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Abstract

Purpose

To differentiate the plasma metabolomic profile of patients with age related macular degen-

eration (AMD) from that of controls, by Nuclear Magnetic Resonance (NMR) spectroscopy.

Methods

Two cohorts (total of 396 subjects) representative of central Portugal and Boston, USA phe-

notypes were studied. For each cohort, subjects were grouped according to AMD stage

(early, intermediate and late). Multivariate analysis of plasma NMR spectra was performed,

followed by signal integration and univariate analysis.

Results

Small changes were detected in the levels of some amino acids, organic acids, dimethyl sul-

fone and specific lipid moieties, thus providing some biochemical information on the dis-

ease. The possible confounding effects of gender, smoking history and age were assessed

in each cohort and found to be minimal when compared to that of the disease. A similar

observation was noted in relation to age-related comorbidities. Furthermore, partially distinct

putative AMD metabolite fingerprints were noted for the two cohorts studied, reflecting the

importance of nutritional and other lifestyle habits in determining AMD metabolic response

and potential biomarker fingerprints. Notably, some of the metabolite changes detected

were noted as potentially differentiating controls from patients diagnosed with early AMD.
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Conclusion

For the first time, this study showed metabolite changes in the plasma of patients with AMD

as compared to controls, using NMR. Geographical origins were seen to affect AMD

patients´ metabolic profile and some metabolites were found to be valuable in potentially dif-

ferentiating controls from early stage AMD patients. Metabolomics has the potential of iden-

tifying biomarkers for AMD, and further work in this area is warranted.

Introduction

Age-related Macular Degeneration (AMD) is the leading cause of adult blindness in developed

countries and the third most common cause of adult blindness worldwide. It is anticipated

that global AMD prevalence will reach 196 million in 2020 and 288 million in 2040.[1]

Approximately 90% of patients with AMD have early or intermediate forms, which may prog-

ress to advanced disease, in the form of either geographic atrophy and/or neovascular AMD

(also known as “wet AMD”).[2],[3] Often asymptomatic in the early stages, in some patients

AMD ultimately leads to loss of central vision deterioration and interferes with daily living

activities, with profound effects on the quality of life of the elderly.[4] AMD pathogenesis is

multifactorial, with complex genetic risk factors interacting with several lifestyle and environ-

mental factors.[2],[3] Serologic biomarkers of AMD incidence and progression have been

sought, primarily relating to pathways responsive to inflammation,[5–7] cell stress (particu-

larly oxidative stress) or toxicity.[2],[7],[8] Such studies have, however, provided inconsistent

results and, hence, clinical practice still solely relies on the evaluation of phenotypic character-

istics, such as fundus appearance. Biofluid markers may be useful to help predict incidence

and prevalence of the disease, but reliable markers are still lacking.

Metabolomics, the qualitative and quantitative analysis of metabolites (Mw <1 kDa),[9] may

provide an integrated biomarker signal for AMD. Metabolites are the downstream result of

genetic transcription processes and, simultaneously, reflect environmental and lifestyle factors

as well as individual characteristics related to dietary response and gut microflora.[10],[11] The

metabolome should therefore closely reflect the global health state and phenotype of the subject.

Two complementary analytical techniques are currently used in metabolomics: mass spectrom-

etry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Briefly, MS provides higher

sensitivity, and NMR offers higher reproducibility, simpler sample handling and the possibility

of sample reuse.[12],[13] The potential of metabolomics has been established in the search for

biofluid (blood and urine) marker profiles for several diseases, including cancer.[14–16] In oph-

thalmology, recent reviews highlighted its potential applications,[17–19] although results are

still scarce and mostly related to animal models.[19] Metabolomic studies of human samples

using liquid chromatography (LC)-MS analysis of tears of healthy subjects[20] and patients

with keratoconus suggested differences in metabolites related to the urea cycle, Krebs’ cycle and

oxidative stress.[21] Additionally, NMR studies of vitreous samples from subjects with prolifer-

ative vitreoretinopathy and retinal detachment suggested that these diseases might present a

specific metabolic signature.[22],[23],[24]. Metabolomics of human plasma has been used to

characterize diabetic retinopathy[25],[26], open angle glaucoma[27] and anterior uveitis.[28] In

AMD, investigators have used untargeted LC-MS metabolomics to investigate changes in the

plasma of “wet” AMD patients (n = 26), compared to controls (n = 19).[29]

In the current study, we have used NMR metabolomics to characterize the plasma metabo-

lomic signatures of patients with AMD at different severity stages (early, intermediate and late
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AMD stages), considering two large cohorts from distinct geographical origins, Southern

European (Coimbra, central Portugal) and Northeastern United States (Boston Metropolitan

area, US), which allows for evaluation of geographical effects on metabolomic profiles. We fur-

ther investigated signature specificity to AMD by evaluating the impact of potential confound-

ers (gender, smoking history, body mass index (BMI) and age) on plasma profile. The strong

age dependence of AMD presents a significant challenge in the search for disease-specific

markers. Due to the difficulty in using age-matched groups in this context, we have performed

an objective evaluation of the impact of age on metabolic profile and used unmatched cohorts,

which better represent actual AMD patients’ population. The potential confounding role of

comorbidities is also discussed.

