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Abstract

Scabies is a parasitic disease, caused by the mite Sarcoptes scabiei, and is considered one

of the top 50 epidemic diseases and one the most common human skin disease, worldwide.

Allergic dermatitis, including an intense itch, is a common symptom, however diagnosis is

difficult and there is currently no effective vaccine. The goal of this study was to examine the

immune interaction mechanism of both S. scabiei and infected hosts. mRNA-seq and micro-

RNA-seq were conducted on the S. scabiei mite and on infected and uninfected hosts. We

focused on differential expression of unigenes and microRNAs, as well as the real targets of

unigenes in enriched immune signaling pathways. S. scabiei enhanced host immune func-

tion and decreased metabolism after infection, while the immune response of the host inhib-

ited S. scabiei proliferation and metabolism signaling pathways. Differentially expressed

unigenes of S. scabiei were enriched in the JAK-STAT signaling pathway and the Toll-like

receptor signaling pathway. The differential expression analysis indicated that microRNAs

of S. scabiei and hosts have major roles in regulating immune interactions between para-

sites and hosts.

Introduction

Scabies, caused by the parasitic mite Sarcoptes scabiei, is an allergic skin disease that affects mil-

lions of people and mammals worldwide[1]. S. scabiei has a broad host range, capable of infect-

ing more than 100 species livestock and wild animals. It is listed as a neglected tropical disease

by the World Health Organization[1, 2], and is considered one of the top 50 epidemic diseases

worldwide. Additionally, it is one of the most common skin diseases in children[3–5]. Diagno-

sis is based on clinical characteristics; however, asymptomatic patients are often misdiagnosed

[6]. Scabies presents a significant public health burden, particularly in economically disadvan-

taged populations. Additionally, scabies could cause secondary bacterial infections, which

often followed by a series of other diseases, streptococcal infection for example, resulting in

chronic kidney disease[7–9]. S. scabiei mite could burrow into skins and results in itching, epi-

lation, and crusting of the wound for host[10, 11]. S. scabiei obtains nutrients from epidermal

cells and serum of its host[1], and infection may lead to loss of appetite, weight loss and death

of the host. S. scabiei also causes a global economic burden in animals[12].
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Previous research has focused primarily on diagnostic methods, acaricidal drugs, recombi-

nant protein antigen vaccines, and allergen proteins, such as cytokines and antibodies[8, 12–30].

There is currently no effective vaccine for the scabies mite, and treatments for animals include

application of chemical acaricides have resulted in resistance in target species and environmental

pollution[31]. Research exploring the immunopathogenesis and allergens of the scabies mite,

and host immunological protective mechanisms is warranted as these genes are potential targets

for vaccine development or are potential markers for diagnostic tests[12, 31, 32].

In this study, we examined the transcriptome and microRNAs in response to infection with

S. scabiei in order to resolve our understanding of the immune interaction between this mite and

a host species. This study explored the immune response of S. scabiei and host with transcrip-

tome and microRNA comprehensive analysis and provided a resource for the further research.

Methods

Host infection with Sarcoptes scabiei

New Zealand rabbits were provided by the Laboratory Animal Center of Sichuan Agricultural

University (Ya’an, China). Nine New Zealand rabbits were separated into three groups ran-

domly before infection, and all rabbits were housed under a barrier environment in sterile

cages and provided with pelleted food and sterilized water ad libitum. Rabbits were acclimated

to these conditions for one week prior to the experiment. Scabies mites (including adult,

nymphs and larvae) were provided by Sichuan Agriculture University’s Parasitology Labora-

tory. Two groups of rabbits were infected with same weight mites (approximately 2000 live

mites) on the surface of four feet and wrapped by gauze for 48h. For the first group, the mites

were collected and held starved for 12 h before being stored in liquid nitrogen. For the second

group, the mites, and the skin (with scraping) surrounding them, were collected and immedi-

ately stored in liquid nitrogen. The last group, uninfected rabbits were used as a negative con-

trol. Skin from the rabbits feet were collected and stored in liquid nitrogen (S1 Table).

All rabbits used in this study were 120 days old and weighed between 3–3�25 kg.

The Animal Ethics Committee of Sichuan Agricultural University (AECSCAU; Approval

No. 2011–028) had reviewed and approved this study. Animals were handled strictly according

to the animal protection law of the People’s Republic of China (released on 09/18/2009) and

the National Standards for Laboratory Animals in China (executed on 05/1/2002).

