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Abstract

Pyruvate dehydrogenase kinase 1 (PDK1), a key enzyme implicated in metabolic repro-

gramming of tumors, is induced in several tumors including glioblastoma, breast cancer and

melanoma. However, the role played by PDK1 is not studied in retinoblastoma (RB). In this

study, we have evaluated the expression of PDK1 in RB clinical samples, and studied its

inhibition as a strategy to decrease cell growth and migration. We show that PDK1 is specifi-

cally overexpressed in RB patient samples especially in vitreous seeds and hypoxic regions

and cell lines compared to control retina using immunohistochemistry and real-time PCR.

Our results further demonstrate that inhibition of PDK1 using small molecule inhibitors

dichloroacetic acid (DCA) and dichloroacetophenone (DAP) resulted in reduced cell growth

and increased apoptosis. We also confirm that combination treatment of DCA with chemo-

therapeutic agent carboplatin further enhanced the therapeutic efficacy compared to single

drug treatment. In addition, we observed changes in glucose uptake, lactate and reactive

oxygen species (ROS) levels as well as decreased cell migration in response to PDK1 inhi-

bition. Additionally, we show that DCA treatment led to inhibition of PI3K/Akt pathway and

reduction in PDK1 protein levels. Overall, our data suggest that targeting PDK1 could be a

novel therapeutic strategy for RB.

Introduction

Retinoblastoma (RB) is the most common intraocular malignancy in children below the age of

five years. The incidence of RB ranges from 1/15,000 to 1/18,000 live births and it can either be

bilateral or unilateral. Inactivating mutations in RB1 gene are an initiating event in most cases of

RB. Yet, additional events are required, further to RB1 mutations, for manifestation of RB [1,2].

Molecular analysis of RB tumors revealed that epigenetic deregulation plays a major role in the

tumorigenesis [3]. However, recently, presence of MYCN amplification has been reported in a
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subset of RB patients with no apparent alterations in RB1 [4]. Though, recent developments in

the field led to increased cure rates, advanced disease presentation is still a problem in develop-

ing nations [5]. Despite chemotherapy is available for RB, not all children respond and treatment

especially, is a challenge in tumors with hypoxic regions and vitreous seeds [6].

Presence of hypoxia has been demonstrated in mouse RB tumors [7]. Similarly, hypoxic

regions were also observed in human RB tumors and expression of Hypoxia Inducible Factor

1 Alpha (HIF1α) was found in 83% of human RB specimens [8]. Consequently, it is necessary

to focus on biochemical pathways that get activated in vitreous seeds and hypoxic conditions

to develop more targeted approaches. Tumor cell metabolism is one of the several processes

regulated by hypoxia. Cancer cells alter their metabolism to meet the increased demand for

biosynthetic substrates required for uncontrolled cell proliferation.

Several rate-limiting metabolic enzymes have been recognized to play a critical role in

tumor cell transformation. PDK1 is one such key enzyme that has been showed to play a cen-

tral role in metabolic reprogramming in various tumors [9]. PDK1 catalyzes the phosphoryla-

tion of pyruvate dehydrogenase (PDH) and inactivates it. PDH converts pyruvate into acetyl

CoA that is further metabolized in mitochondria via Krebs’ cycle. The role of PDK1 has not

been studied so far in RB. In the current study, we present data to show that PDK1 was overex-

pressed in human RB tumor specimens, and targeting PDK1 resulted in decreased cell growth

and migration in retinoblastoma-derived cell lines.

Materials and methods

Reagents

Dichloroacetic acid (DCA), 2’,7’-dichlorodihydrofluorescein diacetate (DCF-DA), Dichloroa-

cetophenone (DAP) and cobalt chloride were purchased from Sigma-Aldrich (Bengaluru, Kar-

nataka, India) and used at various concentrations in the study. Cobalt chloride solution was

made freshly before use. Glucose analogue 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-

2-Deoxyglucose (2-NBD glucose) was obtained from Cayman chemical, Ann Arbor, MI, USA.