Materials and methods

Study design and subject recruitment

This study is part of a cross-sectional, observational study performed in the Department of

Ophthalmology of Massachusetts Eye and Ear (MEE), Harvard Medical School, Boston,

United States, and the Faculty of Medicine of the University of Coimbra (FMUC), Coimbra,

Portugal, in collaboration with the Association for Innovation and Biomedical Research on

Light and Image (AIBILI) and the “Centro Hospitalar e Universitário de Coimbra”, Coimbra,

Portugal. The clinical protocol was conducted in accordance with HIPAA (Health Insurance

Portability and Accountability Act) requirements and the tenets of the Declaration of Helsinki,

and was approved by the Institutional Review Boards of MEE, FMUC and AIBILI, and by the

Portuguese National Data Protection Committee (CNPD). All subjects enrolled in the study

provided written informed consent.

From January 2015 to July 2016, in both sites (Coimbra and Boston), patients diagnosed

with AMD were prospectively recruited, as well as control groups of subjects with no evidence

of AMD and aged� 50 years. At MEE, participants were consecutively recruited from the Ret-

ina Service and the Comprehensive Ophthalmology and Optometry Services, at their regular

appointments. For those not fasting at that time, a new appointment was scheduled within a

maximum of one month for blood collection under fasting. The Portuguese (FMUC/AIBILI)

study population was derived from a population-based cohort study,[30] where all subjects

with an established diagnosis of any stage of AMD were invited to participate. Subjects without

signs of AMD in a prior evaluation[30] were also invited, and included as controls if they

remained without the disease in the present evaluation (see criteria below). For both cohorts,

the exclusion criteria were: diagnosis of any other vitreoretinal disease, active uveitis or ocular

infection, significant media opacities that precluded the observation of the ocular fundus,

refractive error equal or greater than 6 diopters of spherical equivalent, past history of retinal

surgery, history of any ocular surgery or intra-ocular procedure (such as laser and intra-ocular

injections) within the 90 days prior to enrolment, and diagnosis of diabetes mellitus. Other

common age-related conditions (hypertension, dyslipidemia, rheumatic disease, renal or liver

conditions, and neurological diseases) were not considered for exclusion and their potential

effect on the results will be discussed.

Clinical examination

All participants received complete bilateral ophthalmologic examination, including a dilated

fundus exam. Recruited subjects were also imaged with 7-field, non-stereoscopic color fundus

photographs (CFP) either with a Topcon TRC-50DX (Topcon Corporation, Tokyo, Japan) or

a Zeiss FF-450Plus (Carl Zeiss Meditec, Dublin, CA) camera. At the same visit, a complete

medical history was obtained, according to a standardized questionnaire specifically built for
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the purposes of this study (S1 Appendix), based on the current knowledge of AMD pathogene-

sis and the input of five Retina specialists. This included self-reported data on smoking habits

(smokers were considered those who reported current smoking and ex-smokers those who

have ever smoked, regardless of when they stopped), and weight and height (used for BMI cal-

culations). If the study participants did not know their current height and/or weight, these

were recorded by a study investigator.

For AMD diagnosis and staging, two of three independent experienced graders analyzed all

field 2 CFP, according to the AREDS classification system.[31],[32] In case of disagreement, a

senior author (RS or DH) established the final categorization. Images taken with Topcon cam-

eras were evaluated with IMAGEnet 2000 software (version 2.56; Topcon Medical Systems),

and those obtained with a Zeiss camera were observed using VISUPAC (version 4.5.1; Carl

Zeiss Meditec). Images were standardized using software developed by our group. We adopted

the most recent AREDS2 definitions,[32] namely that the standard disc diameter equals

1800 μm (rather than 1500 μm), which affects the size of the ETDRS grid and of the standard

drusen circles; and that geographic atrophy (GA) is present if the lesion has a diameter equal

or superior than 433 μm (AREDS circle I-2) and at least two of the following features are pres-

ent—absence of RPE pigment, circular shape, or sharp margins (thus meaning that the

involvement of the central fovea is not a requirement). Therefore, the following groups were

established and used for further assessments[31],[32]: controls–presence of drusen maximum

size < circle C0 and total area< C1; early AMD–drusen maximum size� C0 but< C1 or

presence of AMD characteristic pigment abnormalities in the inner or central subfields; inter-

mediate AMD–presence drusen maximum size� C1 or of drusen maximum size� C0 if the

total area occupied is > I2 for soft indistinct drusen and> O2 for soft distinct drusen; late

AMD–presence of GA according to the criteria described above (GA or “dry” late AMD) or

evidence of neovascular AMD (choroidal neovascularization, CNV or “wet” AMD). For partic-

ipants with different stages in the two eyes, the worse of the two was considered as the subjects’

classification.