Isolation of total RNA

Total RNAs were extracted using a single step acid guanidinium thiocyanate-phenol-chloro-

form method with modifications. Samples (starved mites, embedded mites with infected host

skin, uninfected host skin) were pulverized by fine grinding in liquid nitrogen and were trans-

ferred to an ice-chilled guanidinium thiocyanate mix. After a 5 min incubation on ice, fol-

lowed by centrifugation at 4˚C, the RNA-containing supernatants were transferred to a new

tube and ethanol precipitation was conducted, followed by washing and dissolving in DEPC-

treated water. The RNAs were further cleaned by two phenol-chloroform treatments. RNA

was treated with RQ1 DNase (Promega) to remove DNA. Purity and integrity were assessed by

agarose gel electrophoresis (1.5%) and quantified by measuring the absorbance at 260/280 nm

on a SmartSpec (Bio-rad).

Library construction and transcriptome sequencing

For each sample, 10 μg of total RNA was used for RNA-seq library preparation. Polyadenylated

mRNAs were purified and concentrated with oligo (dT)-conjugated magnetic beads (Invitrogen)
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before used in directional RNA-seq library preparation. Purified mRNAs were iron fragmented

at 95˚C followed by end repair and 5’ adaptor ligation. Then reverse transcription was performed

with RT primers harboring 3’ adaptor sequence and a randomized hexamer. The cDNAs were

purified and amplified and PCR products corresponding to 200–500 bps were purified, quanti-

fied and stored at -80˚C until used for sequencing. The libraries were prepared with a RNA-Seq

Library Preparation Kit for Whole Transcriptome Discovery (GnomeGen, San Diego, CA, USA)

following the manufacturer’s instructions and sequenced on an Illumina Hiseq 2000 system

(Illumina, San Diego, CA, USA) using 2x100-bp paired-end sequencing.

The total RNA (3 μg) was used for microRNA cDNA library preparation with a Balancer

NGS Library Preparation Kit for small/microRNA (GnomeGen, San Diego, CA, USA) follow-

ing manufacturer’s instruction. RNAs were ligated to 3’ and 5’ adaptor sequentially, reverse

transcribed to cDNA and PCR amplified. Whole library was applied to 10% native PAGE gel

electrophoresis and bands corresponding to microRNA insertion were cut and eluted. After

ethanol precipitation and washing, the purified small RNA libraries were quantified with

Qubit Fluorometer (Invitrogen) and used for cluster generation and 36 nt single end sequenc-

ing analysis through the Illumina GAIIx (Illumina, San Diego, CA, USA).

RNA-seq data processing

Raw reads were discarded if they contained more than 2-N bases, then were processed by

removing the adaptor sequence and low quality bases, and discarding reads less than 16nt

using FASTX-Toolkit v 0.0.13 FastQC (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc)[33]. Sequences obtained from rabbit samples were aligned to the European rabbit’s

(Oryctolagus cuniculus) genome from Genbank (http://www.ncbi.nlm.nih.gov/Taxonomy/

taxonomyhome.html/index.cgi?chapter=howcite) using TopHat2[34]. Reads obtained from

starved and skin-embedded S. scabiei were combined for analysis. S. scabiei sequences were

assembled using Trinity[35] and annotation of the assembled transcript sequences was per-

formed using BLASTX algorithm and non-redundant protein database on NCBI, Nt and the

COG databases (http://www.ncbi.nlm.nih.gov/). An e-value of 1e-5 was designated as the cut-

off[36]. S. scabiei clean reads were aligned to unigenes and aligned reads with more than one

genome location were considered ambiguous and discarded. Uniquely localized reads were

used to calculate read number and RPKM value (reads per kilobase and per million) for each

gene based on reads and location of genes within the genome. Gene coverage and depth, and

read distribution around start codon and stop codon, were determined.

Functional enrichment analysis

Differentially expressed genes and unigenes were submitted to the Database for Annotation,

Visualization and Integrated Discovery (DAVID:https://david.ncifcrf.gov/) for enrichment

analysis[37]. Enrichment clusters were sorted by the enrichment score in descending order

and categories within clusters were sorted by p-value in descending order. Fold enrichment

with Bonferroni, Benjamini, and FDR corrected p-values were calculated for each category of

each cluster.