Trizol from Life Technologies (Carlsbad, CA, USA) was used to isolate RNA and reverse tran-

scription kit was from Thermo Scientific (Waltham, MA, USA). Rabbit polyclonal PDK1

antibody, rabbit monoclonal HIF1α, rabbit monoclonal phospho-AKT (Thr308) and rabbit

monoclonal Akt antibodies were purchased from Cell Signaling (Danvers, MA, USA) and β-

actin antibody was from Sigma-Aldrich. Apoptosis kit was procured from Roche (Basel, Swit-

zerland). Poly-L- lysine (0.1%, Sigma Aldrich) was made to a final concentration of 0.01% to

coat the 6-well cell culture dishes.

Immunohistochemistry (IHC)

The study was approved by the ethics committee of LV Prasad Eye Institute, Bhubaneswar and

conducted according to the declaration of Helsinki. Tissue sections from enucleated eyes were

used to study the expression of PDK1. Human RB tissues were fixed in formalin and embed-

ded in paraffin wax. The formalin-fixed paraffin-embedded (FFPE) tissues were sectioned on

microtome and placed on coated microscopic slides. The sections were deparaffinized and fur-

ther processed for Hematoxylin and Eosin (H&E) staining and IHC. Anti-PDK1 antibody was

used at a dilution of 1:50 for the detection of PDK1 expression.

Determination of mRNA expression

RNA extracted using Trizol reagent was quantified by biospectrophotometer (Eppendorf,

Hamburg, Germany). RNA was stored at -80˚C till further analysis. cDNA was synthesized
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using reverse transcription reagents as per the manufacturer’s instructions. Real time PCR

analyses were performed using power SYBR1 Green PCR master mix in triplicates. β2-micro-

globulin was employed as an endogenous control. The following gene specific primers were

used: β2-microglobulin, forward: 50-GGTTGGCCAATCTACTCCCAGG-30 and reverse: 50-CA
ACTTCATCCACGTTCACC-30 (Eurofins, Kolkata, India); PDK1, forward: 50-CAACAGAGGT
GTTTACCCCC-30 and reverse: 50-ATTTTCCTCAAAGGAACGCC-30.

Cell culture

Human retinoblastoma cell lines Y79 and Weri-Rb1 and human retinal pigment epithelial

cells ARPE-19 were purchased from ATCC. Y79 and Weri-Rb1 cells were maintained in

RPMI-1640 containing 2 mM L-Glutamine, 10% Fetal Bovine Serum (FBS) and 1% penicillin-

streptomycin-amphotericin B mixture at 37˚C and 5% CO2. To mimic hypoxic environment,

cells were maintained under hypoxic condition (with 0.5% O2 level) or treated with cobalt

chloride (100, 200 and 300 μM). ARPE-19 cells were maintained in DMEM-F12 medium con-

taining 10% FBS. RB tumor tissues (LRB1, LRB2) were collected from enucleated eyes after

obtaining written informed consent from parents of the patients in accordance with the ethical

protocols of our institute and declaration of Helsinki. The RB patient samples were maintained

in same culture conditions as described earlier for cell lines. The LRB1 and LRB2 primary cell

cultures were derived from tumors that were largely hypoxic and contained vitreous seeds.

The tumor cells were verified to be RB negative. In addition, these primary cultures show com-

parable morphology and growth characteristics similar to commercially available RB cell lines

Y79 and Weri-Rb1.

Inhibition of PDK1 with DCA and DAP

Cells were seeded at a low density (0.1x106 cells/ml) in T25 tissue culture flasks and treated

with various concentrations of DCA (1, 3 and10 mM) or DAP (1, 3, 10, 30 and 60 μM). The

cell growth was studied by MTS assay (Promega, Madison, WI, USA). Each experiment was

repeated at least thrice.