Plasma collection and NMR analysis

The present cross-sectional study relied on a single plasma collection per individual. For all

participants, fasting blood samples were collected into sodium-heparin tubes, and centrifuged

within 30 min (1500 rpm, 10 min, 20˚C). Plasma aliquots of 1.5 mL (MEE) and 5 mL (FMUC/

AIBILI) were transferred into sterile cryovials and stored at -80˚C. Plasma samples from MEE

were shipped to Portugal for metabolomic profiling in dry ice (through TNT Express, USA,

INC). Samples arrived frozen in less than 48 hours and were immediately stored at -80˚C until

NMR analysis. Prior to analysis, plasma samples were thawed at room temperature and

homogenized in a vortex mixer. Then, 400 μl of saline solution (NaCl 0.9% in 10% D2O) were

added to 200 μl of sample. After centrifugation (4500 g, 5min, 25˚C), 550 μl of each sample

was transferred to a 5 mm NMR tube. NMR spectra were recorded, at 300 K, using a Bruker

Avance DRX 500 spectrometer operating at 500.13 MHz for proton, with a 5 mm TXI probe.

For each sample, three one-dimensional (1D) 1H NMR spectra were obtained: a standard spec-

trum (noesypr1d, Bruker library), a Carr−Purcell−Meiboom−Gill (CPMG) spectrum (cpmgpr)

and a diffusion-edited spectrum (ledbpgp2s1dpr). Standard spectra were acquired with a 100

ms mixing time and water suppression during the relaxation delay (RD = 4 s) and mixing

time. CPMG spectra were acquired with water presaturation, with 80 loops (n) and a total spin

−spin relaxation time (2nτ) of 64 ms (with τ = 400 μs). Diffusion-edited spectra were recorded

with a diffusion time of 100 ms, a pulsed-field gradient (G1) of 1 ms, a spoil gradient (G2) of

0.6 ms, an eddy current recovery time (τ) of 5 ms, and 90% of the maximum gradient strength
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(48.15 G/cm). All 1D spectra were acquired into 32k complex data points with 10330.58 Hz

spectral width. Each free induction decay was zero-filled to 64 k points and multiplied by a 0.3

Hz exponential line-broadening function prior to Fourier transformation. Spectra were manu-

ally phased and baseline corrected and chemical shifts referenced internally to the α-glucose

H1 resonance (δ 5.23). Peak assignments were carried out using 2D NMR spectra and data-

bases Bruker B-BIOREFCODE and HMDB.[33]

Statistical analysis of metadata and NMR data

Statistical descriptive and inference methods (t-test, Fisher-exact test, Chi-square test and den-

sity distribution) were used to describe the clinical and demographic characteristics of the

study population. Multivariate analysis was applied to a total of 729 NMR spectra from Coim-

bra cohort (42 controls and 201 AMD patients) and 459 spectra from Boston cohort (40 con-

trols and 113 AMD patients). For each type of spectrum (standard, CPMG, diffusion-edited),

data matrices were built (Amix 3.9.14, Bruker, BioSpin, Rheinstetten, Germany) excluding the

water region (δ 4.50–5.15). Spectra were aligned using recursive segment-wise peak (RSPA),

[34] normalized to total area, and scaled to unit variance. Initial analysis by Principal Compo-

nent Analysis (PCA),[35] an unsupervised technique (no consideration of sample class or

characteristics) that accommodates all inter-subject variability sources, was followed by super-

vised assessments (where information on sample class is considered) by Partial Least Squares

Discriminant Analysis (PLS-DA),[36] and orthogonal (O)-PLS-DA[37] (SIMCA-P 11.5, Ume-

trics, Umeå, Sweden). PLS-DA loading weights were back-transformed, multiplying each vari-

able by its standard deviation, and false-colored according to variable importance to the

projection (VIP) (Matlab 7.9.0, The MathWorks, Inc, Natick, MA). For PLS-DA models, ran-

domized (Monte Carlo) cross validation (MCCV, in-house developed) was carried out, with

recovery of Q2 values and confusion matrices; simultaneous randomized class-permutation

assessed the null hypothesis. Classification rates (CR), specificity (spec.), and sensitivity (sens.)

were computed.

In order to filter out random phenotypic effects unrelated to AMD, variable selection was

employed (with VIP > 1, VIP/VIPcvSE > 1 and |b/bcvSE| > 1)[38] and PLS-DA reapplied.

The models with higher Q2 values enabled relevant resonances to be identified and subse-

quently integrated across AMD stages (Amix 3.9.14). Integrals were normalized to total inten-

sity and variations assessed by univariate analysis (Wilcoxon test, R statistical software). Effect

size and corresponding confidence intervals were computed using the Hedges’ g index.[39]

Generalized linear regression was used as a flexible generalization of ordinary multiple linear

regression by allowing the magnitude of the variance of each measurement (age, sex, BMI, and

AMD status) to be a function of the metabolite semi-quantitative variation.

Results

Study population

We recruited a total of 396 subjects, 61% (n = 243) in Coimbra (42 controls and 201 patients

with AMD) and the remaining in Boston (n = 153) (40 controls and 113 patients with AMD).

