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Abstract

Chinese chestnut (Castanea mollissima Blume) is native to China and distributes widely in

arid and semi-arid mountain area with barren soil. As a perennial crop, chestnut is an alter-

native food source and acts as an important commercial nut tree in China. Starch is the

major metabolite in nuts, accounting for 46 ~ 64% of the chestnut dry weight. The accumula-

tion of total starch and amylopectin showed a similar increasing trend during the develop-

ment of nut. Amylopectin contributed up to 76% of the total starch content at 80 days after

pollination (DAP). The increase of total starch mainly results from amylopectin synthesis.

Among genes associated with starch biosynthesis, CmSBEs (starch branching enzyme)

showed significant increase during nut development. Two starch branching enzyme iso-

forms, CmSBE I and CmSBE II, were identified from chestnut cotyledon using zymogram

analysis. CmSBE I and CmSBE II showed similar patterns of expression during nut develop-

ment. The accumulations of CmSBE transcripts and proteins in developing cotyledons were

characterized. The expressions of two CmSBE genes increased from 64 DAP and reached

the highest levels at 77 DAP, and SBE activity reached its peak at 74 DAP. These results

suggested that the CmSBE enzymes mainly contributed to amylopectin synthesis and influ-

enced the amylopectin content in the developing cotyledon, which would be beneficial to

chestnut germplasm selection and breeding.

1. Introduction

The polysaccharide, starch, comprises a major component of many plant storage tissues. Both

transitory and storage starch is composed of the linear polymer, amylose, and the branched

polymer, amylopectin. Amylose is comprised of α-1, 4-linked glucose (Glc) monomers,

whereas amylopectin contains 5% α-1, 6-linked Glc in addition to linear regions of α-1,
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4-linked Glc[1–4]. Long-chain amylose has molecular weight of ~105−6, while amylopectin has a

much higher molecular weight (~107−8) and many short-chain branches (approximately 15–20

Glc units per chain) [5]. Amylopectin is the major constituent of starch, and represents approxi-

mately 70% of maize (Zea mays) starch [4] and� 85% of the starch in rice (Oryza sativa) [6–7].

Several classes of enzymes are involved in starch biosynthesis, including ADP-glucose

pyro-phosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase

(SSS), starch branching enzyme (SBE), starch debranching enzyme(DBE), and plastidial starch

phosphorylase (Pho1), moreover GBSS, SSS, SBE and DBE have multiple isoforms [4, 8–12].

SBE (EC 2.4.1.18), which is a glucosyl transferase that catalyzes the formation of the α-1, 6-

linkages of amylopectin, introduces branches in starch chains and thus plays a vital role in am-

ylopectin synthesis. During the branching process, a malto-oligosaccharide chain is removed

from a growing glucan polymer by cleavage of an internal α-1, 4 bond, and then transferred to

the C-6 position of the same, or an adjacent chain, forming an α-1, 6 branch point on a linear

chain [11]. SBE not only catalyzes the formation of new branch, but also adds a new nonreduc-

ing end in the starch molecular. Starch synthesis can continue at the new nonreducing end.

Therefore, SBE determines the branching pattern in amylopectin, and influences the amount

of starch [13]. Most plant species have two subtypes of SBE (SBE I and SBE II), and that SBE II

has two isoforms in some species (SBEIIa and SBEIIb). Each of these enzymes has distinct role

in the starch synthesis, and SBE I tends to use amylose as substrate and transfers longer glucan

chains, while SBE II tends to use amylopectin as substrate and transfers short chains [11, 14–

17]. Previous studies had shown that SBE activity correlates with amylopectin biosynthesis

in developing endosperm, and the differential expressions of SBE isoforms greatly influence

starch content and physicochemical properties [11]. The expressions of genes encoding SBEII

isoforms from a range of species were strongly associated with the abundance of starch gran-

ules [18], and the alternative splicing of SBEII gene in bean (Phaseolus vulgaris L.) had been

reported that it led to distinct enzymatic properties [19].

