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Abstract

Congenital heart defects (CHD) is one of the most common birth defects in China. Many

studies have examined risk factors for CHD, but their predictive abilities have not been eval-

uated. In particular, few studies have attempted to predict risks of CHD from, necessarily

unbalanced, population-based cross-sectional data. Therefore, we developed and validated

machine learning models for predicting, before and during pregnancy, women’s risks of

bearing children with CHD. We compared the results of these models in a large-scale, com-

prehensive population-based retrospective cross-sectional epidemiological survey of birth

defects in six counties in Shanxi Province, China, covering 2006 to 2008. This contained 78

cases of CHD among 33831 live births. We constructed nine synthetic variables to use in

the models: maternal age, annual per capita income, family history, maternal history of ill-

ness, nutrition and folic acid deficiency, maternal illness in pregnancy, medication use in

pregnancy, environmental risk factors in pregnancy, and unhealthy maternal lifestyle in

pregnancy. The machine learning algorithms Weighted Support Vector Machine (WSVM)

and Weighted Random Forest (WRF) were trained on, and a logistic regression (Logit) was

fitted to, two-thirds of the data. Their predictive abilities were then tested in the remaining

data. True positive rate (TPR), true negative rate (TNR), accuracy (ACC), area under the

curves (AUC), G-means, and Weighted accuracy (WTacc) were used to compare the classi-

fication performance of the models. Median values, from repeating the data partitioning

1000 times, were used in all comparisons. The TPR and TNR of the three classifiers were

above 0.65 and 0.93, respectively, better than any reported in the literature. TPR, wtACC,

AUC and G were highest for WSVM, showing that it performed best. All three models are

precise enough to identify groups at high risk of CHD. They should all be considered for

future investigations of other birth defects and diseases.
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Introduction

Birth defects (BD) are a major cause of infant death. Congenital heart defects (CHD) are the

most common type of birth defect in China [1]. China has reported estimated incidences of

2.396, 2.882, and 4.095 CHD per 1,000 live births in 2005, 2010, and 2011, respectively. The

incidence of CHD in the perinatal period is higher than the incidence of any other BD [2].

Therefore, screening groups of women with a high- risk of a CHD birth, both before and dur-

ing pregnancy, is clinically important. It is also crucial to enable early intervention and treat-

ment of these birth defects. Prediction models, with good predictive ability for identifying

women whose offspring are likely to be prone to CHD, are therefore required [3]. Models that

use risk factors to predict CHD can help to identify high-risk groups in the population, allow-

ing specific intervention strategies to be targeted at particular subgroups.

Most previous studies of CHD have focused on the distributional pattern and risk factors of

CHD and assessing the associations between individual exposures and birth defects. Fewer

studies have assessed the predictive ability of risk factors for CHD, or other birth defects, and

predictive modeling has not been widely used to predict the risk to women of their future chil-

dren suffering from CHD [4–6]. Therefore, in this study, we build predictive models that

attempt to identify women likely to give birth to children with CHD.

Despite its importance, CHD affect a small proportion of births, so practical CHD classifi-

cation problems are imbalanced, i.e., one of the classes makes up only a small part of the data-

set. The correct classification of samples from a minority class is usually of a greater value than

that for the majority class, because it is more likely to change the treatment individuals will

require. Predicting the outcome of CHD is therefore of practical interest and a challenging

task. Most previous studies of birth defects have used case-control data, and been based on bal-

anced samples. So far, few studies have investigated CHD (or any other birth defects) using

data from a complete population [7]. Our study is the first to predict CHD risks from all the

actual live births in a general population.

For unbalanced data, interest is generally concentrated on correctly classifying the “rare”

class. However, commonly used classification algorithms aim to minimize the total error rate,

rather than paying particular attention to the rare class, so they do not work well for unbal-

anced data [8]. There are two standard methods to cope with the problem of extremely unbal-

anced data. One solution is grounded on a cost sensitive learning method: assigning a greater

penalty to misclassifications of individuals from the rare class. The other solution is using a re-

sampling technique: oversampling instances of the minority class, undersampling instances of

the majority class, or both [8–10].

