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Abstract

Overweight and obesity are highly prevalent in the population of the United States, affecting

roughly 2/3 of Americans. These diseases, along with their associated conditions, are a

major burden on the healthcare industry in terms of both dollars spent and effort expended.

Volitional weight loss is attempted by many, but weight regain is common. The ability to pre-

dict which patients will lose weight and successfully maintain the loss versus those prone to

regain weight would help ease this burden by allowing clinicians the ability to skip treatments

likely to be ineffective. In this paper we introduce a new windowed approach to the persistent

homology signal processing algorithm that, when paired with a modified, semimetric version

of the Hausdorff distance, can differentiate the two groups where other commonly used

methods fail. The novel approach is tested on accelerometer data gathered from an ongoing

study at the University of Michigan. While most standard approaches to signal processing

show no difference between the two groups, windowed persistent homology and the modi-

fied Hausdorff semimetric show a clear separation. This has significant implications for clini-

cal decision making and patient care.

Introduction

As medical monitoring devices continue to grow in complexity and shrink in size, both the

number of possible concurrent measurements and the size of the observable population

increase. These factors in turn result in a rise in the amount of data available for analysis,

which is driving the need for new processing algorithms. The sheer volume of recorded values

makes it difficult to process within a relevant timeline using conventional means, and the

intricacies of some of the more obscure variables makes them difficult to interpret at all.

Because of this, the need for novel signal processing algorithms that can detect and highlight
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underlying subtleties and features is becoming ever more apparent. Weight management is

one area in which new methods could be applied to great effect. Overweight and obesity

among Americans are highly prevalent, affecting roughly 2/3 of the country’s population [1].

Obesity is a major risk factor for cardiometabolic diseases such as type 2 diabetes, hyperten-

sion, obstructive sleep apnea, and a variety of other disabling conditions, all of which combine

to an impressive burden on the healthcare industry not only in terms of dollars spent but also

effort and time expended. Volitional weight loss is attempted by the majority of obese individ-

uals, but a variety of neurobehavioral mechanisms are activated following weight loss that

result in weight regain in most instances [2]. However, in most controlled weight loss

studies, a proportion of individuals can maintain a significant weight loss [3, 4]. To date, no

definitive factors have been identified that can predict weight loss or weight regain. With the

emerging monitoring capabilities, though, datasets large enough to investigate are becoming

possible. The ability to differentiate between patients who will maintain weight loss and those

prone to weight regain would not only allow for a greater understanding of the biology of obe-

sity but also provide a path to tailored interventions in the population. Early interventions in

those at high risk have been shown to reduce the risk of diseases such as those mentioned

above [5].

This problem, along with many others in the clinical setting where time-series measure-

ments are to be analyzed, stands to benefit from advanced signal processing. A common prac-

tice in the medical field, various signal processing algorithms have been applied to a wide

variety of situations. From heart rate monitoring to myoelectric signal classification, various

techniques are used to analyze time series data. Feature extraction has proved to be an effec-

tive approach, commonly used in health applications, and involves calculating variables char-

acteristic of the signal. Another approach, direct comparison methods, analyzes and

compares raw signals simultaneously. The power, entropy, and average value of a signal are

three common features used in signal processing, and the Pearson correlation coefficient is

used when comparing signals and samples directly. The currently used methods, while effec-

tive in many applications, cannot always differentiate between two sets of similar signals in

complex health applications, especially when the differences among signals are subtle. Indeed,

the main shortcoming of existing models in predicting weight maintenance is a clear lack of

effective computational approaches to mining available data. Instead, most of the existing

predictive models of obesity are based on correlation of weight regain/loss with only a

small amount of basic patient information, which result in models with limited predictive

capabilities. For instance, a major factor that can help lead the personalization of treatments

for obesity is estimation of the type and level of physical activities. However, the motion sig-

nals, when analyzed with the conventional signal processing methods, have failed to produce

accurate and robust prediction results. The complexity of the data collected for any one

patient, let alone that found in the collective data of a large study groups, demands more

advanced computational techniques that can extract these subtle patterns and distinguish

sub-classes of weight loss and regain. In this study we describe a new approach in signal pro-

cessing that can detect subtle changes in the behavior of complex signals, in particular

motion time-series, and as such distinguish between patient cohorts with different clinical

outcome. The proposed approach is based on our extended formulation of the persistent

homology theory and introduction of a modified, semimetric version of the Hausdorff dis-

tance to analyze data in the feature space [6–12]. We apply and demonstrate the efficacy of

the proposed computational methods in differentiating between various levels of weight loss

maintenance.
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Materials and methods