Immunoblotting

Immunoblotting was performed as described previously [10]. The antibodies used in the study

include rabbit polyclonal anti-PDK1, rabbit monoclonal anti-phospho-Akt (Thr308), rabbit

monoclonal anti-Akt, rabbit monoclonal anti-HIF1α and mouse monoclonal anti-β-actin.

Standard chemiluminescence was employed for the detection of protein of interest.

Apoptosis

Cells were treated with DCA (10 mM) for 48 hours and apoptosis was evaluated by using

Annexin V Fluos kit (Roche) as per manufacturer’s instructions.

Glucose uptake assay

The glucose uptake in response to PDK1 inhibition was determined by flow cytometry using a

fluorescent glucose analogue, 2-NBD-glucose as described before [11]. In brief, cells were

treated with 3 mM DCA for 48 hours and measured glucose uptake. Equal number of live cells

(1x106) were incubated with 2-NBD-glucose (50 μM) in phosphate buffered saline (PBS) for

30 min at 37˚C, washed twice in cold PBS and analyzed by flow cytometry. Relative glucose

uptake after DCA treatment was calculated based on differences in fluorescence compared to

control cells. The results were normalized to cell viability.
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Measurement of reactive oxygen species (ROS)

The relative levels of ROS were measured using redox sensitive fluorochrome, DCF-DA (2’,7’-

dichlorodihydrofluorescein diacetate) as described previously [12]. Approximately, 1x106 cells

were washed twice with sterile PBS and incubated with 20˚M DCF-DA for 25 min at 37˚C.

Following incubation, cells were washed twice in cold PBS and analyzed for ROS using flow

cytometer (BD FACS Calibur, San Jose, CA, USA). Differences in ROS levels were determined

and compared to untreated controls after normalizing the cell viability. In additional experi-

ments, Y79 cells were treated with antioxidant vitamin C (500 μM) and/or DCA and ROS lev-

els and cell growth were measured.

Migration assay

The migration assay was performed as described previously [13]. Cells (1x106) were seeded in

poly-L-lysine (0.01%) coated 6-well tissue culture dishes and maintained in RPMI-1640 me-

dium supplemented with 1% FBS until the cells reached 75–100% confluence. Fine scratches

were made using a 200 μL sterile pipette tip. Cells were washed twice with PBS and cultured in

fresh medium containing 10% FBS in the presence of desired DCA concentrations. Cells were

incubated at 37˚C and 5% CO2 for 18 hours. The scratch created was photographed at various

time points.

Drug combination assays

Synergy analysis was performed using a method proposed by Chou and Talalay [14]. Briefly;

cells were treated with either DCA or carboplatin alone and also with a combination of DCA

and carboplatin. For drug combination studies, cells were sensitized with DCA for 24 hours

and then treated with carboplatin for 48 hours. Initially, different concentrations of drugs were

chosen to study the growth inhibition using MTS assay and IC50 value of individual drug was

determined. Later, drug concentrations below IC50 were chosen to study the combination

effect of drugs. Percentage of growth in treated samples was calculated compared to control

and fraction affected (FA) was calculated by using the formula: FA = 1-(% growth/100). FA

values for each concentration of single drug (DCA or carboplatin) and the combinations were

entered into the compusyn program. Combination index (CI) was determined for each drug

combination. CI value less than 1 is considered as synergistic, equal to 1 as additive and more

than 1 as antagonistic.

Statistical analysis

Percentage of change in treatment groups relative to the average of the control group was cal-

culated. The quantitative data represent mean of at least three independent experiments and

error bars indicate standard deviation. The statistical differences between treatment and con-

trol groups were analyzed using the ANOVA or Student’s t-test. The p values less than 0.05

were considered significant.

Results

PDK1 is strongly expressed in vitreous seeds and hypoxic regions of

human RB

To understand the role of PDK1 in RB, we first evaluated the expression of PDK1 in human

RB patient samples by IHC (n = 26). Immunohistochemical staining revealed the granular

expression of PDK1 in the cytosol as well as focally along the nuclear membrane (Fig 1A).
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Among the 26 samples, 16 of them were found to be positive for PDK1 expression (61.5%).