The study population demographics and AMD staging classification are shown in Table 1. Not

surprisingly, there were significant differences in age (p-values 1.3x10-2–3.2x10-5) and age dis-

tributions (S1 Fig, left) between controls and AMD patients in both cohorts and across the

stages of AMD, except between controls and early AMD (p-values 0.31 and 0.55, for Coimbra

and Boston, respectively). This confirms age as a potentially important confounder in human

plasma profiling studies of AMD. Similarly, the possible confounding nature of gender among

AMD severity groups (in Coimbra only, p-value 4.2x10-2) and smoking history (expressed as
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ex-smokers/non-smokers ratio, as only residual numbers of smokers were identified) was also

considered. No significant BMI differences were observed across groups (p-values> 0.2)

(Table 1 and S1 Fig, right). Furthermore, the age-related comorbidities observed in our cohorts

were well balanced (S2 Table), except for a small number of conditions between intermediate

and late AMD groups.

Plasma profile differences

Fig 1 shows representative standard, CPMG and diffusion-edited 1H NMR spectra of a control

plasma sample, reflecting all visible compounds (standard spectrum, Fig 1A), mainly low-Mw

compounds (CPMG spectrum, Fig 1B) and high-Mw compounds (diffusion-edited spectrum,

Fig 1C), respectively. Editing of spectral information in the latter two spectra (Fig 1B and 1C)

reduces spectral overlap and provides specific information on small molecule and macromole-

cule metabolomes, respectively. It should be noted, however, that lipid resonances correspond-

ing to smaller and/or more mobile lipids also contribute to CPMG spectra. Overall, spectral

assignment revealed just under 30 low-Mw metabolites, in agreement with previous reports,

[40] and several different macromolecule environments arising from proteins (albumin, glyco-

proteins) and lipoprotein cholesterol, choline, glyceryl and fatty acid moieties (lipids assign-

ment shown in S1 Table).

Initial PCA revealed no separation between controls and AMD patients in either cohort,

thus reflecting high inter-individual variability of plasma profiles. Subsequent pairwise

PLS-DA analysis of full CPMG and diffusion-edited spectra provided models with no classifi-

cation power (Q2 < 0.5) for AMD status in either cohort (S3 Table). The highest pairwise

model Q2 values were observed in the Boston cohort for: intermediate vs. early AMD (CPMG

spectra, i.e. low-Mw metabolites domain) (Q2 = 0.32, 80% sensitivity, 53% specificity); and late

vs early AMD (diffusion-edited spectra or high Mw domain) (Q2 = 0.39, 78% sensitivity, 79%

specificity) (S3 Table). This indicates that AMD does not strongly impact the plasma profile

when analyzed by NMR (i.e. when metabolites down to sub-millimolar concentrations are

considered). Furthermore, no distinction was detected between the small sub-cohorts of late

Table 1. Characterization of the study population. Characterization of the study populations (Coimbra and Boston cohorts), with corresponding number

of subjects (n), age (years), female (F)/male (M) ratio, body mass index (BMI) (kg.m-2) and smoking history.

Coimbra cohort (ntotal = 243) Boston cohort (ntotal = 153)

Controls Early AMD Int. AMD Late AMD Controls Early AMD Int. AMD Late AMD

n a 42 (17.3) 45 (18.5) 124 (51.0) 32 (13.2) b 40 (26.1) 30 (19.6) 45 (29.4) 38 (24.8) c

Age (years) 68 (58–77) 70 (61–82) 75 (60–91) 81 (62–92) 70 (51–95) 68 (54–91) 71 (61–85) 75 (56–89)

Gender (F/M) 26/16 29/16 85/39 16/16 24/16 20/10 29/16 24/14

BMI (kg.m-2) d 27 (18–38) 27 (18–36) 28 (19–42) 27 (17–36) 26 (19–40) 26 (18–39) 27 (21–53) 26 (20–37)

Smoking history e:

Smokers 0 0 0 1 2 0 2 0

ex-smokers 8 6 14 11 16 11 24 23

non-smokers 34 39 110 20 21 19 19 13

Int. AMD: intermediate AMD.
a: numbers in brackets correspond to % of cohort
b: further classified as “wet” (n = 27) and “dry” AMD (n = 5)
c: further classified as “wet” (n = 31) and “dry” AMD (n = 7)
d: information unavailable for 2 Coimbra subjects (1 early and 1 intermediate AMD) and 14 Boston subjects (3 controls and 2 early, 4 intermediate and 5 late

AMD)
e: information unavailable for 3 Boston subjects (1 control and 2 late AMD).

https://doi.org/10.1371/journal.pone.0177749.t001
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AMD subjects with “dry” (geographic atrophy) or “wet” (choroidal neovascularization) AMD

(b and c in Table 1).