Starch is also abundant in chestnut (a perennial fruit tree), where it can account for

46~64% of the nut dry weight [20]. Chestnut is cultivated worldwide, and Chinese chestnut is

native species in China [21]. According to Food and Agriculture Organization of the United

Nations (FAO) statistics, the harvested area of Chinese chestnut was approximately 297,000

hm2 in 2014, accounting for 56% of the harvested area worldwide and contributing to 82% of

the world production [22]. Chestnut is mainly consumed after roast and high amylopectin

content (approximately 3 fold of amylose) affects cooking quality by making the nut more glu-

tinous [21, 23–24]. Despite the abundance of starch in the chestnut seed, little is known about

the mechanistic relationship among starch synthesis-related enzymes, starch granule proper-

ties and key genes in starch synthesis pathway.

In this study, we identified the full length sequences of two starch branching enzyme genes,

CmSBE I and CmSBE II, from developing chestnut cotyledons. Their expression patterns and

activities in developing cotyledons were evaluated in order to investigate the function of SBE

in chestnut starch accumulation. These results provide insights into the molecule mechanism

of chestnut starch synthesis and can contribute to germplasm utilization and proceeding qual-

ity enhancement.

2. Materials and methods

2.1 Plant materials

Samples were collected from Chinese chestnut cultivar ‘Yanshanhongli’ with 15-year-old in

the Chestnut Experiment Station in the Huairou district of Beijing. Pollination was controlled

by removed the male flower and bagging once female flowers were appeared, and then artificial
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pollination were carried at full-bloom stage to ensure that all the flowers were pollinated by

cultivar ‘Huaijiu’ at the same time. The nuts were collected equally from the east, west, south,

and north facing parts of each tree at 60, 64, 68, 71, 74, 77, 80, and 83 DAP. The nuts from

each tree were viewed as one replicate, and all the samples were three replicates. After removal

of the shell and embryo, the cotyledons were frozen in liquid nitrogen and stored at -80˚C for

further studies.

2.2 Protein isolation from developing cotyledons

One gram of developing cotyledons was homogenized and suspended in 2 mL pre-chilled soluble

protein extraction buffer (100 mM HEPES buffer [pH 7.4], 2 mM EDTA, 20% glycerol [v/v],8

mM MgCl2, 5% β-mercaptoethanol, 1% protease inhibitor cocktail (Sigma USA)). The homoge-

nate was centrifuged at 20,000 g for 10 min at 4˚C. The protein concentration of the supernatant

was quantified using the Quick Start Bradford Protein Assay Kit (BIO-RAD, USA). The superna-

tant was then frozen in liquid nitrogen and stored at -80˚C until further use.

2.3 Non-denaturing polyacrylamide gel electrophoresis (PAGE) and

enzyme activity staining

Native-PAGE was conducted at 4˚C as previously described [25]. Briefly, 20 μg of protein was

applied to each lane of a native polyacrylamide slab-gel. After electrophoresis, the gel was

rinsed three times in ddH2O, and then was equilibrated with 10 mM MES (20 mL, pH 6.2)

three times for 10 min each. The gel was then incubated in 20 mL reaction buffer (50mM MES

[pH 6.2], 10mM glucose-1-phosphate, 1mM adenosine monophosphate, and 25 units of rabbit

muscle phosphorylase α [Sigma]), at 25˚C on a rotary shaker (33 rpm) for 15 h. After incuba-

tion in the reaction buffer, white bands formed in the gel. SBE zymograms were stained with a

0.02% I2 (w/v), 2% KI (w/v) solution and immediately photographed.

2.4 Cloning and sequencing of CmSBE I and CmSBE II full-length cDNAs

All primers involved in the various cloning steps are listed in S1 Table. A total of 0.5 μg RNA

was used for cDNA synthesis in a 50 μL reaction using Reverse Transcriptase M-MLV (Takara,

Japan). PCR amplification was performed in a 20 μL volume using ExTaq DNA polymerase

(Takara, Japan). PCR conditions were: 94˚C for 4 min; 28 cycles at 95˚C for 30 s, 53˚C for 30 s,

and 72˚C for 20 s; extension at 72˚C for 8 min. RT-PCR conditions: 94˚C for 3 min; 39 cycles

at 95˚C for 30 s, 53˚C for 30 s, and 72˚C for 20 s; melt curve 65˚C to 95˚C (BIO-RAD 1000