There was significantly stronger expression of PDK1 in the hypoxic zones of the perithelioma-

tous arrangement of the tumor cells and vitreous seeds (Fig 1A). The expression was stronger

in the outer layers of cells, not only in intensity, but also in the size of granules. However,

tumors in highly vascular regions such as tumor foci in the choroid exhibited no expression of

PDK1. In addition, we compared the expression of PDK1 in the RB tumor and the adjacent

normal appearing uninvolved retina and found significantly lesser expression of PDK1 in nor-

mal retina than RB tissue (Fig 1B).

Fig 1. Expression of PDK1 in retinoblastoma tissues. (A) Immunohistochemistry (IHC) showing expression of PDK1 in retinoblastoma specimens.

* Indicates vessel lumen. (B) IHC showing poor expression of PDK1 in uninvolved retina and strong expression in RB tumor tissue. Orange curly

bracket indicates the uninvolved retina and red arrow denotes the expression of PDK1 in RB tumor region. (C) Relative mRNA expression of PDK1

was compared between retinoblastoma tissues and control retina. C1-C2, control retina; Y79 and Weri-Rb1, retinoblastoma cell lines; P1-P6,

retinoblastoma tumor tissues.

https://doi.org/10.1371/journal.pone.0177744.g001
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To evaluate the expression of PDK1 in normal retinal tissues, mRNA expression of PDK1

was determined by real-time PCR using specific primers in fresh RB tumor samples (n = 6)

and control retina (n = 2). In addition, expression of PDK1 was measured in RB cell lines Y79

and Weri-Rb1. PDK1 mRNA was significantly overexpressed in RB tumor samples as well as

Y79 and Weri-Rb1 cells compared to normal retinal tissue (Fig 1C). The expression of PDK1

mRNA varied significantly in different tumor samples, ranging from 1.6 to 11 fold compared

to control retina. Overall, this data suggests that PDK1 is induced in RB tumors compared to

normal retina.

Pharmacological inhibition of PDK1 reduced retinoblastoma cell growth

Since, PDK1 was found to be overexpressed in RB; we tested the inhibition of PDK1 as a thera-

peutic strategy using small molecule inhibitor of pyruvate dehydrogenase kinase, dichloroace-

tic acid (DCA). There are only two cell lines available commercially for RB with ATCC (Y79

and Weri-Rb1). Both these cell lines were used to study the inhibition of cell growth upon

DCA treatment. In addition, primary human RB cells (LRB1 and LRB2) were treated with

increasing concentrations of DCA and cell growth was measured. It was found that DCA effec-

tively reduced cell growth, which correlated further with increasing concentrations of DCA.

We observed that at 3 mM DCA, the cell growth compared to untreated cells was 56, 25, 58

and 53% in Y79, Weri-Rb1 cells and RB tumor derived cells LRB1 and LRB2, respectively. The

cell growth was almost negligible at 10 mM and was found to be 13, 5, 11 and 8% correspond-

ingly in Y79, Weri-Rb1, LRB1 and LRB2 (Fig 2A).

Moreover, Dichloroacetophenone (DAP), a highly potent inhibitor of PDK1 has been

showed earlier to have an inhibitory effect in acute myeloid leukemia [15]. We studied the effect

of DAP on RB cell growth and found that DAP could inhibit RB growth even at micromolar

concentrations (Fig 2B). Further to study the inhibitory action of DCA on untransformed cells,

Fig 2. PDK1 inhibition results in decreased retinoblastoma cell growth. (A) Retinoblastoma cell lines

(Y79 and Weri-Rb1) and patient derived cells (LRB1 and LRB2) were treated with different concentrations of

DCA and cell growth was measured and compared to untreated cells. (B) RB cells were treated with

increasing concentrations of DAP and cell growth was measured and compared to control cells. * Indicates

significant difference (p<0.05) between control and treatment.

https://doi.org/10.1371/journal.pone.0177744.g002
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we treated peripheral blood mononuclear cells (PBMCs) and retinal pigment epithelial cells

(ARPE19) with same concentrations that were used to inhibit RB cell growth and found that

DCA does not significantly change the viability of PBMCs or ARPE19 cells (S1 Fig).