Data

This study was reviewed and approved by the University of Michigan Institutional Review

Board and all study participants provided written, informed consent. Additionally, after data

collection, all data files were de-identified and curated prior to analysis. In this study, we

exploit the unique infrastructure and database of the University of Michigan Weight Manage-

ment Program clinic (MWMP), a demonstration unit of the NIH-funded Michigan Nutrition

Obesity Research Center. This study was reviewed and approved by the Institutional Review

Board of the University of Michigan (HUM00030088). The MWMP is a structured two-year,

multicomponent, multidisciplinary lifestyle intervention which employs intensive caloric

restriction for the first 12 weeks to promote 15% weight loss, followed by interventions and

routine follow-ups to support long-term behavior change in diet and physical activity [13].

Participants completed a battery of clinical, psychological and metabolic assessments before

(baseline)—Phase 1, after intensive weight loss (3–6 months)—Phase 2, and at the end of two

years—Phase 3. In addition, participants were routinely asked to wear a tri-axial accelerometer

that also measures galvanic skin response and near body ambient temperature (BodyMedia

SenseWear armbands, http://www.bodymedia.com) for a period of 7 days, only removing the

monitor to charge it while participating in water activities (e.g. showering, swimming). Each

test yielded an individual file, which resulted in a large number of disparate data sources for

each participant. Each individual, before testing began, gave his or her informed consent that

the collected data be used for research purposes. In addition, after collection, all data files were

de-identified and curated prior to analysis. This pre-processing also involved automatic and

manual error-checking. Once all the relevant patient data were parsed, the files were spot-

checked for inconsistencies. This was done by plotting various data values from numerous par-

ticipant files and checking for outliers.

While worn, the armbands recorded the number of peaks in the accelerometer signal, once

per minute, for each of three dimensions: transverse, forward, and longitudinal. These three

numbers were summed each minute, resulting in a roughly week-long general movement pro-

file for each individual. In this study, only participants who wore the device for at least 7000

minutes are included. This meant each individual wore the device for at least 16.5 hours per

day for the full week, or approximately 23 hours per day for five days. This number was chosen

as it yielded as long a signal as possible while including as many participants as possible. Any

participant for whom 7000 minutes of data were not recorded was excluded from this analysis,

as well as those that had not yet progressed far enough into the study to have measurable

results. Each included signal was cropped at the 7000 minute mark, resulting in a uniform

length across all studied movement profiles. This was done for a number of reasons: the set

length allowed for uniform mapping of the data without the need to stretch or skew the signals,

preventing any interference from different time resolutions; no signal included more potential

information than another, as they were all of equal length. A final inclusion requirement was

that the participant be classified as a ‘success’ or ‘failure’. As the specific aim of this study was

to predict weight-loss maintenance, each participant was given a label based on weight loss

and regain. If an individual failed to lose at least 15% of his or her starting body weight

between Phase 1 and Phase 2, that person was labeled a ‘failure’. Those who succeeded in

achieving that goal, and who finished Phase 3 at a weight no greater than 90% of his or her

starting weight, were labeled a ‘success’. Any individual who completed the study without

maintaining at least a 10% weight loss was considered a ‘failure’. As a result, the individuals

included in the study had all successfully completed at least Phases 1 and 2, and some had fin-

ished Phase 3. Accounting for all of the above criteria, 100 participants were included in this
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study. This cohort consisted of 36 males and 64 females with an average age of 50 ± 9 years

old.

Next, our computational analysis based on persistent homology is described. A windowed

formulation of persistent homology was used to extract characteristic features from the data

from each participant. These features, represented as persistence diagrams, were then used to

predict success. The ability of persistent homology-based features to predict success/failure

was statistically analyzed, as described later.