Variable selection was then performed to filter off random variability unrelated to sample

classes.[38] In this study, it led to improved model robustness for some pairwise comparisons,

in both cohorts (as shown by higher values of Q2, CR, sensitivity and specificity, underlined

bold in S3 Table), and some group separation in PLS-DA score plots. Fig 2 shows the PLS-DA

score plots obtained when comparing late AMD subjects with controls. In the Coimbra cohort,

group separations were mostly seen between extreme stages (late AMD vs controls and late vs
early AMD, with Q2 = 0.32–0.35). In Boston, group separations were also noted between

Fig 1. Representative 1H NMR spectra of control plasma. 500 MHz 1H NMR spectra of blood plasma from a

control subject: a) standard 1D spectrum; b) CPMG spectrum; c) diffusion-edited spectrum. Signal assignment:

1-lactate; 2-alanine; 3 -glutamine; 4-glucose; 5-isoleucine; 6-leucine; 7-valine; 8-lysine; 9-acetate; 10-pyruvate;

11-citrate; 12-creatine; 13-creatinine; 14-dimethyl sulfone; 15-TMAO, trimethylamine-N-Oxide; 16,proline;

17-methanol; 18-glycine; 19-tyrosine; 20-histidine; 21- phenylalanine; 22-formate; 23-C18H cholesterol; 24-CH3

lipids; 25-(CH2)n lipids; 26-CH2CH2CO lipids; 27-CH2CH2C = C lipids; 28-CH2C = C lipids; 29-CH2CO lipids;

30-C = CCH2CH = C lipids; 31-albumin lysil groups; 32-N(CH3)3 choline; 33-glyceryl C1,3H; 34-glyceryl C1,3H’;

35-glyceryl C2H; 36-HC = CH lipids; 37-NH protein region.

https://doi.org/10.1371/journal.pone.0177749.g001
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multiple AMD stages; for example, for early AMD vs controls, Q2 = 0.50–0.54 (S3 Table). The

best performing models were further studied through analysis of the corresponding loading

plots, signal integration and subsequent calculation of effect size (E.S.). The metabolites chang-

ing significantly in at least one of the pairwise models in S3 Table were thus identified, and

tracked thereafter across the various degrees of AMD severity (Table 2). The graphical repre-

sentations of E.S. for low-Mw and macromolecule metabolomes (Fig 3 and S2 Fig, respectively)

help visualize the most relevant metabolite variations across AMD stages (Table 2), as do the

boxplot representations in Figs 4 and 5.

Compared to controls, Coimbra subjects with early AMD exhibited higher circulating levels

of creatine, acetate and dimethyl sulfone (Table 2, shaded areas in Fig 3A, top), C18 cholesterol

and HDL-choline resonances (S2A Fig, top); and lower levels of unsaturated fatty acids (F.A.)

(Table 2, Fig 3A and S2A Fig, top). In this cohort, increasing AMD severity produced small

changes in low-Mw metabolites (Table 2, Fig 3A): higher pyruvate for intermediate AMD and

lower levels of histidine, acetoacetate, β-hydroxybutyrate and trimethylamine-N-oxide

(TMAO) for late AMD (the latter not statistically relevant). In the macromolecules domain

(S2A Fig), qualitative lower protein levels (expressed by NH resonances) were noted in inter-

mediate AMD and initial low levels of unsaturated F.A. increased at later AMD stages. Boston

subjects differed slightly in terms of the low-Mw domain (Table 2, Fig 3B), exhibiting higher

levels of glutamine in early AMD and lower levels for intermediate AMD; low histidine levels

in intermediate and late AMD (similarly to the Coimbra cohort); and low alanine levels in late

AMD. In the macromolecule domain (S2B Fig), results were broadly similar between cohorts,

with unsaturated fatty acid levels again increasing from early AMD into more severe stages,

and a tendency for low protein levels (including albumin) characterizing intermediate AMD.

Fig 2. Examples of PLS-DA score plots. PLS-DA scores scatter plots and MCCV quality parameters (pairwise

model Q2, Q2
median (obtained through MCCV), % CR, % sens. and % spec.) obtained for variable selected CPMG

NMR spectra of late AMD patients vs controls, in the a) Coimbra cohort: late AMD patients (□, n = 32), controls

(∎, n = 42) and b) Boston cohort: late AMD patients (�, n = 38), controls (♦, n = 40).

https://doi.org/10.1371/journal.pone.0177749.g002

Human plasma metabolomics in AMD using NMR spectroscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0177749 May 18, 2017 8 / 18

https://doi.org/10.1371/journal.pone.0177749.g002
https://doi.org/10.1371/journal.pone.0177749


In the boxplot representations for Coimbra (Fig 4) and Boston (Fig 5) cohorts, a number of

small metabolite variations (some only qualitative in nature) emerge as potentially differentiat-

ing controls from early AMD, namely: 1) acetate, creatine, dimethyl sulfone, cholesterol,

HDL-choline and unsaturated fatty acids in Coimbra subjects and 2) glutamine, histidine,

unsaturated fatty acids and albumin, in Boston subjects (highlighted metabolite names in Figs

4 and 5). This observation refers to the two naturally age-matched groups of controls and early

AMD, thus not being affected by possible age confounding effects, and may potentially lay the

ground for future AMD biomarkers. The role of age and other characteristics as possible con-

founders is discussed in the next section.

Table 2. Variations in plasma metabolites of AMD patients. Main variations in plasma metabolites across AMD evolution through different severity

stages, in Coimbra and Boston cohorts.