Combination effect of DCA and carboplatin on retinoblastoma cell

growth

Next, we determined if DCA could enhance the therapeutic potential of chemotherapy agents

used in the treatment of RB. Retinoblastoma cell line Y79 and patient derived cells (LRB1 and

LRB2) were treated with DCA or carboplatin alone or combination of DCA and carboplatin to

study the efficacy of combination treatment on RB cell growth. The IC50 concentration for

each drug was calculated individually and found to be in the range of 3.5–5.0 mM and 250–

350 μM for DCA and Carboplatin respectively. Combination studies were performed at

concentrations lower than IC50 of drugs. DCA when used in combination with carboplatin

showed a combination index of less than one in Y79 cells suggesting a synergistic inhibition

on RB cell growth. The decrease in cell growth when treated with DCA or carboplatin alone

was less significant compared to combination treatment. Further, RB primary cells showed a

similar synergistic effect upon combination treatment (Fig 3). These data indicate that DCA

could enhance the therapeutic efficacy of carboplatin in RB.

PDK1 inhibition led to increased apoptosis and decreased cell migration

Retinoblastoma cells (Y79, LRB1 and LRB2) were treated with 10 mM DCA for 48 hours and

apoptosis was measured by using flow cytometry and annexin V and PI staining. PDK1 inhibi-

tion resulted in a significant increase in apoptosis. We observed that in Y79 cells, DCA treat-

ment led to 8-fold increase in apoptosis and in patient samples (LRB1 and LRB2) similar

results were observed with 7- and 9-fold increase respectively (Fig 4A).

In addition, the migration ability of Y79 cells and retinoblastoma patient derived cells was

studied by migration assay in response to PDK1 inhibition. Cells were layered on poly-L-lysine

coated slides; fine scratches were made and treated with different concentrations of DCA. The

healing of scratch was photographed over a period of time. At 18 hours, in untreated Y79 cells

the scratch was completely repopulated with cells. Whereas in DCA treated cells, there was

very little to no migration (Fig 4B). In patient derived tumor cells (LRB1 and LRB2), similar

results were observed (Fig 4C and 4D). However, there was a variation in the degree of migra-

tion. Overall, this data suggests that DCA treatment could inhibit migration of RB tumor cells.

Fig 3. Combination activity of DCA and carboplatin on retinoblastoma cell growth. Y79 and patient

derived retinoblastoma cells (LRB1 and LRB2) were treated with DCA or carboplatin alone or combination of

DCA and carboplatin at various concentrations. Cell growth was measured by MTS assay and combination

indices (CI) were calculated. CI = 1 –additive effect; CI<1 –synergistic effect and CI>1 –antagonistic effect.

https://doi.org/10.1371/journal.pone.0177744.g003
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The effect of PDK1 inhibition on metabolic parameters

In order to evaluate the effect of DCA treatment on tumor metabolism in RB, we measured

glucose uptake, lactate and intracellular ROS levels. Glucose uptake was measured using

2-NBD glucose after 48 hours of incubation with DCA. The results were normalized to cell via-

bility. Y79 cells showed significant reduction (33.62% of control at 3 mM and 22.33% of con-

trol at 10 mM) in glucose uptake at both concentrations tested. Even, RB tumor derived cells

(LRB1 and LRB2) showed significant decrease in glucose uptake upon treatment with DCA

(Fig 5A).