To avoid changing the structure of the data, we incorporated class weights into the classifi-

ers in our study [8]. On the basis of the above considerations, we applied two popular and stan-

dard classification methods for prediction in this study: weighted support vector machine

(WSVM) and weighted random forests (WRF). For comparison we also applied logistic regres-

sion (Logit) as a baseline classifier [12–13]. The objective of this study was to apply WSVM,

WRF and Logit to the modelling and prediction of CHD, to test the adequacy of the predictive

performance of the 3 tools, and to determine which of the 3 predictive tools best identified

high risk groups of women of reproductive age.

The rest of the paper is organized as follows: Section 2 describes in detail the CHD dataset,

which is used in our classification experiments, and explains the modeling and prediction

methods. Prediction results from the three models, along with evaluations of their perfor-

mance, are presented in Section 3. We discuss and analyze the results, outline the limitations

of the work, and suggest directions for future research in Section 4. In Section 5, we summarize

the research findings.
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Materials and methods

Study design and study subjects

This study is based on data provided by the Population and Family Planning Commission

(PFPC) of Shanxi Province, China. They carried out a large-scale, retrospective population-

based epidemiological survey of BD in 2006–2008. The data cover six counties (Pingding, Dai,

Fenyang, Huairen, Zhongyang, and Jiaokou) in the Shanxi Province of China. The six counties

were selected using a stratified random cluster sampling technique. Data were collected for all

live infants and their mothers. The dataset contains 33831 subjects, 78 of whom were diag-

nosed with CHD, so it is highly unbalanced. Ethical approval, for the both the epidemiological

survey and the current study, was obtained from The Human Research Ethics Committee of

Shanxi PFPC. Details of the methods for selecting the six counties, PFPC subject recruitment,

and data collection have been published elsewhere [11].

Questionnaires designed by the PFPC of Shanxi Province were used to collect information

about mothers’ demographic characteristics, family history, maternal illness histories, premari-

tal and pre-conception health guidance, nutritional status and dietary habits, use of folic acid

supplements from 6 months before until 3 months after conception, maternal illness in preg-

nancy, medication use in pregnancy, exposure to hazardous substances in pregnancy, and

lifestyle behaviors, as well as demographic data for their children[11]. The contents of the

questionnaire have been described fully elsewhere [11].

Predictor variables

Risk factors were assessed through in-person maternal interviews. Only variables that were sig-

nificant in previous analyses or had been identified as suspected risk factors for CHD were

considered in this analysis. To maximize the chance to build models with good predictive abili-

ties, we considered a broad list of nine important indicator variables: maternal age at delivery,

annual per capita income, family history, maternal history of pre-conception illness, inade-

quate nutrition and folic acid supplementation, maternal illness in pregnancy, medication use

in pregnancy, exposure to environmental risk factors in pregnancy, and unhealthy maternal

lifestyle in pregnancy. Each indicator variable, except maternal delivery age(categorical vari-

able) and annual per capita income(ordinal categorical variable), covered multiple risk factor

items and was a continuous variable. These were summed to give a “total risk factor score” and

reduce the dimensionality of the data[11].

After using these data preparation strategies, the final dataset, consisted of 10 variables (9

predictor variables and 1 dependent variable) and 33831 records. The risk factors contributing

to each indicator are shown in Table 1. The dependent variable is a binary categorical variable

with two categories: 0 and 1, with 0 denoting non-CHD and 1 denoting CHD.

Data partition

For extremely imbalanced data, bootstrap resamples can include few or even none of the

minority class. This will result in any classifier having poor performance at predicting the

minority class. One common way of solving this problem is to use a stratified bootstrap; i.e., to

sample from each class separately [8].

In our study, we split the data into non-overlapping training and test sets. We randomly

selected two-thirds of the data from each class to make up the training set for building the classi-

fication models, while the remaining data were used as the test set. The training samples were

used to guide model development, and the test samples were used to evaluate the predictive

Data mining methods for predicting congenital heart defects
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Table 1. Description of nine indicator variables.