MicroRNA-seq data processing

Raw reads were discarded if they contained more than 2-N bases, and were processed by

removing the adaptor, low quality bases, and reads less than 12nt using FASTX-Toolkit v

0.0.13. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was used to verify

post-filtering read quality[38].
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MicroRNA-seq clean reads were aligned to the RNA family database (Rfam, v 11.0)[39] and

the microRNA database (miRBase, v19)[40] using Bowtie[41] with no more than 2-nt mis-

match. Only sequences in this study were selected. Both mature and hairpin microRNA refer-

ence sequences were used. First reads were aligned to mature microRNA sequences, and then

unmapped reads were aligned to reference hairpin sequences. Read number and tag per mil-

lion (TPM) values were obtained from the alignment. For each microRNA, we predicted the

target unigene using mature microRNA sequences and whole mRNA sequences (include cod-

ing sequences and untranslated regions) with the program Miranda[42].

Differentially expressed genes

Differentially expressed genes (DEG) and unigenes from both RNA and microRNA sequences

were analyzed to compare infected rabbit test samples and uninfected rabbit control samples,

using the R package, edgeR[43] based on the negative binomial distribution. Thresholds of

p< 0.01 and a 2-fold change were set to define DEGs.

RNA-seq and microRNA-seq comprehensive analysis

Using the predicted target unigenes from microRNA sequences and the differentially

expressed unigenes, we filtered the target unigenes using Miranda[42]. The potential target

unigenes and mRNA-seq DEG overlap were analyzed for possible real target unigene. In order

to understand the function of DE-microRNA target unigenes, we used the DAVID (https://

david.ncifcrf.gov/) online platform[37].

Allergen and hydrolase genes

To examine homologous allergen gene sequences between S. scabiei and three other mite spe-

cies, 287 allergen genes from Dermatophagoides farina, Dermatophagoides pteronyssinus, and

Euroglyphus mayne, were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/). Addition-

ally, we compared our mRNA-seq results with hydrolase genes by building a S. scabiei hydro-

lase gene library with the best match of homologous sequences.

Validation of mRNA-seq and microRNA-seq results by RT-PCR

According to the comprehensive analysis of mRNA and microRNA results, we validated the

unigenes and microRNAs which were enriched in immune signaling pathways, by RT-PCR

(Table 1). Although the differential expression of microRNA mmu-miR-146a-5p, mmu-miR-

181-5p have no corresponding immune pathways, they play an important role in the immune

system[44, 45]. We also validated the unigenes enriched in the Toll-like receptor signaling

pathway. RT-PCR were conducted with an MX300P Spectrofluorometric Thermal cycler

(Stratagene, US) and QPCRMasterMix SybrGreen (DBI, US), initiated with a 2 min incubation

Table 1. The immune pathways—Related microRNA of Sarcoptes scabiei.

Pathway name KO identifier microRNA

Toll-like receptor signaling pathway ko04620 tca-miR-1175-5p

Fc gamma R-mediated phagocytosis ko04666 hme-miR-190 cqu-miR-1175-5p

aae-miR-1175-5p tca-miR-1175-5p

isc-miR-276

Chemokine signaling pathway ko04062 tca-miR-1175-5p

Leukocyte transendothelial migration ko04670 isc-miR-276 tca-miR-71-5p

Apoptosis ko04210 hme-miR-190

https://doi.org/10.1371/journal.pone.0177733.t001

Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response

PLOS ONE | https://doi.org/10.1371/journal.pone.0177733 May 23, 2017 4 / 15

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.ncbi.nlm.nih.gov/
https://doi.org/10.1371/journal.pone.0177733.t001
https://doi.org/10.1371/journal.pone.0177733


at 95℃, followed by 40 cycles of 94℃ for 20 s; 58℃ for 20 s. The relative RNA expres-
sion levels were normalized by GAPDH.

Results

A total of 47,866,350 raw sequence reads were generated from the starved S. scabiei with

43,425,649 clean reads after filtering. S. scabiei embedded in host skin and infected host skin

samples resulted in 69,307,202 raw reads, and 63,528,716 clean reads after filtering. Skin from

uninfected rabbits resulted in 41,684,036 raw reads, and 38,114,803 clean reads after filtering. A

total of 51,694 unigenes were detected after assembly (Fig 1) and compared, using cluster analy-

sis, to 9,290 reference unigenes obtained from the Clusters of Orthologous Groups of proteins

(COGs) database (http://www.ncbi.nlm.nih.gov/) (S1 Fig). Of these, 14,198 (27.5%) clustered

with known gene functions (S1 Fig). The majority of reads, 62.99% and 64.87%, mapped to cod-

ing sequences for both infected and uninfected rabbits, respectively (S2A and S2B Fig).