CFX. USA). CmSBE I was amplified from chestnut cotyledon cDNA using the primers SBEI-F

and SBE I-R, CmSBE II was amplified using the primers SBE II-F and SBE II-R, and 5’ and 3’

rapid amplification of cDNA ends (RACE) experiments were carried out according to the

manufacturer’s instructions (Invitrogen, USA). The gene-specific primers (GSP) used in the 3’

RACE were I3’-GSP and II3’-GSP, respectively. Three 5’ gene-specific primers were used to

amplify each the CmSBE I and CmSBE II genes: I5’-GSP1, I5’-GSP2 and I5’-GSP3 for CmSBE I,
and II5’-GSP1, II5’-GSP2 and II5’-GSP3 for CmSBE II. A Gel Extraction kit (AXYGEN, USA)

was used to purify the PCR products, each of which was then ligated into the pMD-19T plas-

mid (Takara, Japan). The constructs were then transformed into Escherichia coli (Takara,

Japan) and the recombinant plasmids were purified and sequenced.

2.5 SDS-PAGE and immunoblotting

To examine the accumulation of SBE proteins in chestnut cotyledons, extracts from the cotyle-

dons containing 20 μg of total protein were loaded into 4–12% Bis-Tris gradient gels and
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separated by gel electrophoresis at 120 V. The Thermo PageRuler Prestained Protein Ladder

(Thermo, USA) was used to estimate the molecular weight of the protein bands. Proteins sepa-

rated by SDS-PAGE were electroblotted (200 mA for 120 min) onto nitrocellulose membranes

(Bio-Rad, USA). The resulting membranes were probed with primary polyclonal antibodies

raised against SBE I and SBE II from Chinese chestnut. Anti-CmSBE I was developed using

the peptides C-KNKNDEDWSMNE (peptide 1) and C-EEDKVIVFERGD (peptide 2), while

anti-CmSBE II was developed using the peptides C-KKKDEDWRMGDI (peptide 1) and

C-DDLKSLIDKAHE (peptide 2). Cysteine residues were added to these peptides to enable

conjugation to either keyhole limpet protein or ovalbumin, and affinity purified mouse immu-

noglobulin raised against CmSBE I and CmSBE II was produced (Abmart, China). The mem-

branes were incubated in blocking buffer at 4˚C overnight. The anti-sera were diluted 1:1000

with blocking buffer (10 mM Tris-HCl, pH 7.5, 0.5 M NaCl, 3% BSA) and the immunoblots

were incubated overnight with shaking at shaker (Qilinbeier, China) at 4˚C. The membranes

were then rinsed three times with TBST (10 mM Tris-HCl, pH 7.5, 0.5 M NaCl, 0.02% Tween

20) for 10 min. A secondary goat anti-mouse immunoglobulin-alkaline phosphatase conju-

gated antibody (Sigma, USA) was subsequently used at 1:1000 (diluted with blocking buffer)

for 2 h at 37˚C with gentle rotation. Finally, the membranes were washed three times with

TBST for 10 min. 33 μL 5% 5-bromo-4-chloro-3-indolyl phosphate (BCIP) and 66 μL 5%

nitroblue tetrazolium (NBT) (Solarbio life science, China) were diluted into 10 mL working

solution (0.1 M NaCl, 0.05 M MgCl2, 0.1 M Tris). The membranes were incubated to visualize

the immunoreactive bands. The reaction was stopped after 2 minutes by rinsing the membrane

with water and the bands were observed using camera (Nikon, Japan).