Next, we determined lactate levels after treatment of cells for 48 hours with DCA. Upon

treatment with DCA there was a significant decrease in lactate levels compared to control cells

(Table 1). These data implicate that RB cells have an elevated glycolysis and inhibition of

PDK1 reversed the elevated glycolytic metabolism.

Further, we estimated ROS levels in tumor cells after 48 hours of PDK1 inhibition. DCA

treatment led to an increased ROS (3- to 6-fold increase) (Fig 5B). In additional experi-

ments we measured ROS levels in response to treatment with DAP and found that DAP

significantly enhanced ROS levels (Fig 5C). These data provide additional evidence that

inhibition of PDK led to decrease in glycolysis and an increase in mitochondrial metabo-

lism of glucose through oxidative phosphorylation. Further to show that the observed

changes in ROS levels were due to treatment with DCA, we treated cells with an anti-oxi-

dant vitamin C and measured ROS and cell growth. It was observed that upon treatment

with vitamin C, there was a reduction in ROS levels in DCA treated cells (Fig 5D). In addi-

tion a partial rescue in cell death was observed in the presence of vitamin C in DCA treated

cells (Fig 5E).

Fig 4. Inhibition of PDK1 induces apoptosis and decreases cell motility. Y79 and patient derived

retinoblastoma cells (LRB1 and LRB2) were treated with DCA and (A) apoptosis and (B, C and D) cell

migration were measured. * Indicates significant changes (p<0.05) between control and treatment.

https://doi.org/10.1371/journal.pone.0177744.g004
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DCA treatment reduced PDK1 levels under hypoxia and inhibited Akt

pathway

To study the mechanism of action of DCA on RB cell growth, we determined the expression of

PDK1 protein levels upon DCA and DAP treatment. When cells were treated with 3 mM DCA

for 48 hours, the protein expression of PDK1 was significantly reduced (Fig 6A) indicating

that DCA could possibly be acting through inhibition of PDK1. Similar reduction in PDK1

protein levels was observed with DAP treatment (Fig 6B). We also found stronger expression

of PDK1 in hypoxic regions and vitreous seeds, therefore in additional experiments; we tested

the efficacy of PDK1 inhibition under hypoxic conditions. Cells (Y79, LRB1 and LRB2) were

maintained under hypoxia (0.5% O2 level) or treated with hypoxic mimetic cobalt chloride

and studied the expression of HIF1α, and PDK1. The expression of PDK1 and HIF1α was

induced in the presence of hypoxia and cobalt chloride; however, the expression of PDK1 has

decreased when cells were treated with DCA, but no change was observed in HIF1α levels (Fig

Table 1. Effect of DCA on lactate production in RB cells.

Lactate (ng/μL)

Control DCA (3 mM) DCA (10 mM)

Y79 5.05 2.96 2.28

LRB1 5.37 3.11 2.55

LRB2 7.50 3.38 1.95

Treatment of RB cells with DCA leads to decreased lactate production. RB cells were treated with DCA for

48 hours and lactate levels were estimated. Upon DCA treatment, lactate levels were found to be reduced

compared to control cells.

https://doi.org/10.1371/journal.pone.0177744.t001

Fig 5. PDK1 inhibition alters metabolic parameters. Y79 and retinoblastoma primary cells (LRB1and

LRB2) were treated with DCA and different metabolic parameters were measured. (A) Glucose uptake was

measured using 2-NBD glucose. (B) Reactive oxygen species (ROS) levels were measured using DCF-DA.

(C) ROS levels were measured by flow cytometry in response to inhibition with DAP. (D) RB cells were treated

with DCA and DCA+vitamin C and ROS levels were measured and compared to control cells. (E) RB cells

were treated with DCA and DCA+vitamin C and cell viability was measured and compared to control cells. *
Indicates significant difference (p<0.05) between control and treatment.

https://doi.org/10.1371/journal.pone.0177744.g005
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6C and S2 Fig). These data indicate that DCA treatment can alleviate changes associated with

tumor-mediated hypoxia. Further, our data elucidated the changes in Akt signaling pathway

after DCA treatment. Immunoblot assay revealed that DCA treatment led to reduced phos-

phoprotein levels of Akt (Thr308), whereas the total Akt levels remained unchanged (Fig 6D).