Of the effective microRNA 81–84% mapped to the reference genome (S2 Table) with an

average of 36% constituting uniquely mapped reads, and the majority mapping to intergenic

regions (S2C and S2D Fig). The clean reads of microRNA were compared to Rfam database

using bowtie program, and classified the result according to the type of RNA, the clean reads

compared to 55–58%microRNA.

Fig 1. Distribution of the number of unigenes and read length in S.scabiei samples.

https://doi.org/10.1371/journal.pone.0177733.g001
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The transcriptome and microRNA datasets (raw reads) are available at the NCBI Bio Proj-

ect with the ID: PRJNA320671 and Sequence Read Archive under the following accession

numbers: SRS1432790, SRS1424964, SRS1432788.

Differential expression analysis

We identified 4,276 differentially expressed unigenes in S. scabiei, with 3,215 up-regulated and

1061 down-regulated (S3A Fig). The gene function clustering results of S. scabiei showed that

unigenes related to development, such as mitotic cycle and embryonic development, were up-

regulated (S3 Table), and protein kinase activity and ATP combination, phosphorylation and

redox enzyme activity were down-regulated.

Between infected and uninfected host rabbits there were a total of 467 differentially

expressed genes, with 295 up-regulated and 172 down-regulated (S3B Fig). The gene function

clustering results of infected and uninfected rabbit hosts demonstrated that cell adhesion, cell

surface receptors, cytokine production, interaction between cells, immune system regulation,

T cell proliferation differentiation, leukocyte proliferation differentiation and lymphocyte acti-

vatation, and ion related unigenes were up-regulated (S4 Table). Cytokine activation, immu-

noglobulin, signal peptide synthesis related genes were up-regulated and host energy

metabolism related genes were down-regulated.

MicroRNA

A total of 2,286,338 raw microRNA reads of starved S. scabiei resulted in 1,868,405 clean reads

after filtering. Host embedded S. scabiei and infected host skin samples resulted in 6,419,608

raw reads, and 4,703,417 after filtering. Uninfected rabbit skin samples resulted in 6,307,144

raw reads, with 4,219,963 clean reads.

A comparison of uninfected host microRNAs to starved mite microRNAs revealed low sim-

ilarity and 18 and 16 microRNAs were the same between host and parasite, respectively. There

were 447 differentially expressed S. scabiei microRNAs, with 358 were up-regulated and 89

were down-regulated, and 18 differentially expressed host microRNAs, with five up-regulated

and 13 down-regulated (S5 Table).

RNA-seq and microRNA-seq comprehensive analysis

Using the predicted target unigenes of microRNA and differentially expressed microRNAs, we

filtered target unigenes of S. scabiei. A total of 3,703 microRNA target genes were down-regu-

lated, while 17,111 were up-regulated. Additionally, the potential target unigenes and mRNA-

seq DEG overlap were analyzed and functional clustering results demonstrated that S. scabiei
down-regulated microRNAs corresponding to up-regulated target unigenes were enriched in

sugar and protein hydrolases, cell morphological differentiation, actin filament, and post-

embryonic development signaling pathways (S6 Table). While hydrolytic enzymes play an

important role in feeding and invasion of S. scabiei, indicating that the microRNAs are very

important in regulating invasion and feeding of S. scabiei. Host down-regulated microRNAs

corresponding to up-regulated target genes were enriched in synthesis of cell surface receptors

and signal transduction, regulation of leukocyte, lymphocyte, T cell activation, and regulation

of immune system signaling pathways (S7 Table).

Validation of mRNA-seq and microRNA-seq results by RT-PCR

The results of RT-PCR indicated differential expression of the analyzed microRNA and uni-

genes (Fig 2), consistent with the results of mRNA-seq and microRNA-seq data. This results
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validated expression data and verified the reliability and accuracy of our mRNA-seq and

microRNA-seq analysis. Immune signaling pathway-related microRNAs and unigenes corre-

sponding to Toll-like receptors signaling pathway were validated by RT-PCR (Table 1, S8

Table).

