studies in an informative F2 cross generated between AcB62 (PklrI90N) and

CBA/Pk (PklrG338D) identified the major genetic modifier of Pklr-associated malaria resistance

to be linked to chromosome 9 (Char10; LOD = 7.24) with additional effects linked to segrega-

tion of functionally distinct mutant Pklr alleles mapping to chromosome 3 (LOD = 3.7)[19,27].

A first aim of our study was to establish the effect of the Char10 locus on the modulation of

PK-deficiency associated resistance to blood-stage malaria. For this, we generated an incipient

congenic line (Char10C) in which the Char10 alleles of AcB62 were introduced onto genetic

background of the CBA/Pk mouse strain by continuous marker-assisted backcrossing. With

respect to reticulocytosis and response to malaria, we observed that the Char10C line recapitu-

lates the phenotype of AcB62, displaying reduced blood reticulocytes at steady state and high

parasitemia following P. chabaudi infection (Fig 1). This established that Char10 is the major reg-

ulator of both phenotypes, with phenotypic expression being fully penetrant. Hence, compara-

tive analyses in the CBA/Pk and Char10C strain pairs was used to study the effect of Char10.

We observed that, compared to the CBA/Pk parent, the Char10C mice display a reduction

in anemia phenotypes associated with the PklrG338D mutation including decreased splenomeg-

aly, diminished circulating reticulocytes, increased density of mature erythrocytes, increased

hematocrit, as well as decreased iron overload in kidney and liver and decreased serum iron

and transferrin-bound iron (Figs 2, 3 and 4). Several possibilities must be considered to explain

the role of Char10 in seemingly regulating penetrance and/or expressivity of the anemia phe-

notypes associated with Pklr-deficiency. First, Char10 may directly influence the effect of loss

of Pklr function on RBC metabolism including fragility. This appears unlikely, as Pklr-defi-

cient erythrocytes have the same half-life in Char10C and in CBA/Pk mice (Fig 5A), and nor-

mal erythrocytes are cleared with similar efficiency by both mouse lines (Fig 5B and 5C).

Second, it is possible that Char10 affects a sensing mechanism of the host that detects signals of

haemolytic anemia, a hypothesis we cannot formally exclude. Thirdly, Char10 could regulate

the extent of compensatory erythropoiesis in response to the same haemolytic insult caused by

the PklrG338D mutation. This could manifest itself either through cell-autonomous mechanisms

affecting the potential of individual erythoblast precursors to mature into erythrocytes, or

though modulation of the total number of erythroblasts produced in the global response to

to determine sub-optimal EPO concentrations required to stimulate CFU-E colony formation. Histograms

represent the mean of two technical replicates. Erythropoietin titration. (B) Total number of CFU-E per spleen

determined following culture in EPO at 10mU/mL (C) Proportion of CFU-E colonies per 4x104 cells plated at

10mU/mL EPO.

https://doi.org/10.1371/journal.pone.0177818.g007
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haemolytic anemia. The data presented in Figs 6 and 7 argue against a cell-autonomous effect

of Char10 on intrinsic differentiation potential of erythroblasts in vivo and CFU-E colony for-

mation ex vivo. This is clearly distinct from mutations that affect regulation of pro- or anti-

apoptotic response in erythroblasts in response to EPO[45]. Finally, it is possible that Char10
has pleiotropic effects on a combination of the above-mentioned host response pathways.

Nevertheless, our results establish Char10 as a critical regulator of erythropoietic response

(compensatory erythropoiesis) to haemolytic anemia in pyruvate kinase deficiency.

Identifying the gene and protein underlying the Char10 effect will be of considerable interest,

possibly providing new targets for intervention in conditions such as haemolytic anemia. Cur-

rently, the Char10 interval stands at>35Mb (size of the congenic segment fixed in Char10C

mice) and contains>200 genes; Hence, it is not possible to discuss the implication of potential

positional candidates in the phenotype. Because the minimal physical interval of the Char10
locus remains large, we cannot formally exclude the possibility that Char10 is a complex locus

involving the combined effect of several tightly linked genes. It is also possible that such tightly

linked genes may affect different physiological functions, including but not limited to erythro-

poiesis, and/or host immune functions. In addition, the Char10C line is not fully congenic, as it

was backcrossed for only 4 generations before breeding to homozygosity. Hence, we cannot for-

mally exclude the possibility that other portions of the genome derived from AcB62 remain in

the Char10C incipient congenic strain. Nevertheless, it is worth mentioning that Char10 maps

to a portion of chromosome 9 that harbors a previously published quantitative trait locus desig-

nated Splq4 and that regulates spleen weight in a large F2 cross between parental strains selected

for large differences in body weight[46]. It is tempting to speculate that the same gene underlies

Char10 and Splq4 effects. Irrespective of the molecular basis of the Char10 effect, it will be inter-

esting to determine whether or not Char10 can modulate penetrance and expressivity of other

gene mutations that are known to cause defects in erythrocytes function and that protect against

malaria, including hemoglobin genes (sickle cell anemia, α/β thalassemias), ankyrin deficiency,

G6PD-deficiency and others.
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S1 Fig. Numbers of CFU-E progenitors in bone marrow (BM) of CBA/Pk, Char10C and

C57BL/6 mice. Femurs of three male mice (one femur per mouse) were pooled for each strain.

Erythropoietin titration was performed on CBA/Pk femurs. Histograms represent the mean of
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