Overall, these data indicate that DCA can act by either reducing PDK1 levels and/or inhibiting

the Akt pathway.

Consensus HIF1, Hypoxia Responsive element, E2F and MYCN binding

elements are present in PDK1 gene sequence

We analyzed approximately 2 kb of DNA sequence upstream and downstream of transcription

start site of PDK1 for consensus transcription factor binding sites. Precisely, human genomic

contig NC_000002.12; and sequence from 172,553,960 to 172,557,892 was used for analysis.

Consensus binding sites for E2F transcription factors, HIF1α, hypoxia responsive element

(HRE) and MYCN were found in the sequence analyzed (S3 Fig), suggesting, PDK1 expression

is coupled to RB-E2F pathway axis.

Fig 6. Effect of DCA treatment on PDK1 protein levels and PI3K/Akt pathway in RB. (A) DCA treatment

decreases protein levels of PDK1. (B) Treatment of RB cells with DAP results in reduced levels of PDK1

protein. (C) Treatment of RB cells with DCA leads to decreased PDK1 protein levels under hypoxia. (D) DCA

alters the activity of PI3K/Akt pathway in RB cells.

https://doi.org/10.1371/journal.pone.0177744.g006
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Discussion

The present study for the first time demonstrated an elevated expression of PDK1 protein lev-

els in RB tumors especially in vitreous seeds and hypoxic regions, signifying that PDK1 could

be a potential therapeutic target in RB. The RB tumors with vitreous seeds and hypoxic regions

are considered difficult to treat [6]. Identifying pathways that get activated under hypoxia is

crucial for developing new drug targets. Our study showed that PDK1 inhibition could be a

potential therapeutic target in RB even under hypoxic conditions. Our sequence analysis

shows that PDK1 expression, possibly, is linked to RB-E2F pathway axis, and targeting PDK1

might result in sustained therapeutic response. In few earlier studies, the role of E2F transcrip-

tion factors in the regulation of metabolic enzymes has been documented [16–18]. Besides,

DCA treatment resulted in significant decrease in cell motility, which further argues in favor

of targeting PDK1 in RB. Earlier studies using RB tumor specimens showed an elevated ex-

pression of certain genes involved in metabolic reprogramming [19–21]. These studies hint at

targeting genes involved in altered metabolism for the treatment of RB. Consequently, inhibi-

tion of tumor cell growth using glycolysis inhibitor 2-deoxyglucose to control RB tumor growth

was successfully attempted in mouse models [22,23]. The inhibition of PDK1 by DCA was

achieved at millimolar concentration and is similar to other studies [24]. Further, DCA treat-

ment on PBMCs or retinal pigment epithelial cells did not show any significant loss of cell via-

bility indicating that DCA inhibition has no considerable effect on normal control cells, and a

therapeutic window to treat cancer cells specifically has been demonstrated. In additional exper-

iments we used a recently reported potent inhibitor of PDK1, dichloroacetophenone [15] and

showed that PDK1 inhibition could be achieved even at micromolar concentrations in RB and

this is especially interesting as it is always desirable to have an inhibitor that works at a lower

concentration. Therapeutic efficacy of PDK1 inhibition by DCA has been showed for other

tumors [25,26] including glioma [27], melanoma [28]. Further, the role of PDK1 and related

isoforms in drug resistance and disease prognosis has been documented—Elevated expression

of PDK1 was shown to be linked with malignant phenotype and poor prognosis in head and

neck squamous cell carcinoma [24,29]. Upregulation of PDK1 and PDK3 led to therapy related

drug resistance [30]. Overexpression of PDK3 and PDK4 was shown to be associated with drug

resistance and early recurrence in colon cancer cells [31,32]. Interestingly, it was noted that,

glioblastoma patients treated with DCA as an oral drug for 15 months in a clinical trial showed

tumor regression, radiological stabilization and good safety profile [33]. Also a phase 1 trial to

study DCA as a treatment in advanced solid tumors showed a decrease in (18) F-FDG uptake

with length of DCA therapy [34]. Based on our analysis of the studies cited above and our

results presented here strongly subscribe to the idea that PDK1 can be a target for controlling

RB cell growth.