Allergen and hydrolase genes

A total of 287 allergen genes from three species of mites were investigated for homologous

sequences. We found 17 homologous sequences from E. mayne (S9A Table), 141 from D. pter-
onyssinus (S9B Table), and 580 from D. farinae (S9 Table). Additionally, we found 264 hydro-

lase unigenes of S. scabiei (S10 Table).

Fig 2. RT-PCR validation of the differentially expressed unigenes and microRNAs from Illumina sequencing. The relative expression levels of toll

like receptor signaling pathway related unigenes and immune signaling pathways related microRNAs were determined by RT-PCR using cDNA as template.

https://doi.org/10.1371/journal.pone.0177733.g002
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Discussion

Differential expression of genes

Scabies mites, S. scabiei, are obligate parasites that infect their host by burrowing into the skin.

It is in the skin where they obtain their nutrients and undergo cell mitosis and embryonic

development[15].

Mites burrow into skin and cause an intensely pruritic rash, crusted scabies may weaken

the immunity of hosts, lead to skin damage on a large scale. S.scabiei can also facilitate second-

ary infection such as bacterial infections[46, 47]. Diagnosis depending on clinical symptoms is

hard to distinguish scabies from hairless tinea, lice, crab lice and eczema because of the similar

symptoms[48, 49]. Recent researches on immunity response among scabies mites and host

have mainly focused on cytokines and antibodies[50–52], and high-throughput sequencing

has not been applied to the analysis of the skin immune response. Since the affiliation between

parasites and their hosts, and a significant a public health concern, this study explored the

immune response of S. scabiei and host with transcriptome and microRNA comprehensive

analysis.

After infection, host species exhibit loss of appetite, listlessness, inflammation, itching and

crusting at the site of invasion[1, 7, 8]. We found that glycolysis, metabolic, and oxidation

capacity-related genes of infected hosts were down-regulated, which may lead to some clinical

symptoms. However, proliferation and differentiation of T cell and leukocyte, and activation

of lymphocyte related unigenes were up-regulated, indicating that the host generates an

immune response to resist invasion by the mite. The up-regulation of cytokine activation,

immunoglobulin synthesis, and signal peptide synthesis related genes in infected hosts would

lead to an increase secretion of cytokines and immunoglobulin in host serum.

We found that infection leading to up-regulation of S. scabiei unigenes related to increased

cell proliferation and division, which would cause faster growth of the mite. Host immune

response to infection are likely leading to down-regulation of the ATP combination, phos-

phorylation, redox enzyme activity and protein kinase activity related unigenes of S. scabiei.
These unigenes are related to metabolism, membrane transport and intracellular signal trans-

duction, suggesting that the metabolism and the body proliferation related genes of S. scabiei
are inhibited by the immune response of the host.

Additionally, epidermal growth, vesicle mediated transport, and protein kinase mediated

related unigenes were up-regulated, indicating that S. scabiei absorbs nutrients and excretes

metabolic product related unigenes which are up-regulated due to S. scabiei feeding and grow

within the host skin. S. scabiei secretions, feces, and the mites themselves, can be a trigger to

the host immune response after invasion.

Differential expression of microRNA

At the posttranscriptional level, microRNA plays a major role in the regulation of genome

expression, regulating a variety of biological processes, such as maintenance of immune

homeostasis and normal immune function[53]. MicroRNAs make a great importance in con-

trolling the physiological, development and pathological processes, including cell proliferation,

cellular differentiation and tumor generation[54–57]. MicroRNAs influence both innate and

adaptive immune response[54] and may regulate the interaction of parasite and host, or drug

resistance[58, 59]. MicroRNA impact the target gene in different ways, the immune pathway

corresponding microRNA differential expression, immune pathway corresponding target

genes differentially expression simultaneously according to the transcriptome and microRNA

comprehensive analysis. Of the target unigenes of microRNAs enriched in immune signaling
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pathways we listed, three microRNAs were down-regulated. It showed that the expression of

microRNA affects the expression of a target gene, which played a role in the activation or inhi-

bition pathway. Indicating that microRNA play an important role in S.scabiei and host

immune interactions in this study. The differential expression analysis of microRNAs provide

a better understanding of the interaction between S. scabiei and host.