Coimbra cohort Boston cohort

Family Compound (δ/ppm, multiplicity) E.S. p-valuea Family Compound (δ/ppm, multiplicity) E.S. p-valuea

Early AMD vs Controls

A.A. Creatine (3.03, s)b 0.53 [0.09,0.97] 2.9E-2 A.A. Glutamine (2.43, m)b 0.59 [0.07,1.10] 1.6E-2

Lipids C18H cholesterol (0.59–0.70)c 0.52 [0.08,0.96] 2.1E-2 Lipids HC = CH F.A. LDL+VLDL (5.28–

5.37)c
-0.36 [-0.85,

0.13]

2.9E-2

HC = CH F.A. (5.24–5.37)b -0.55 [-0.99,-0.11] 1.6E-2

N(CH3)3 choline HDL (3.16–3.21)c 0.65 [0.21,1.10] 4.9E-3

HC = CH F.A. LDL+VLDL (5.28–

5.37)c
-0.50 [-0.94,-0.06] 2.9E-2

O.A. Acetate (1.91, s)b 0.50 [0.06,0.94] 1.6E-2

Other Dimethyl sulfone (3.15, s)b, d 0.57 [0.13,1.01] 7.1E-3

Intermediate vs Early AMD

O.A. Pyruvate (2.36, s)b 0.43 [0.08, 0.78] 1.8E-2 A.A. Glutamine (2.43, m)b

Histidine (7.74, s)b
-0.65 [-1.15,-

0.15]

-0.54 [-1.04,

-0.04]

6.4E-3

1.9E-2

Lipids CH2CH2COOR F.A. (1.45–1.61)c -0.57 [-1.06,

-0.09]

3.6E-2

CH2CH2C = C F.A. (1.62–1.74)c -0.57 [-1.05,-

0.08]

2.3E-3

HC = CH F.A. (5.24–537)b 0.63 [0.13,1.13] 6.1E-3

HC = CH F.A. LDL + VLDL (5.28–

5.37)c
0.46 [-0.02,0.95] 7.4E-3

Other Albumin lysil (2.92–3.02)c -0.56 [-1.04,-

0.07]

4.5E-3

Late vs Intermediate AMD

A.A. Histidine (7.74, s)b -0.43 [-0.82,-0.03] 4.0E-2 A.A. Alanine (1.47, d)b -0.44 [-0.90,0.03] 4.2E-2

Histidine (7.74, s)b -0.61 [-1.07,-

0.14]

1.3E-2

O.A. Acetoacetate (2.27, s)b -0.31 [-0.70, 0.09] 3.7E-2

β-hydroxybutyrate (2.39, m)b -0.40 [-0.80,-

0.005]

1.0E-3 Lipids Glyceryl C1,3H’(4.20–4.34)c -0.43 [-0.87,0.02] 3.0E-2

E.S.: effect size, values in square brackets correspond to E.S. range; A.A.: amino acids, O.A.: organic acids, d: doublet, s: singlet, m: multiplet, F.A.: fatty

acids.
a: all p-values indicated become > 0.05 upon Bonferroni correction for multiple comparisons.
b and c: integrals measured in CPMG and in diffusion-edited spectra, respectively
d: metabolite with possible contribution from different subjects’ age.

https://doi.org/10.1371/journal.pone.0177749.t002
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Potential confounders

We evaluated the importance of age and other potential confounders, namely gender and smoking

history (as mentioned, BMI was not statistically different in these cohorts), on the subjects´ plasma

metabolic profile and, in particular, on the putative AMD fingerprints shown in Table 2. To inves-

tigate this, the larger groups of subjects diagnosed with intermediate AMD (Table 1) were used for

multivariate analysis as a function of each parameter, independently of AMD staging. Regarding

the gender imbalance between intermediate and late AMD groups in Coimbra (no imbalance was

observed in Boston), PLS-DA indicated that Coimbra females had lower circulating levels of iso-

leucine (p-value = 8.85x10-6), valine (p-value = 2.13x10-5), creatinine (p-value = 4.74x10-5), lactate

(p-value = 2.09x10-4) and methanol (p-value = 1.67x10-3). Assuming that such differences are inde-

pendent of AMD staging, their absence in the putative AMD fingerprint in Table 2 indicates that

gender is not a confounder in this cohort. Regarding smoking habits, ex-smokers in Coimbra were

found to have slightly higher levels of formate (p-value = 5.65x10-3) than non-smokers; increases in

methanol (p-value = 2.96x10-2) and lactate (p-value = 2.57x10-2) were also noted but probably are

due to a higher proportion of female ex-smokers in this group. In Boston, ex-smokers showed a

slight increase in isoleucine (p-value = 4.35x10-2), compared to non-smokers. Since none of these

Fig 3. Effect size plots for CPMG spectra integrals. Effect size (E.S.) plots for resonances varying in the CPMG NMR spectra across AMD evolution

through different severity stages in the a) Coimbra and b) Boston cohorts. Resonances are listed alphabetically within each compound family (amino acids,

organic acids, other low-Mw compounds and lipids). The dashed horizontal line refers to null E.S. and the length of the vertical segments corresponds to E.S.

range. E.S. segments not intercepting the null E.S. line are considered as relevant variations (shaded rectangles). F.A.: fatty acids.

https://doi.org/10.1371/journal.pone.0177749.g003
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Fig 4. Boxplot graphs for metabolites varying in Coimbra cohort. Coimbra cohort: boxplot representations of the

metabolite variations found statistically relevant (* indicates p-value < 0.05) in at least one pairwise PLS-DA model.