Chemotherapy has been successful in controlling retinoblastoma in a majority of children.

However, it has been shown to have undesired side effects and also not all children respond to

chemotherapy. Nevertheless, currently chemotherapy cannot be replaced completely with new

drugs. But, combination of novel molecules with the existing chemotherapy may provide new

treatment options with increased cure rates. Therefore, we tested the combination efficacy of

DCA and carboplatin, a chemotherapy agent for RB in controlling RB cell growth. Our results

show that DCA enhances the chemotherapeutic efficacy of carboplatin. Previous studies using

combination of DCA and taxol were observed to have a synergistic effect on taxol-resistant

oral cancer cells [35]. Additional studies have established that DCA enhanced the therapeutic

efficacy of platinum compounds [36]. In addition, our study showed that inhibition of PDK1

led to increased apoptosis, decreased migration and changes in various metabolic parameters,
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signifying that inhibition of PDK1 could reverse certain changes associated with retinoblas-

toma tumor progression.

The inhibition of cell growth by DCA could possibly be because of several mechanisms.

Our data suggest that DCA achieved this desired inhibitory effect by two possible mechanisms,

1. by causing decrease in PDK1 protein levels, 2. by inhibition of PI3K/Akt pathway. Most

notably, DCA also reduced PDK1 protein levels in the presence of hypoxia. This is especially

interesting given the induced expression of PDK1 in hypoxic regions and vitreous seeds. How-

ever, the mechanism of action of DCA is still being investigated. DCA has been showed to

have effects on several proteins including HIF1, survivin [37] and BCL2 family of proteins

[38]. Further, DCA has been demonstrated to inhibit phosphorylation of Akt in colon cancer

cells [39]. In addition, PDK1 was recognized to stabilize PI3K/Akt pathway [15]. On the other

hand, Akt is also known to regulate MYCN—an important proto-oncogene in RB [40,41] and

glycolysis by several mechanisms [42,43]. Though several studies exist on mechanism of DCA,

it is still not clear how DCA can exert a plethora of effects. Based on literature and our study,

we propose that inhibition of PDK1 by DCA is through an effect of the drug on levels and

activity of PDK1, and PI3K/Akt/MYCN axis. This is supported by our finding that PDK1 pro-

moter has consensus MYCN motifs and HIF1 biding sites. In conclusion, our results suggest

PDK1 is overexpressed in RB and tumor growth could be attenuated by DCA treatment via

inhibition of PI3K/Akt pathway and decrease in PDK1 protein levels. However, DCA cannot

replace the existing chemotherapy, and we suggest that combination of DCA with chemother-

apy may be a potential therapeutic option in RB.

Supporting information

S1 Fig. Effect of DCA treatment on cell viability of (A) Peripheral blood mononuclear cells

(PBMCs) and (B) ARPE-19 cells.

(TIF)

S2 Fig. Effect of DCA and Cobalt Chloride treatment on PDK1 protein levels.

(TIF)

S3 Fig. Promoter analysis of PDK1. DNA sequence (2 kb) upstream and downstream of tran-

scription start site of PDK1 was used for analysis. The genomic contig NC_000002.12 and

sequence from 172,553,960 to 172,557,892 were used. +1 indicates transcription start site. Red

box–E2F binding site; Green box–HIF1 binding site; Yellow box: HRE binding site; Purple

box: MYCN motifs.

(TIF)
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