2.6 Mass spectrometry (MS) and conserved SBE domains

MS analyses of tryptic digests of SBE proteins were conducted to verify the immunoblot re-

sults, as described by Qin et al [26]. The selected bands corresponding to those that immuno-

reacted with the SBE antibody in the Western blot were excised from a coomassie blue stained

SDS-PAGE gels for in-gel trypsin digestion. Each gel slice was resuspended in buffer A (2%

acetonitrile [ACN], 0.1% formic acid [FA]) and centrifuged at 20,000 g for 15 min. Ten μL

supernatant was loaded onto a 2 cm C18 trap column (Thermo scientific, USA) connected to

an Ultimate 3000 nano LC (Dionex, USA). The peptides were eluted onto a 10cm analytical

C18 column (inner diameter 75 μm) packed in-house. The samples were loaded at 4 μL/min

for 5 min, then the 34 min gradient was run at 400 nL/min starting from 8 to 30% buffer B

(98% ACN, 0.1% FA), linear gradient for 5 min, from 30% to 60%, followed by a 3 min linear

gradient to 80%, and maintenance at 80% for 8 min, before a final return to 5% for 2 min. Pep-

tide fragmentation and detection was performed using a Q Exactive (Thermo scientific, USA)

mass spectrometer. The instrument settings were as follows: full MS resolution 70,000, dd-

MS2/dd-SIM resolution 17,500, multiply charged (2_ and 3_) ions rising above predefined

threshold intensity were automatically selected for MS/MS analysis. Peptides were selected for

MS/MS in an operating mode with a normalized collision energy setting of 28%. The applied

electrospray voltage was 1.8 kV. Automatic gain control (AGC) was used to prevent overfilling

of the Orbitrap: 1×104 ions were accumulated in the ion trap to generate collision-induced dis-

sociation CID spectra. For MS scans, the m/z scan range was 350–2,000 Da. The MS/MS spec-

tral data were searched against the SwissProt database using Data Analysis software (Bruker

Daltonics) and the MASCOT in-house search engine (MatrixScience). Sores generated by the

MOWSE algorithm were reported as -10log10 (p), where p is the probability that the observed

match is a random event. IONS scores of> 22 were considered significant (p<0.05). Con-

served domains were predicted by CD-Search in the NCBI database [27–30].
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2.7 SBE activity in developing chestnut cotyledons

Proteins were extracted from cotyledons at different time points after pollination, and SBE

activity in the extracts was determined as previously described [31].The optical density of the

final reaction solution was measured at 660 nm and the reaction without incubation at 37˚C

for 30 min was used as the negative control. SBE activity was calculated as OD 660(%) =

[OD660 (t0)–OD660 (t30)] / OD660 (t0) and a 1% decrease of the starch-iodine-blue intensity

was considered to correspond to one SBE activity unit/g fresh weight (FW).

2.8 Semi-quantitative PCR and qRT-PCR

Total RNA was extracted from cotyledons at various stages and various tissues (cotyledon,

bud, root, leaf) using a Quick RNA Isolation Kit (Huayueyang biotechnology, China) accord-

ing to the manufacturer’s instructions. A total of 0.5 μg RNA templates were used for cDNA

synthesis in a 50 μL reaction using Reverse Transcriptase M-MLV (Takara, Japan). PCR ampli-

fication was performed in a 20 μL volume using ExTaq DNA polymerase (Takara, Japan).

Semi-quantitative PCR was used to measure the expressions of CmSBE I and CmSBE II and

other genes with a BIO-RAD C1000-Touch Thermal Cycler. The qRT-PCR primers involved

in this experiment are listed in S2 Table. A chestnut β-Actin gene (GenBank accession number:

EV253704) was used as control. PCR conditions were: 94˚C for 4 min; 28 cycles at 95˚C for 30

s, 53˚C for 30 s, and 72˚C for 20 s; extension at 72˚C for 8 min. RT-PCR conditions: 94˚C for 3

min; 39 cycles at 95˚C for 30 s, 53˚C for 30 s, and 72˚C for 20 s; melt curve 65˚C to 95˚C

(BIO-RAD 1000 CFX, USA).

2.9 Amylose and amylopectin content

Starch granules were prepared from chestnut cotyledons as previously described [32]. Amylose

and amylopectin contents (%, mg/mg dry weight) were determined using the dual wavelength

spectrophotometer method [33]. One hundred mL of distilled water was added to 1 g of dried

chestnut starch, and a 2.5 mL sample was pipetted into a 100 mL meter glass and 40 mL dis-

tilled water was added. Finally, 0.5 mL iodine reagent (2% KI, 0.2% I2) was added into the solu-

tions [34]. The pH of the solutions was adjusted to 3.5 with 0.1 M HCl. These solutions were

then diluted to 50 mL with distilled water and allowed to stand for 20 min prior to measure

absorbance in10 mm quartz cells using a UV spectrophotometer (Metash, China). The average

values from three independent samples were calculated.