Immune signaling pathway

In this study, S. scabiei and host DEGs were enriched in immune-related signaling pathways. S.

scabiei DEGs were also enriched in JAK-STAT pathways, but neither in the immune deficiency

pathway nor the toll signaling pathway, in spite of their role in the innate immune response[38,

60–62]. The JAK-STAT pathway influences, neutrophils and macrophages activation, inflam-

matory response and wound repair controlling has been indicated in the adaptive immune sys-

tem by regulating the differentiation of B cells and T cells[63] and has been reported to be the

main signaling pathway of the insect innate immune system. We found that eleven unigenes of

toll-like receptors signaling pathway had been up-regulated, which indicated that this pathway

is triggered upon infection and may be the main pathway in innate immune response. The

expression of the eleven unigenes were validated by RT-PCR, the results showed that consistent

unigenes expression has increased after infection, which has also indicated that the immune

response was triggered because of the immune response of host. Our analysis of immune path-

way in response to infection with S. scabiei has resulted in a better understanding of immune

interaction of this parasite and host.

Allergens of Sarcoptes scabiei

The biological, chemical and structural properties of dust mite allergens have been widely

studied, about 21 dust mite allergens has a known allergen structure and can produce recombi-

nant proteins, which may be useful to new diagnostic methods, or development of new drugs

or vaccines[12, 64]. Dust mite and scabies mites have antigenic cross-reactivity[65, 66], there-

fore identifying homologous allergen genes in dust mites will allow us to identify these allergen

genes in S. scabiei. A number of scabies mite allergen genes have known sequences homologies

to house dust mite allergens including tropomyosin[14], serine proteases and cysteine prote-

ases[21], glutathione S-transferase and apolipoprotein M-177[17]. 61 allergen unigenes had

been predicted in transcriptome of Sarcoptes scabiei canis[67], and groups of allergen genes

had been selected from the draft genome of the scabies mite[9]. Here we compared the

mRNA-seq results with dust mite allergen and found 738 homologous allergen unigenes.

Hydrolases of Sarcoptes scabiei

S. scabiei down-regulated microRNAs corresponding to up-regulated target unigenes which

were enriched in sugar and protein hydrolase signaling pathways. This suggests that hydrolases

are momentous in the immune interaction of S. scabiei and their hosts. Aspartic protease, pro-

duced by S. scabiei, plays a major role in the digestion of serum molecules and host skin[17].

Additionally, in Psoroptes ovis mites, a series of proteases are produced with anticoagulant

effects that aid in degradation of fibrinogen, which ensures a continuous flow of host fluids

during feeding[68]. Most of the house dust mite allergens are proteases, and the hydrolysis of

these proteases promotes inflammation and aggravates allergic reactions[69–72]. Conse-

quently hydrolases may play an important role in S. scabiei invasion and survival. Here we

have compared the mRNA-seq results of S. scabiei, and built a hydrolase gene library which

includes 264 hydrolase unigenes of S. scabiei.
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By comparing the transcriptome and microRNA data we obtained a large number of differ-

entially expressed genes and microRNA and the target genes of microRNA. The screened aller-

gen genes will provide a support for further study on allergen functional characterization.

Furthermore when comparing them to the hydrolase gene, some unigenes were both allergen

and hydrolases, future studies identifying these allergens are warranted.

Conclusion

With the comprehensive analysis of mRNA-seq and microRNA-seq results, we found that S.

scabiei enhanced post-infected host immune function, decreased its metabolism. The immune

response of host inhibited S.scabiei immune pathway, proliferation and metabolism signaling

pathways. Simultaneously, we filtered a number of allergen and hydrolase unigenes, and it can

be inferred that there existed unknown allergens in the hydrolase unigenes. Interestingly, it

has been reported that the toll pathway, the immune deficiency pathway and JAK-STAT sig-

naling pathway are the mainly signaling pathway of insect innate immune response. But in

this study, the KEGG pathway analysis exhibited that the DEGs of S.scabiei enriched in JAK-

STAT signaling pathway and Toll pathway but not in the immune deficiency pathway. More-

over the verification of the toll-like receptors signaling pathway indicated that it may be the

mainly pathway in innate immune response of S.scabiei. The analysis of immune pathway,

hydrolase and allergen will make a contribution to the research of S.scabiei pathogenesis, diag-

nosis and vaccines.
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