Indicator variable Risk factors Min Max

Maternal delivery age

Annual per capita income

Maternal delivery age > 30

Annual per capita income*
0

1

1

5

Family history Parental consanguinity# 0 2

Birth defects in immediate family members#

Birth defects in previous infants#

Maternal previous illness history Hepatitis# 0 6

Epilepsy#

Anemia#

Diabetes#

Heart disease#

Spontaneous abortion#

Thyroid disease#

Other#

Nutrition and folic

acid supplementation

Vegetable deficiency4 0 5

Meat deficiency4

Folic acid deficiency#

Maternal illness Cold# 0 6

Fever#

Threatened abortion#

Reproductive tract infections#

Hyperemesis gravidarum#

Rash and fever#

Other#

Medication use Cold medicines# 0 7

Antiemetic#

Antibiotic#

Antiepileptic#

Sedative#

Contraceptive#

Abortion prevention agent#

Other#

Environmental exposures of risk

factors

Pesticides4 0 6

Chemical fertilizers4

X-rays4

Computer use�

Pets4

Pollution source in area of residence4

Unhealthy lifestyle Periconceptional smoking4 0 8

Family member smoking4

Periconceptional drinking4

Family member drinking4

* 1:less than 1000 Chinese Yuan (¥); 2:1000–2000¥; 3:2000–4000¥; 4:4000–8000¥; 5: more than 8000¥

# 0:none; 1:yes

40:none; 1:occasionally; 2: often

�0:none; 1:<20 hour per week; 2:�20 hour per week and <40 hour per week; 3:�40 hour per week

https://doi.org/10.1371/journal.pone.0177811.t001
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ability of the models. Tuning parameters were identified for each method by a grid search, for

each parameter separately, using a 3-fold cross validation procedure.

As a result, our data was divided into a training set of 22554 cases, and a test set of 11277

cases. The dataset contained 9 input variables. To account for model variability, and make the

results more stable, the whole procedure was repeated 1000 times and comparisons of the

accuracy of three classification models used the medians of the resulting distributions [12].

Prediction models

We used three different types of classification models: support vector machines (SVM), ran-

dom forest (RF) and logistic regression (Logit). Two of these methods, RF and SVM, have

been widely reported and demonstrated as successful methods for classification, but to our

knowledge, they are not widely used for CHD classification applications of unbalanced data.

For comparison, we also applied Logit as a baseline classifier. We describe each of these classi-

fication model types below.

SVM. SVM attempt to find a decision surface that perfectly separates the data points into

two classes. They are based on the structural risk minimization principle. SVM employ the

inner product, known as the kernel function, to map the training data into higher-dimensional

feature space for nonlinear classification. SVM can find a separating hyperplane that maxi-

mizes the distance from the nearest subjects and achieves maximum separation in this higher-

dimensional space. The hyperplane splits the feature space into two parts, and subjects are

then classified based on which side of the hyperplane they lie on.

SVM are frequently used for classifying unbalanced data by incorporating a weighting

parameter to provide extra emphasis on the rare class [10]. The kernel function can have dif-

ferent forms, such as the linear kernel, the polynomial kernel and the radial basis function ker-

nel. The choice of kernel can have a large effect on model outputs. In this study, we explored

several kernels and obtained optimum predictive performance for the SVM with the linear

kernel, using the e1071 package in the R statistical environment. Owing to the unbalanced

nature of the dataset, we used a weighted SVM (WSVM) with weights equal to the reciprocal

of the class proportions [12–14].

Random forest. RF is based upon an ensemble of unpruned decision trees, and combines

their results. Each tree is grown over a bootstrap resample with replacement. Each node of

each decision tree is split using a random selection of the variables. Prediction is made by

aggregating the predictions of all trees by “majority vote”. There are two important parameters

in RF, the number of predictive variables to randomly choose at each node for splitting (mtry)

and the number of trees to grow in the forest (ntree) [14–16]. The strategies for handling

unbalanced data sets in RF, parallel those for SVM. One approach is based on cost sensitive

learning, and the other is based on a sampling technique. To preserve the structure of the data,

we chose to use the weighted random forest (WRF) [15] and assigned a weight to each class,

with the minority class given larger weight (i.e., higher misclassification cost).