2.10 Scanning electron microscope (SEM) observation of cotyledons

Chestnut cotyledons were fixed immediately after collection as previously described [35]. To

examine cross-sections, dried chestnut cotyledons were cut with a razor blade and the surface

was sputter coated with gold. After using a fine coater (JEOL JFC-1200) for 120 s, the morphol-

ogy of the starch granules was examined by SEM (JEOL-5600, Japan) using the secondary

electron mode at 15 kV. The granule areas from 3 random fields of view were individually

measured using Image J and average values were calculated.

2.11 Starch pasting properties

Chestnut starch properties were measured using a Rapid Visco Analyser (RVA) (Perten instru-

ments, Australia). First, 2.52 g starch and 25.48 g distilled water were added to an aluminum

RVA canister, giving a total constant sample weight of 28 ± 0.01 g. In all the samples, the mois-

ture level was maintained at 14%. The initial stirring speed was 960 rpm to mix the sample, fol-

lowed by 160 rpm for the duration of the experiment. The mixture was held at 50˚C for 1 min,
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heated to 95˚C in 3.7 min, held at 95˚C for 2.5 min, then cooled to 50˚C in 3.8 min and a final

step at 50˚C for 2 min. The total procedure lasted 13 min. The resulting curves were analyzed

using TCW3 software (Perten instruments, Australia), and all the tests were carried out in

triplicates.

3. Results

3.1 Amylopectin accounts for most of starch accumulation during

cotyledon development

Total starch accumulated during development of chestnut cotyledon and reached peak at 80

DAP. Level of amylopectin was 1.5 fold greater than that of amylose at 60 DAP when cotyle-

dons appeared, and increased to 3.2 fold at 80 DAP peak when nuts were mature. The accumu-

lations of amylopectin showed a similar increasing trend and occupied 76% of total starch

content at its peak (31% of fresh weight) at 80 DAP. Thus, the increase in total starch content

was mainly due to amylopectin synthesis. Amylose levels were low, accounting for approxi-

mately 5% of the fresh weight and remained constant throughout development (Fig 1A).

Starch collected from the earliest developmental stage of cotyledon had the highest pasting

temperature (72.63˚C; Fig 1B), and the pasting temperature decreased by 4˚C over the studied

developmental period, indicating that the starch became easier to gelatinize during cotyledon

growth. The average starch granule areas were relatively low at the early stages and increased

steadily during development, as did the number of large starch granules (Fig 1C). During the

whole development, the proportion of starch granules > 30 μm2 increased from 12% to 42%

(Fig 1D). Various types were observed when the morphology of the starch granules was visual-

ized using SEM (Fig 1E), such as irregular spheroids or ellipsoids with smooth surfaces, and

starch granules grew in size during cotyledon development.

3.2 Temporal and spatial expression of CmSBE I and CmSBE II in

chestnut cotyledons

We investigated the expression of genes associated with starch synthesis during cotyledon

development. Although the expressions of CmSSS I, CmSSS III and CmGBSS I increased during

development, the expressions of CmSBE I and CmSBE II correlated with amylopectin levels

showed the most obvious increase, which was consistent with the role of these genes in starch

granule enlargement (Fig 2A, S3 Table). Hence, we choose CmSBE as target gene to conduct

the following experiment. CmSBE I and CmSBE II transcript levels were also measured using

qRT-PCR and semi-quantitative PCR, and they showed similar patterns, gradually increased

in the early stages, and then reached peak at 74 and 77 DAP, respectively. After this peak the

expression showed slight decline (Fig 2B, Fig 2C). When the expression was investigated using

qRT-PCR in different organ such as cotyledon, leaf, bud and root (Fig 2D), both genes had the

highest expression level in cotyledon and the lowest in buds, with a 19.9 fold of CmSBE I and

38.4 fold of CmSBE II differences in expression between cotyledons and buds, respectively.