Compound names in rectangles correspond to compounds differentiating between controls and early AMD patients. C:

controls, E: early AMD, I: intermediate AMD, L: late AMD. F.A.: fatty acids.

https://doi.org/10.1371/journal.pone.0177749.g004
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changes coincided with the suggested AMD fingerprints (Table 2), smoking history may also be

ruled out as an important metabolic confounder in these cohorts. Finally, PLS-DA models of age

of intermediate AMD groups revealed increases in acetoacetate (p-value = 3.8x10-2), citrate (p-
value = 1.9x10-4), dimethyl sulfone (p-value = 1.4x10-2) and β-hydroxybutyrate (p-value = 8.6x10-3)

in older Coimbra subjects, whereas older Boston subjects exhibited a weak tendency for higher cir-

culating urea levels (p-value = 3.9x10-2). Again, these variations do not compromise the potential

fingerprint features, except for dimethyl sulfone (c in Table 2, note the opposite variation of β-

Fig 5. Boxplot graphs for metabolites varying in Boston cohort. Boston cohort: boxplot representations of the metabolite

variations found statistically relevant (* indicates p-value < 0.05) in at least one pairwise PLS-DA model. Compound names in

rectangles correspond to compounds differentiating between controls and early AMD patients. C: controls, E: early AMD, I:

intermediate AMD, L: late AMD. F.A.: fatty acids.

https://doi.org/10.1371/journal.pone.0177749.g005
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hydroxybutyrate which rules it out as originating from subjects´ older age). Dimethyl sulfone was

only seen in the Coimbra cohort, and its variation differentiated groups with similar age (controls

and early AMD). Therefore, this variation seems to mostly likely be AMD-related, although bear-

ing a possible contribution from age. Altogether, the above analysis shows that the putative metab-

olite fingerprints listed in Table 2 are not significantly affected by differences in gender, smoking

history or even age across patients’ groups, thus establishing that no group restrictions are neces-

sary regarding these characteristics. This was also confirmed by covariance analysis of the main

suggested fingerprint metabolites/resonances in Table 2 with gender proportion, smoking history,

BMI, age and AMD status (Table 3). The consistently higher contributions of AMD severity

(noted in bold) confirmed AMD as the primary origin of the metabolite changes observed. This is

also supported by the fact that the role of comorbidities (S2 Table) was found to be negligible, as

discussed below.

Discussion

We present a cross-sectional study of two distinct cohorts of subjects with different severity

stages of AMD and corresponding control groups. Using NMR metabolomics, we have observed

small differences in the levels of some circulating metabolites (some amino acids and organic

acids, dimethyl sulfone, lipid and protein moieties) between multiple AMD stages, in both

cohorts. The potential confounding effects of gender, smoking history and age on these results

were found to be negligible. To our knowledge, this study presents the first characterization of

the different stages of AMD using NMR metabolomics, building up on a previous report [29] of

MS metabolomics of the plasma of a small cohort of subjects with a single subtype of late AMD

(“wet” AMD), compared to controls. The authors reported higher circulating levels of di- and

tripeptides and modified amino acids in patients with AMD, along with lower levels of bile

acids, histidine-arginine and tryptophan-phenylalanine, and metabolites related to vitamin-D

metabolism. Our observation of changes in amino acids and protein levels in AMD patients is in

broad agreement with the previously reported changes.

Interestingly, the metabolomic fingerprints of AMD suggested for the two cohorts presented

both similarities and differences. The observed similarities in the variations of histidine, unsaturated

Table 3. Generalized linear regression results. Generalized linear regression coefficients obtained through modeling of metabolite variations as a function

of gender proportion, smoking history, body-mass index (BMI), age and AMD status. F.A.: Fatty acids. Values in bold illustrate the higher contributions of AMD

status for each metabolite variation, compared to confounders. Similar metabolite variations in the two cohorts are denoted by underline.

Compound Gender proportion Smoking history BMI Age AMD status

Coimbra cohort

Acetate -4.0x10-5 2.1x10-5 -5.3x10-6 1.0x10-6 1.1x10-3

Acetoacetate -3.8x10-5 -3.1x10-5 -3.1x10-6 7.3x10-6 6.9x10-4

Creatine 1.4x10-4 -1.8x10-5 4.2x10-6 -4.8x10-6 1.6x10-3

Dimethyl sulfone -1.8x10-5 2.8x10-5 -4.8x10-7 7.5x10-6 2.4x10-4

HC = CH F.A. 7.6x10-4 2.9x10-4 1.2x10-5 -3.3x10-5 1.5x10-2

Histidine 1.3x10-7 -6.5x10-6 -1.3x10-6 3.1x10-8 8.1x10-4

β -hydroxybutyrate -1.3x10-5 -4.6x10-6 -1.3x10-6 2.5x10-6 4.6x10-4

Pyruvate -9.9x10-5 1.5x10-5 3.3x10-6 6.2x10-7 9.3x10-4

Boston cohort

Alanine -8.0x10-5 2.9x10-5 -2.0x10-5 -5.5x10-6 4.2x10-3

Glutamine -4.6x10-4 -1.2x10-4 -8.5x10-5 3.2x10-5 7.1x10-3

Histidine -2.3x10-5 4.0x10-6 -4.0x10-6 3.6x10-6 5.1x10-4

HC = CH F.A. 3.0x10-4 -1.7x10-4 5.5x10-6 -5.4x10-5 1.4x10-2

https://doi.org/10.1371/journal.pone.0177749.t003
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fatty acids and protein levels suggest that such variations may be a global reflection of the disease,