Signal analysis using persistent homology

Persistent homology is a broad mathematical theory, and one of its applications is examining

how the characteristics of an object in a space change based on the spatial resolution used to

examine the object. As the resolution changes, persistent homology features, representing the

special characteristics of the object, quantify these changes. The transitions in these features

can be studied to help develop a better understanding of the object. When applied to time

series as objects, persistent homology can be used to extract features of a signal representing

the changes in the characteristic patterns of variations observed in the signal at different reso-

lutions [14–21]. Specifically, the persistent homology algorithm converts a signal into points

scattered across a min-max plane. By treating each minimum in a time-series as the ‘birth’ of a

feature and each maximum as a ‘death’ it is possible to examine the significance of a trend by

the persistence of its corresponding min-max pairing. Larger differences between two extrema

correspond to more pronounced variation, and any resulting points will be farther from the y
= x diagonal. Conversely, a point closer to the diagonal represents a smaller magnitude of

change and is more likely to be noise. The resulting min-max plot, or ‘persistence diagram’,

represents the characteristics of the input sequence and can be used to compare the differences

between the patterns and variations of signals. This information can also be visualized in a

‘barcode’ format, as described in [22]. The process, including the derivation of the persistence

diagram, is as follows:

Suppose that f is a real-valued function on the discrete set {1,2,. . .,n}. To make notation

convenient, we also define f(0) =1 and f(n+1) = −1. Also, we modify f to define a function ~f
defined by ~f ðiÞ ¼ f ðiÞ þ εi where ε> 0 is infinitesimal. We define the function-value ordering

v on {0,1,. . .,n+1} as follows. If 0� i, j� n+1 then we define iv j if ~f ðiÞ � ~f ðjÞ. Equivalently,

we have iv j if f(i)<f(j), or f(i) = f(j) and i< j. The relationv on {0,1,. . .,n+1} is a total order-

ing. So for all i and j we have:

1. iv i;

2. iv j or jv i;

3. if iv j and jv i, then i = j;

4. if iv j and jv k then iv k.

We also write i⊏ j if iv j and i 6¼ j. Define the set of local minima and maxima by

Emin ¼ fi j 1 � i � n; i ⊏ i � 1; i ⊏ iþ 1g ð1aÞ

Emax ¼ fi j 1 � i � n; i � 1 ⊏ i; iþ 1 ⊏ ig ð1bÞ

respectively.

Lemma 1. The sets Emin and Emax have the same number of elements.
proof. It is not hard so see that the smallest element of the set of extrema E = Emin [ Emax

with respect to the ordering� lies in Emin. Also, the largest element lies in Emax. It is also
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elementary to see that local maxima and local minima alternate. So the number of local max-

ima and local minima is the same.

By the lemma, there exists r, a1, a2,. . .,ar, b1, b2,. . .,br such that Emin = {a1, a2,. . .,ar} and

Emax = {b1, b2,. . .,br} such that a1⊏ a2⊏ � � �⊏ ar and b1⊏ b2⊏ � � �⊏ br. The proof of the

lemma shows that there are permutations τ and γ in the symmetric group Sr such that

atð1Þ < bgð1Þ < atð2Þ < bgð2Þ < � � � < atðrÞ < bgðrÞ:

Lemma 2.We have ai⊏ bi for all i.
proof. It is clear that aτ(i)⊏ bγ(i) for all i. For j� i we have aγ−1 τ(j)⊏ bjv bi. So at least i of

the a’s are smaller than bi with respect to⊏. This implies that ai⊏ bi.
If a; b 2 R then we define

ða; bÞ ¼
fx 2 R j a < x < bg; if a � b

fx 2 R j b < x < ag; if a > b

(

ð2Þ

We define a permutation σ 2 Sr and sets U1,U2,. . .,Ur inductively as follows:

Uk ¼ i j 1 � i � r; ai ⊏ bk; i=2fsð1Þ; sð2Þ; . . . ; sðk � 1Þgf g ð3Þ

and

sðkÞ ¼ maxfi j i 2 Uk and for all j 2 Uk with j < i we have aj=2ðai; bkÞg: ð4Þ

By Lemma 2, the set Uk is nonempty.

Definition 1. The persistence diagram associated to the function f is

fðf ðasð1ÞÞ; f ðb1ÞÞ; ðf ðasð2ÞÞ; f ðb2ÞÞ; . . . ; ðf ðasðrÞÞ; f ðbrÞÞg:

The mathematical complexity of the persistent homology approach formulated above

might mask its great conceptual potentials to analyze complex signals. Below is a graphical

illustration and explanation of this method. As shown in Fig 1, first a given signal is plotted

and all local extrema (maxima and minima) are identified. A square plot in the min-max plane

is generated and placed such that the vertical axes align between the two graphs, and the line

y = x is drawn (Fig 1a). Starting with the smallest minimum (in this case, point 1), a mark is

placed on the min axis of the second graph corresponding to the minimum’s y value (Fig 1b).