We used the R package randomForest, with 500 trees (the default value) and mtry = 3,

which is square root of the total number of predictor variables (again the default value). The

weighting was set at one to two, as proposed by Jiangeng and Zhikun, and the node size

equaled 65. All these were tuned using a grid search with 3-fold cross validation [14–16].

Logistic regression. The Logit models reflect the relationship between a binary or multi-

class dependent variable and a series of independent variables which may be categorical, con-

tinuous or dichotomous. Logit models predict class probabilities from a linear model to by

using a logit transformation [17–19]. Logit models can only result in a predicted probability of

the occurrence of a specific outcome, or of being in a particular state, and not a binary
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classification [18]. In this study, we used the glm function available in R. In a two-class prob-

lem, probability greater than 50% would mean that the case is assigned to the class designated

as ‘‘1”, and ‘‘0” otherwise. For unbalanced data, 50 percent is not an appropriate cutoff. We

used the point on the ROC (Receiver Operating Characteristic) that maximized the value of

the Youden index [19–20].

Performance evaluation for the classification methods

We require a classifier that gives high prediction accuracy over the minority class, and also has

reasonable accuracy for the majority class. We used several standard performance metrics,

namely: true positive rate (TPR), true negative rate (TNR), accuracy (ACC), Weighted ACC

(wtACC), G-mean, and the area under the curves (AUC) to assess the performance of the

three different classifiers. We will define each of the performance measures in turn, after first

defining true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN),

respectively. TP and TN are correctly classified CHD and non-CHD, respectively; FP denotes

non-CHD that are misclassified as CHD; CHD incorrectly classified as controls are FN [21].

Then:

TPR ¼ TP=ðTPþ FNÞ

TNR ¼ TN=ðTNþ FPÞ

ACC ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ

wtACC ¼ w � TPRþ ð1� wÞ � TNR

G mean ¼ ðTPR� TNRÞ1=2

we used w = 0.7 to give higher weights for accuracy on the CHD prediction [22–23].

For extremely unbalanced data, where the rare class is of great interest, TPR, G-mean, AUC

and wtACC are commonly considered most important.

Results

Maternal demographic characteristics

The average maternal age at delivery was 25 years. The percent of maternal delivery ages below

30 was 75.9%, and above or equal to 30 was 24.1%. Around 11.1% of mothers had an annual

net income per capita of less than 1000 Chinese Yuan (¥); 27.2% had an annual income of

1000–2000¥; 36.3% of 2000–4000¥; 19.3% of 4000–8000¥; and 6.2% had an annual income of

more than 8000¥.

Performance comparison of the methods

We compared the classification accuracy of the three classification models namely, WSVM,

Logit, and WRF. Table 2 shows the predictive performances of the classifiers for the test data

set over the 1000 data partitionings.

From Table 2, we can see that TPR ranged from a low of 0.3800 to a high of 0.8800 for

WSVM and WRF, and a low of 0.3800 to a high of 0.9200 for Logit. A previous study used a

10-point cardiovascular profile score and obtained low sensitivity (0.2500 and 0.2700, respec-

tively) for low Apgar scores and mortality when predicting the outcome of fetal CHD [24].

Using the extended basic foetal heart examination, a sensitivity of 0.4280 in the prenatal diag-

nosis of CHD overall has been achieved [25]. TNR ranged from a low of just above 0.8000 to

a high of above 0.96 for the three models, suggesting a satisfactory result for the extremely

unbalanced CHD data in our study. In a previous study, screening tests have displayed 0.7890
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specificity when looking for congenital cardiac defects (CCD) at 11–14 weeks of gestation [26].

ACC ranged from a low of above 0.8000 to a high of above 0.9900 for the three classifiers in

our study. The classification of neural tube defect was predicted using SVM by Wang et al.,
and the accuracy of their prediction was 0.6900 for the test dataset [27]. AUC ranged from a

low of about 0.6700 to a high of about 0.9200 for the three classifiers in our study. To assess the

predictive ability of established risk factors for neural tube defects, the multivariable model

was used by Agopian et al. They obtained AUC scores for composite NTDs, spina bifida, and

anencephaly of 0.5600, 0.5500, and 0.5900, respectively [7]. A previous study applied a previ-

ously developed statistical method to investigate risk prediction on sub-phenotypes of oral

clefts; their results suggested subtypes of cleft lip (CL) and palate have similar genetic etiologies

(AUC = 0.5720) with subtypes of CL only (AUC = 0.5890) [28]. The value of WTacc (about

0.5500–0.8900) and G (about 0.6000–0.9000) in our study were also satisfactory for this

extremely unbalanced CHD data.