possibly transversal to different cohorts and, therefore, with potential value in contributing to the

current knowledge of the biology of AMD. On the other hand, cohort differences in relation to var-

iations in particular low-Mw compounds (e.g. glutamine, alanine, creatine, dimethyl sulfone, pyru-

vate) may reflect the potential importance of local nutritional and lifestyle effects on the suggested

AMD metabolic fingerprints. Also of note are the differences observed between controls and sub-

jects with early AMD, in both cohorts. These observations relate to two naturally age-matched

groups (thus not affected by possible age effects on the metabolome) and may contribute impor-

tantly to the future definition of AMD biomarkers.

In any case, even though age was a potential major confounder in this study, differences in

this parameter were found to only possibly affect plasmatic dimethyl sulfone levels, leaving the

remaining fingerprint unaffected. Apart from other potential confounder contributions (gen-

der and smoking habits), which were also found negligible, the possible effect of comorbidities

had to be considered. Indeed, some comorbidities differed in proportion between intermediate

and late AMD (S2 Table): heart, liver and rheumatologic diseases, in the Coimbra cohort; and

kidney and neurologic diseases in the Boston cohort. However, in most cases only a few % of

subjects were affected by these conditions (average 5%), thus rendering significant contribu-

tions unlikely. Heart disease in the Coimbra cohort may constitute an exception since about

23% of subjects with intermediate AMD were affected, compared to 6% of subjects with late

AMD. It is, thus, possible that the metabolite changes noted from intermediate to late AMD in

Coimbra may be at least partially due to heart disease, particularly regarding acetoacetate and

β-hydroxybutyrate levels, since histidine variations (common to both cohorts) seem to consti-

tute an AMD-related feature.

Acknowledged limitations of this study include its cross-sectional nature, which precludes

the assessment of AMD time progression. Also of note is the self-reporting nature of the ques-

tionnaire used to assess demographics and prior medical history, which allows for the possibil-

ity of some degree of response bias. Despite representing the first complete analysis of AMD

by NMR metabolomics, with the inclusion of more than 30 subjects in all study groups, higher

sample sizes would be desirable in future validation studies. In addition, the important assess-

ment of the influence of relevant confounders (assuming that their impact on plasma metabo-

lome is independent of disease) should, in future studies, include the impacts of diet and

genetic profiles on AMD metabolomic fingerprints. The study presented here benefits from

the fact that it was prospectively designed to follow adequate standard operating procedures at

all stages (metadata, samples and data collection), while ensuring that each individual under-

went a complete ophthalmologic exam performed by a retina specialist. The latter aspect is

particularly important since it circumvents the possible subjectivity of procedures relying on

repositories or databases, which may lack in adequate phenotypic information, particularly

regarding ophthalmic diseases.

Conclusions

Our results demonstrate for the first time that plasma NMR metabolomics of patients with

AMD detects small changes in the levels of selected amino acids and organic acids, as well as

particular lipid moieties and protein levels. The changes observed are not very robust, but

appear to be associated with the presence of the disease and its severity, rather than age, based

on the identification of the particular age-dependent metabolite sets in each cohort. Other

potential confounders (gender, smoking history, BMI, comorbidities) were also found not to

affect the proposed AMD signatures significantly. Furthermore, the AMD-specific metabolite

variations detected were found to partially differ between the two cohorts (Coimbra, Portugal
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and Boston, US), thus indicating that nutritional and other lifestyle habits may be determining

the metabolic response in AMD in different regions. A particularly important result of this

study is that, in each cohort, a subgroup of metabolite changes tended to differentiate the con-

trols from the patients diagnosed with early AMD stage (namely acetate, creatine, dimethyl

sulfone, cholesterol, HDL-choline and unsaturated fatty acids for Coimbra subjects, and albu-

min, histidine, glutamine and also unsaturated fatty acids for Boston subjects). This is an

important observation that needs to be further investigated since it may contribute to the

future definition of AMD biomarkers.

In summary, our results suggest that even though the overall metabolite changes detected

in relation to AMD in both cohorts are of low magnitude and weak statistical relevance, they

appear to be AMD-specific and should, therefore, be explored further in expanded cohorts

and with methodologies targeting the metabolic domains of the specific compounds identified.

This work has the potential to offer novel biomarkers for AMD, as well as to improve the cur-

rent understanding of the pathogenesis of this blinding disease.
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