3.3 Identification of CmSBE isoforms

To characterize the isoforms of SBE in chestnut, zymogram assay based on staining starch

with iodine was performed by native-PAGE (Fig 3A). The gel showed two bands in each sam-

ple, corresponding to SBE I and SBE II.

CmSBE I and CmSBE II were cloned by RACE using cDNA template derived from Chinese

chestnut cotyledon. The open reading frame (ORF) of CmSBE I was predicted to be 2,460 bp

in length (GenBank accession number: KY429029), encoding a putative protein of 820 amino
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Fig 1. Starch content, pasting temperature and granule size in developing chestnut cotyledons. A. Total starch, amylose and amylopectin

contents during chestnut development. B. The pasting temperature of chestnut starch at different time points. C. Average starch granule areas at

different developmental stages. D. The proportion of different-size starch granules. E. Scanning electron micrographs of starch granules. The

number of 60, 64, 68, 71, 74, 77, 80, and 83 represents days after pollination. Scale bars, 5 μm. Data are means ± SE (n = 3).

https://doi.org/10.1371/journal.pone.0177792.g001
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acids with a molecular weight of 92.91 KDa. The full length ORF of CmSBE II was predicted to

be 2,595 bp in length (GenBank accession number: KY429028), encoding a protein of 865

amino acids (98.50 KDa).

The bands in the zymogram gel corresponding to CmSBE I and CmSBE II were excised (S1

Fig) and MS analyses of tryptic digests of proteins eluted from the gel slices were conducted to

identify the constituent proteins and peptides. After searching the SwissProt database and the

MASCOT in-house search engine, both CmSBE I and CmSBE II were identified. The peptide

sequences covered sequence of 12% and 15% for CmSBE I and CmSBE II, respectively. The

detected peptides were shown in bold in Fig 3B and 3C and were listed in S4 Table.

Conserved domains in CmSBE were predicted by CD-Search of the NCBI database (Fig 3B

and 3C). SBE I and SBE II have three shared domains. Domain one (blue region) is named

Fig 2. The expression patterns of genes associated with starch synthesis in developing cotyledon, and CmSBE

expression pattern in different organs. A. Heat map showing gene expression of AGP, GBSS, SSS, PUL and SBE during

chestnut development. B and C. The relative expressions of CmSBE I and CmSBE II genes in chestnut cotyledon at different

days after pollination (DAP) measured by qRT-PCR and semi-quantitative PCR, respectively. The expression of chestnut β-

Actin was used as a control. The number of 60, 64, 68, 71, 74, 77, 80, and 83 in A, B and C represents days of cotyledon

development after pollination. D. The relative expression levels of CmSBE I and CmSBE II in cotyledon (74 DAP), leaf, bud

and root. Values represent the means ± SE (n = 3).

https://doi.org/10.1371/journal.pone.0177792.g002
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E_set_GBE_euk_N (NCBI Acc. cd02854), which corresponds to an N-terminal early set

domain associated with the catalytic domain of eukaryotic glycogen branching enzyme (also

called 1, 4 alpha glucan branching enzyme). The second domain (yellow region) is AmyAc_ba-

c_euk_BE (NCBI Acc. Cd11321), which is an alpha amylase catalytic domain found in bacte-

rial and eukaryotic branching enzymes. The third domain (green region) is a C-terminal all-

beta domain, named Alpha_amylase_C (NCBI Acc.Pfam02806), which presents in proteins

belonging to 1, 4-alpha-glucan-branching enzymes.

Fig 3. Identification and conserved domain analysis of CmSBE I and CmSBE II. A. The identification of CmSBE I and CmSBE II by native-PAGE.