Each local extremum is considered, moving from smallest to largest, and for each minimum

another mark is placed (Fig 1c). When a maximum is encountered, that point’s y value is

paired with the mark from the most recent minimum, as long as there is no other maximum

between the two points. If such a maximum exists, the second most recent minimum is consid-

ered, and the process continues until a suitable pairing is found (Fig 1d). The next extremum

is then considered, and the algorithm proceeds until all points are paired (Fig 1e). In the event

that there are more minima than maxima (or vice versa), the point with the largest x value in

the larger set is dropped. Once completed, the points in the min-max plane constitute the sig-

nal’s persistence diagram (Fig 1f). As it can be seen, starting from a time-series, persistent

homology creates a pattern of dots in the max-min plot that represent the variations of the

signal.

These min-max patterns represent how the variations in signals can be used, as described

later, to effectively distinguish between different types of signals (e.g. signals representing ‘suc-

cess’ and those representing ‘failure’). Next, we describe our method of distinguishing between

different patterns/signals by using a measure that quantifies the disparity between different

min-max plots.

Application of windowed persistent homology in analysis of obesity

PLOS ONE | https://doi.org/10.1371/journal.pone.0177696 May 12, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0177696


Assessment of feature space using modified Hausdorff semimetric and

Wasserstein distance

The persistent homology method can be used either as a stand-alone analysis tool or as a com-

parative metric. For the former case, the persistence diagram can be examined and features

extracted, and for the latter two persistence diagrams can be compared in a number of differ-

ent ways. For this study, persistent homology was used to compare different armband activity

signals. However, calculating and comparing the persistence diagrams for the full 7000 points

from each input is not only computationally expensive but also masks some important pat-

terns in parts of the signals due to the averaging effect. Moreover, for such long signals, not

only would the persistence diagrams be extremely dense but any order to the signals would be

lost: points generated by pairings of extrema from the beginning of one signal could be near

points generated by extrema at the end of the second signal. In addition, the dots themselves

may result in inaccurate interpretation or analysis of the signal. For instance, pairing a mini-

mum from near the beginning of the signal with a maximum from near the end would be relat-

ing two otherwise independent measurements: the activity from the first point would be

entirely separate from the activity that generated the second. As such, comparing the persis-

tence diagrams of two long signals would yield little valuable information. To solve this

Fig 1. Persistent homology.

https://doi.org/10.1371/journal.pone.0177696.g001
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problem the armband signals were first broken into windows and the algorithm was applied to

each window. This had the added benefit of decreasing the computational time of our imple-

mentation by a factor of over 300.

In this study we designed and implemented a windowed based approach to persistent

homology to address the above mentioned issues. Specifically, each 7000-point signal was bro-

ken into 350 windows, each containing 20 points. This was done by simply splitting the origi-

nal signal into equally-sized standalone segments using a rectangular window: no overlap or

tapering was used. The window size was chosen because it allowed for reasonable variation

within a window while at the same time ensuring that any two paired points would be closely

related in time. A persistence diagram was calculated for each window, and corresponding

windows from two signals were compared (i.e. the first window from each signal was paired,

followed by the second, etc.).

Various metrics exist for calculating the distance between two sets of points, including the

Hausdorff distance and the q-th Wasserstein distance. The latter is defined in [23] between

two sets A and B as:

WqðA;BÞ ¼ inf f :A!B
X

a2A

jja � f ðbÞjjq
1

" #1=q

ð5Þ

where f is the set of all bijections X! Y. When q = 1, this metric reduces to the minimum pos-

sible sum of the distances between each point in X and its corresponding point in Y. By allow-

ing points to map to the y = x line, any contribution from noise is minimal. The Hausdorff

distance dH is calculated as:

dHðA;BÞ ¼ maxfsup
a2A

min
b2B

dða; bÞ; sup
b2B

min
a2A

dða; bÞg ð6Þ

where d(a, b) is the Euclidean distance between points a and b. However, this method is quite

sensitive to outliers: one anomalous point in either set could greatly skew the measured value.

Due to the stochastic and noisy nature of the data being examined, the metric used to compare

two persistence diagrams had to be tolerant of such deviations and outliers; if it was not, one

large peak caused by on outlier could alter the distance. This led us to the use of a modified,

semimetric version of the Hausdorff distance [12]. Replacing the inner suprema with an aver-

age gives:

dmHðA;BÞ ¼ max
1

jAj

X

a2A

min
b2B

dða; bÞ;
1

jBj

X

b2B

min
a2A

dða; bÞ

( )

ð7Þ

This metric is much more tolerant of outliers as they are included as one part in a general

sum and not the only representative number. However, as noted in [12], this version is not a

true distance metric as it does not satisfy the triangle inequality. As such, because it satisfies

the other distance metric requirements, this comparison qualifies as a semimetric.