The prediction results of three classifiers were summarized as the median values obtained

from repeating the data partitioning 1000 times for each model. The median, over the 1000

runs, values of TPR, TNR, ACC, wtACC, AUC and G for each of the three classifiers are listed

in Table 3, and their interquartile range are also shown. The TPR of the different models ran-

ged from a low of 0.6538 for the Logit and WRF to a high of 0.6923 for WSVM. TNR ranged

from a low of 0.9304 for WRF to a high of 0.9813 for the Logit. The median ACC for each of

the three classification models were high (0.9298–0.9806). Over 65%, 93%, and 92% of TPR,

TNR and ACC, respectively, were achieved by all the models. All three methods improved the

prediction accuracy of the minority class, while maintaining high specificity.

From Table 3, we can see that the WSVM model achieved a classification accuracy of

0.9470 with a TPR of 0.6923 and a TNR of 0.9476. The Logit achieved a classification accuracy

of 9806 with a TPR of 0.6538 and a TNR of 0.9813. WRF achieved a classification accuracy of

0.9298 with a TPR of 0.6538 and a TNR of 0.9304. Both WSVM and Logit performed better

than WRF on all metrics. This shows that, while RF is a fine classification model and shows

excellent performance in many applications, its performance degrades in the presence of

unbalanced data.

However, WSVM and Logit are very similar in TPR, TNR and ACC. Note that WSVM tend

to focus more, than the other methods, on the accuracy of the minority class, trading off accu-

racy in the majority class. WSVM shows higher TPR than Logit (0.6923 vs. 0.6538), but is

worse in TNR (0.9476 vs. 0.9813) and ACC (0.9470 vs. 0.9806).

It is clinically very important to have a high TPR so that patients with a particular poten-

tially fatal condition are properly identified. Comparing the three models shows that the SVM

model has a higher sensitivity, thus correctly classifying more of the women whose offspring

were prone to CHD, while also maintaining good levels of specificity. The optimized logistic

regression performed well for TNR but this comes at the cost of a lower TPR [23].

For unbalanced data, we used wtACC, AUC, G-mean to further evaluate the performance

of these two methods. The three metrics (Table 3) show that the model based on the WSVM

Table 3. Summary of model performance (median (Q1-Q3))

Model TPR TNR ACC wtACC AUC G

WSVM .6923(.6154-

.7308)

.9476(.9463-

.9491)

.9470(.9457-

.9485)

.7681(.7151-

.7955)

.8187(.7821-

.8388)

.8088(.7638-

.8317)

Logit .6538(.6154-

.6923)

.9813(.9702-

.9868)

.9806(.9695-

.9860)

.7512(.7097-

.7808)

.8149(.7836-

.8387)

.7992(.7574-

.8262)

WRF .6538(.6154-

.7308)

.9304(.9205-

.9396)

.9298(.9200-

.9389)

.7413(.7092-

.7893)

.7986(.7714-

.8284)

.7860(.7558-

.8226)

https://doi.org/10.1371/journal.pone.0177811.t003
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outperforms the other two models (0.7681 wtACC, 0.8187 AUC, and 0.8088 G-mean). Clearly

in terms of median wtACC, AUC, and G-mean, WSVM is the winner, followed by Logit, and

WRF performed worst on average.

Discussion

In this paper, we report on our research project where we developed models to predict CHD. One

important feature of this research effort is the quality and large volume of the data processed in

developing these class prediction models. We used all the live births of six counties in Shanxi

Province, China, which is the most comprehensive source of information on CHD in ShanXi

China. Although the data were extremely unbalanced, our models performed satisfactorily.