The number of 60, 64, 68, 71, 74, 77, 80, and 83 in A and B represents days of cotyledon development after pollination. B and C. Peptides of CmSBE I

and CmSBE II were detected by LC-MS/MS and their conserved domains were predicted by CD-Search tool in the NCBI database. Bold fonts in the

sequences indicate peptide fragments detected by LC-MS/MS. Blue regions associated with amino acids 143–239 of CmSBE I (B) and 230–324 of

CmSBE II (C) indicate the conserved domain of E_set_GBE_euk_N. Yellow regions associated with amino acids 243–651 CmSBE I (B) and 328–743 of

CmSBE II (C) indicate the conserved domain of AmyAc_bac_euk_BE. Green regions associated with amino acids 670–772 of CmSBE I (B) and 761–856

of CmSBE II (C) indicate the conserved domain of Alpha-amylase_C.

https://doi.org/10.1371/journal.pone.0177792.g003

Starch properties of chestnut and identification of SBE involved in chestnut starch synthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177792 May 23, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0177792.g003
https://doi.org/10.1371/journal.pone.0177792


3.4 Protein expression and activity of CmSBE I and CmSBE II in

chestnut cotyledons

Western blot analyses were performed to detect the expression patterns of CmSBE I and

CmSBE II in cotyledon (Fig 4A). Although the relative amounts of CmSBE I and CmSBE II

differed, they exhibited the same pattern of accumulation during development with relatively

low levels in the initial time points and increased around 77 DAP.

Total CmSBE activity during chestnut cotyledon development was analyzed spectrophoto-

metrically using starch/ iodine staining assay. The activity of CmSBE increased steadily from

60 DAP to 74 DAP, and declined slightly in the latter period of chestnut development (Fig 4B).

4. Discussion

Starch is the most abundant component of chestnut, accounting for approximately 46%-64%

dry weight [20], but the underlying mechanisms of biosynthesis have not been well character-

ized. Amylopectin accounts for almost 75% of total starch in ripening chestnut, and the

remaining 25% was amylose [21]. In our study, the ratio of amylopectin to amylose increased

significantly through chestnut cotyledon development. The patterns of total starch and

Fig 4. The protein expression patterns and enzyme activity of CmSBE. A. Immunoblot analysis of cotyledons showing

the accumulation of CmSBE I, CmSBE II and Actin (control). B. CmSBE activity in chestnut cotyledons in development

stages. The number of 60, 64, 68, 71, 74, 77, 80, and 83 represents days of cotyledon development after pollination.

https://doi.org/10.1371/journal.pone.0177792.g004
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amylopectin accumulation were similar. Starch with higher amylopectin content tends to be

more glutinous and have a waxy quality, for example, waxy corn starch is consisted mostly of

amylopectin and has very little amylose [36]. Starch granules in the later developmental stages

have a lower ratio of amylose to amylopectin, resulting in less effective packing of the starch

chains and making the starch easier to gelatinize [37]. It has also been proposed that the inter-

action among amylopectin chains can affect the swelling and pasting properties of rice starch

[38]. The amount of amylopectin in chestnut starch has also been positively correlated with

its waxy and glutinous properties [20]. Roasted chestnuts with high glutinosity are popular

among the consumers in China and thus developing chestnut cultivars with higher amylopec-

tin is an important target for breeders.

As an important amylopectin synthesis enzyme, the number of SBE isoform varies among

species. Three isoforms of SBE (SBEI, SBEIIa, and SBEIIb) were detected in maize, rice, wheat

and barley [25, 39–42], while in Vigna radiate [43,44], Ipomoea batatas [45]and Phaseolus vul-
garis [46], SBE had been classified into SBE I and SBE II isoforms. In Arabidopsis, SBE I did

not expressed and its function was unknown, while SBE II had been classified into SBE 2.1 and

SBE 2.2 [47]. Transcriptomic analysis of Chinese chestnut revealed two SBE unigenes; how-

ever, the isoforms and sequences of SBE were not defined [21]. In this study, we firstly identi-

fied and characterized two chestnut SBE isoforms involved in starch metabolism in chestnut

by SDS-PAGE and MS analysis.

SBE gene expression patterns and activities have critical effects on the synthesis of amylo-

pectin, and consequently influence the characteristics of starch granules. Suppression of SBE I,

IIa and IIb in barley grains was reported to result in increased levels of amylose, generating

starch containing only amylose that was highly resistant to enzymatic digestion [48]. Silencing

both SBE IIa and SBE IIb in wheat increased amylose content from 25.5% to> 70% [49]. Over

expression of branching enzyme can result in increased branch numbers of amylopectin in

rice transgenic lines [50]. As shown in the heatmap, despite the fact that GBSS I, SSS I and SSS
III showed changes during chestnut development, the expressions of SBE I and SBE II had the

most obvious changes compared to other starch synthesis-related genes (Fig 2A). Synthesis of

amylopectin requires the coordination of SSS and SBE enzymes, as well as DBE. The interac-

tion of SSSI-SSSIIa, SSSI-SBEIIa, SSSI-SBEIIb, SSSIIa-SBEIIb, and SBEI-SBEIIb is common in

wheat, maize, and rice [18]. SBE I and PUL interactions had also been reported in rice [51].