Results

To begin, the power of each raw armband data was calculated (Table 1). This rather simple

and intuitive feature is often used in analysis of activity signals as a main characteristic number

describing the data. In this study, however, there is no measurable difference between the

power of a participant labeled as a failure and that of a participant labeled as a success

(p = 0.326). The sample size was 100, of which 79 were labeled ‘failures’ and the remaining 21

were considered ‘successes’.
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The entropy and average of signals, also popular in assessment of activity signals, were cal-

culated and analyzed as well (Table 1). Entropy as a measure of disorder and information can

often distinguish between functional classes of data, in particular when dealing with biomedi-

cal signals, and is heavily used in the signal processing literature. However, as in the case of

power, there was no significant difference between the failure and success groups (p = 0.608

and p = 0.262, respectively).

As a final check using current established methods, correlation coefficient calculation was

used to analyze the data. For this, each signal was compared to every other signal in the pool

and a correlation value was obtained. When armband data from two individuals labeled as fail-

ures were compared, the resulting signal was placed into a ‘failure vs failure’ group (N = 3081);

likewise, when the movement profiles of two successes were compared, the result was placed

into a ‘success vs success’ group (N = 210). When comparing two ‘failure’ signals, the average

correlation coefficient was 0.0712, while the average for comparing two ‘success’ signals was

0.0992. While the standard deviations were relatively high, as shown in Table 2, there was a sta-

tistically relevant difference between the groups (p = 0.006).

Comparing the ‘failure vs success’ group (N = 1659) to the ‘failure vs failure’ group yields

another statistically significant difference (p = 0.0004), but comparing it to the ‘success vs suc-

cess’ group does not (p = 0.1968). This indicates that the failures share less intra-group similar-

ities than do the successes, but the second two cases are indistinguishable under this metric.

Next, the armband data of each of the 100 participants was compared to every other file

using our proposed windowed persistent homology method. Persistence diagrams were gener-

ated for each of the 350 windows extracted from a signal. These plots were compared to corre-

sponding plots from a second signal using the modified Hausdorff semimetric, and a single

number was noted for each window. The result of the algorithm, when applied to two arm-

band/activity files, was a new signal with a length of 350 points, corresponding to the distance

between the two input plots over time. The top of Fig 2 shows two armband signals plotted

together, one drawn in red and the other in blue. Plotting the measured distance between two

corresponding windows over the course of the analysis yields the signal shown in the bottom

of Fig 2.

The average value of the resulting signal was placed into a group based on the input signals,

again separating ‘failure vs failure’, ‘failure vs success’, and ‘success vs success’. The average of

Table 2.

Correlation (p = 0.006) Average Standard Deviation

Failure vs Failure 0.0712 0.1431

Failure vs Success 0.0864 0.1376

Success vs Success 0.0992 0.1158

https://doi.org/10.1371/journal.pone.0177696.t002

Table 1.

Label Average Standard Deviation

Power (p = 0.326) Failures 196205 56942

Successes 182888 46034

Entropy (p = 0.608) Failures 0.6560 0.1433

Successes 0.6732 0.1037

Average (p = 0.262) Failures 289.9 57.1

Successes 274.3 53.0

https://doi.org/10.1371/journal.pone.0177696.t001
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these averages was then calculated and this was used as the characteristic value for each group

(Table 3). Using an unpaired t test, the analysis showed that there is a statistically significant

difference between not only the two main groups (p = 1.505−23) but between any two of the

three (p = 1.661 × 10−28 and p = 5.715−9 for ‘failure vs failure’ vs ‘failure vs success’ and ‘failure

vs success’ vs ‘success vs success’, respectively). It should be noted that the smaller average dis-

tance between successes when compared to that between failures is further strengthened by

the correlation analysis: while the coefficients were small, the successes tended to be more

highly correlated with one another than did the failures.

Fig 2. Data analysis.

https://doi.org/10.1371/journal.pone.0177696.g002
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These results were consistent across variations in window size: values from 15 to 25 were

also tried, with p-values no worse than an order of magnitude higher (p = 1.170 × 10−8 for ‘fail-

ure vs success’ vs ‘success vs success’ with a window size of 16); some comparisons were more

significant. Additionally, the method was implemented on ‘blind’ files in which the labels were

randomly generated. With this random distribution there were no statistically significant dif-

ferences between the groups (average p = 0.113 over 100 trials for the main pairing), further

reinforcing the notion that our method is capturing some difference in the underlying struc-

tures of the signals.