The predictive models of our study can discriminate between high and low risk. As long as

the prediction value of individual was 1, individual was judged to be at high risk for CHD, and

would benefit from early addition of screening and diagnosis. The previous outcome of Logit

and WRF showed family history, maternal previous illness history, maternal illness, insuffi-

ciency of nutrition, and folic acid supplementation were important risk factors for CHD. The

higher-risk individuals during pregnancy need to avoid the controllable risk factors. For

woman preparing for pregnancy, if the prediction value was 1, she should timely to avoid the

risk factors above and other risk factors, to prevent the occurrence of birth defects.

Six counties (Pingding, Dai, Fenyang, Huairen, Zhongyang, and Jiaokou) in the Shanxi

Province in our study were selected based on economic levels and geographic position, and

the six counties can represent other counties in the Shanxi Province. The models in our study

can been used to predict CHD in other counties in the Shanxi Province, and can be used for

refer for counties of other provinces.

This article compares three models, WSVM, Logit, and WRF. We evaluated their predicted

performance using six metrics, and compared our results to those obtained in other studies.

The results shown above demonstrate that advanced data mining methods can be used to

develop models that possess a high degree of predictive accuracy. From the results on our data

set, we can conclude that both WSVM and WRF perform satisfactorily. However, WSVM did

better than WRF.

We are not aware of any other study that provides class prediction based on a large-scale,

population based retrospective epidemiological survey for all live births, like that of these six

counties of ShanXi province in China. The data was extremely unbalanced. We compared the

prediction performance of WSVM, Logit and WRF to classify women, before and during preg-

nancy, into one of two mutually exclusive categories (CHD vs. non-CHD), and found that

WSVM outperformed other two classifiers. We found that modern classification methods

offered improved performance for classifying women before and during pregnancy. Our con-

clusions are strongly supported by our analysis of class accuracies for rare classes. Our results

showed that all three predictive models for CHD in our study have good predictive ability.

This work differs from previous studies in four ways, giving this study four advantages:

First, while many predictive models have been developed and used for a great variety of

other diseases, predictive models based on risk factors have not been widely used to predict

risk for CHD or other BD [29–30]. Comprehensive studies of CHD have focused on exploring

risk factors for CHD, or investigating the prevalence at live births with CHD [5,31–33]. The

CHD prediction model in our study discriminates between CHD and non-CHD individuals

on the basis of unbalanced data on birth defects. Our findings indicate that research focusing

on developing predictive models for CHD is needed. In the present analysis, our prediction

models appeared suitable for population based screening to identify women at high-risk for

CHD in their offspring. Predictive models with good predictive ability can also be helpful for
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individual risk counseling. The availability of prediction models with good predictive ability

could help with preventing future birth defects, by providing screening tools for individuals at

high-risk for CHD in offspring, as well as by guiding development of intervention strategies

specific to high-risk subgroups of women with single or multiple risk factors, so as to substan-

tially decrease the risk of CHD in future pregnancies [23–24, 26–28].

Second, in comparison with the few previous CHD prediction studies, an obvious strength

of this study is our method worked on unbalanced data from a large-scale, retrospective popu-

lation-based cross-sectional survey [34]. CHD occurrence is a low probability event, often

affected by many environmental and social factors. However CHD are a leading cause of infant

deaths in developing countries, and the incidence CHD for live births was larger than that of

any other birth defect in our study, a result that is in agreement with the findings of a previous

study [2]. Delayed diagnosis of CHD is associated with worse preoperative condition. Screen-

ing infants with non-invasive measurement has been proposed as an aid for early detection of

CHD. It is appropriate to use a risk prediction model such as ours to identify a high-risk group

of CHD for further screening.

Third, the TPR and TNR of the CHD prediction model in our study compare favorably

with those from previous birth defects prediction models. We conducted rigorous compari-

sons of the three classification methods. All three methods were shown to improve the predic-

tion accuracy over the minority class, while maintaining high specificity. We can conclude

that, for the CHD data, Logit, WSVM and WRF with appropriate parameter values outperform

previously published methods [24,26–27]. One simple conclusion from our results is that

WSVM produced the highest average scores on four performance metrics (TPR, WTacc,

AUC, G) over our testing data sets. We believe that our CHD prediction model makes is

directly applicable for use in the primary care setting.