We inferred that SBEs might contribute to amylopectin synthesis in chestnut through coordi-

nation with other enzymes, and this would be a key point in future studies.

The content and components of amylopectin contribute to starch properties and then affect

the starch processing quality [52]. As a dicotyledon plant, chestnut accumulates starch in coty-

ledon rather than monocots’ endosperm [53]. It may lead to the different functional mecha-

nism of starch synthesis and accumulation in chestnut compared to maize, rice and barley.

Study on chestnut SBE and then to amylopectin will be beneficial to the modification of starch

component and the breeding program of chestnut.
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all starch branching enzyme genes in barley produces amylose-only starch granules. BMC Plant Biol.

2012; 12:

49. Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, et al. High-amylose wheat generated by

RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA. 2006; 103:

3546–3551. https://doi.org/10.1073/pnas.0510737103 PMID: 16537443

50. Kim WS, Kim J, Krishnan HB, Nahm BH. Expression of Escherichia coli branching enzyme in caryopses

of transgenic rice results in amylopectin with an increased degree of branching. Planta. 2005; 220:

689–695. https://doi.org/10.1007/s00425-004-1386-3 PMID: 15517356

51. Crofts N, Abe N, Oitome NF, Matsushima R, Hayashi M, Tetlow IJ. Amylopectin biosynthetic enzymes

from developing rice seed form enzymatically active protein complexes. J Exp Bot. 2015; 66: 4469–

4482. https://doi.org/10.1093/jxb/erv212 PMID: 25979995

52. Brummell DA, Watson LM, Zhou J, McKenzie MJ, Hallett IC, Simmons L, et al. Over expression of

STARCH BRANCHING ENZYME II increases short-chain branching of amylopectin and alters the

physicochemical properties of starch from potato tuber. BMC Biotechnol. 2015; 15: 28. https://doi.org/

10.1186/s12896-015-0143-y PMID: 25926043

53. Cheng L. Biology. In: Chestnut, Beijing Science &Technology Press, 2009; pp. 10–11.

Starch properties of chestnut and identification of SBE involved in chestnut starch synthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0177792 May 23, 2017 15 / 15

https://doi.org/10.1002/pmic.200500548
http://www.ncbi.nlm.nih.gov/pubmed/16470656
https://doi.org/10.1093/pcp/pcq035
https://doi.org/10.1093/pcp/pcq035
http://www.ncbi.nlm.nih.gov/pubmed/20305271
https://doi.org/10.1021/jf802544b
http://www.ncbi.nlm.nih.gov/pubmed/19143523
https://doi.org/10.1021/jf102129f
https://doi.org/10.1021/jf102129f
http://www.ncbi.nlm.nih.gov/pubmed/20822148
https://doi.org/10.1016/j.foodchem.2015.12.053
http://www.ncbi.nlm.nih.gov/pubmed/26776008
http://www.ncbi.nlm.nih.gov/pubmed/11440129
https://doi.org/10.1111/pbi.12453
http://www.ncbi.nlm.nih.gov/pubmed/26285603
https://doi.org/10.1073/pnas.0510737103
http://www.ncbi.nlm.nih.gov/pubmed/16537443
https://doi.org/10.1007/s00425-004-1386-3
http://www.ncbi.nlm.nih.gov/pubmed/15517356
https://doi.org/10.1093/jxb/erv212
http://www.ncbi.nlm.nih.gov/pubmed/25979995
https://doi.org/10.1186/s12896-015-0143-y
https://doi.org/10.1186/s12896-015-0143-y
http://www.ncbi.nlm.nih.gov/pubmed/25926043
https://doi.org/10.1371/journal.pone.0177792