Fourth, to avoid changing the structure of the data, we incorporated class weights into the

classifiers in our study, making it cost sensitive [8]. All three methods improve the prediction

accuracy of the minority class, while maintaining high specificity, so we can conclude that for

the CHD data Logit, WSVM and WRF with proper parameters outperform previously pub-

lished results [24,26,28].

Fifth, logistic regression only gives prediction probability, with a dichotomous variable

whose values are derived from the estimated logistic probabilities. To obtain the derived

dichotomous variable, a cutpoint, c, has to be defined [35]. The most commonly used value for

c is 0.5. Probability greater than 0.5 would mean that the case is assigned to the class designated

as ‘‘1” and ‘‘0” otherwise. The cutoff greatly influences TPR and TNR.

In a two-class problem, it is not appropriate to use 0.5 as the cutoff for unbalanced data. We

selected the point on the ROC giving the maximum value for the Youden index [19] as our

cutpoint. The logistic model of our study performs well, and the alternative cutoff values

improved prediction performance. When focusing on predicting the class of the presence of

CHD, conventional logistic regression with cutoff of 0.5 had lower predictive accuracy com-

pared with all the other methods that we examined. Logistic regression in our study had the

best predictive accuracy for predicting the presence of CHD.

There are several limitations to this study. However, these limitations should not seriously

affect the predictions.

First, this study concentrated on livebirths, and did not consider terminations of pregnan-

cies following the prenatal diagnosis of a fetal anomaly, and late miscarriages and stillbirths

affected by CHD. Our data only included live births occurring in 2006–2008, and excluded

stillbirths before 28 weeks, which may have accounted for a significant proportion of birth

defects. We also did not differentiate between preterm birth and full-term birth in our study, a

distinction that is relevant to the detection of maternal exposure to risk factors.
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Second, owing to the cross-sectional and retrospective design of our study, conclusions cannot

be made about cause and effect, and the results should therefore be interpreted with caution.

Third, recall bias commonly occurs in retrospective studies. Recall bias existed in this study.

Fourth, despite the large overall sample size in this study, the sample size for cases with

CHD was extremely small, and this may have limited our ability to develop models within the

subgroup of CHD.

Conclusion

This work is the first study of the prediction of CHD classification based on imbalanced data.

In this study, we build predictive models to discriminate women whose offspring can be

expected to have CHD from those where this is less likely. In this paper, we compare the pre-

diction performance of three classifiers when the data is unbalanced. Three methods are

shown to improve the prediction accuracy of the minority class, while maintaining high speci-

ficity. We can conclude that for the CHD data Logit, WSVM and WRF with appropriate

parameter values outperform the published results. We further show that WSVM is substan-

tially better than the other two methods, and the classification performance of Logit is better

than WRF. Our result has implications in assisting clinical decision making towards accurate

medical prognosis. Screening CHD high-risk groups of women before and during pregnancy

is highly desirable in clinical applications, and is crucial for early specific interventions for

birth defects. This study suggests that the three classifiers, which are noninvasive, can be used

as a screening tool for detecting CHD high-risk groups of women before and during preg-

nancy. In future work, it would be interesting to explore more classifiers. In recent years, most

classifiers have effective variants. For example, there are certain other advanced variants of

SVM, such as twin support vector machine (TSVM), fuzzy support vector machine (FSVM),

generalized eigenvalue proximal support vector machine (GEPSVM) et al.[36–40]. In our

future research we intend to focus on analyzing and modeling CHD classification using other

advanced machine learning methods, such as advanced variants of SVM, deep learning, feed-

forward neural network and ensembling[22,41].

However, our data came from a survey, rather than diagnostic data, so its prediction perfor-

mance may be inferior to that of diagnostic data. We note that the classifier is not expected to

replace extensive CHD diagnosis. Rather, it is intended as an initial screening method that will

hopefully detect high- risk groups of women in the population before and during pregnancy.

Those identified by the prediction results need to be referred for further cardiovascular tests

and examined by expert cardiologists [20].
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