Finally, we applied the same approach but this time used the q-th Wasserstein true distance

metric to compare the persistence diagrams (q equal to one; code provided by [23] was used).

As show in Table 4, the results are again statistically significant when comparing the ‘failure vs

failure’ group to the ‘success vs success’ group (p = 1.231 × 10−5). While comparing the

‘failure vs failure’ cohort to the ‘failure vs success’ set also yields a significant difference

(p = 6.181 × 10−7), it should be noted that both p-values are larger than their counterparts

obtained using the semimetric. In addition, this true metric does not detect a measurable vari-

ation between the ‘failure vs success’ and ‘success vs success’ groups (p = 0.012). When run

with randomly generated labels, the results are once again not significant for any combination

of groups (average p = 0.084 over 100 trials for the main pairing).

Despite the lack of complete statistical significance between all pairs, the pattern of higher

intra-group similarities in the successes than the failures is continued. This, combined with the

results of the ‘blind’ files, lends even more credence to the claim that there is an underlying dis-

parity between the behaviors of the two groups.

Discussion

Fig 3 shows an example comparison from each of the three groupings. As shown in the plots,

the general movement profile recorded by the armband sensors varies more heavily within the

failure group than in the success group. Intuitively, this indicates that those destined to fail

behave in a variety of different ways while those who will lose weight and maintain the loss

share a more unified pattern of behavior. The general topographical structures present in the

signals represent these overall patterns of activity and are captured in the persistence diagrams;

in this sense, persistent homology is ideally suited to uncovering the underlying differences.

Because of the larger variation present across the movement profiles of the ‘failures’, the

Table 4.

q-Wass. (p = 1.241 × 10−5) Average Standard Deviation

Failure vs Failure 711.88 63.17

Failure vs Success 702.63 56.36

Success vs Success 692.48 44.47

https://doi.org/10.1371/journal.pone.0177696.t004

Table 3.

Per. Hom. (p = 1.505 × 10−23) Average Standard Deviation

Failure vs Failure 378.27 64.79

Failure vs Success 356.99 58.59

Success vs Success 332.58 41.29

https://doi.org/10.1371/journal.pone.0177696.t003
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signal-to-signal comparisons yield consistently higher values of both the average distance and

the corresponding standard deviation across all metrics (true and semi-) used above.

In utilizing our persistent homology algorithm, we are extracting a set of connected compo-

nents from the time-series data [24]. In looking at this homology group, we are examining the

underlying patterns of each individual’s short-term behavior. Intuitively, this shows that the

types, frequencies, and amplitudes of movement vary between each group, not just in general

trends but also in minute-to-minute fluctuations. Future studies of this phenomenon could

lead to discoveries pertaining to physical movement and how it contributes to and informs

future weight loss success.

Fig 3. Signal comparisons.

https://doi.org/10.1371/journal.pone.0177696.g003
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While further analyses with more participants would greatly help strengthen and validate

these results, the initial implications are twofold. First, the clear disparity between the two

groups indicates that there is a measurable difference in the movement profiles of those that

will lose weight and keep it off versus those that will not lose any or, after losing weight, regain

a substantial amount. By measuring this contrast a patient could potentially be classified as a

‘success’ or a ‘failure’ before even beginning a diet, in turn leading to more effective and indi-

vidually tailored interventions. This would help to greatly ease the economic costs associated

with overweight and obesity, as well as their related diseases. It would also save both the clini-

cian and the patient time spent pursuing a course of action likely to produce unsatisfactory

results, instead allowing them the option to first pursue alternatives. Secondly, and more

immediately evident, the results indicate that the windowed persistent homology method, cou-

pled with the modified Hausdorff semimetric, is capable of detecting subtle, underlying differ-

ences between signals. This method could potentially be used in other clinical settings where a

deeper analysis of a complex signal would result in improved care, as well as other signal pro-

cessing applications. Relatively tolerant of noise and sampling frequency, our algorithm can be

easily applied to short and long time-series alike, drawing out features from the signal useful in

exposing subtle differences.

While the exact physical characteristics measured by the persistence diagram remain

unclear and will be closely examined in future work, it can be said that the patterns represent-

ing more scattering in the persistence diagram represent higher levels of physical activity. In

addition to further exploring the physical and physiological implications of an individual per-

sistence diagram, there are a number of modifications to the implemented algorithm that we

will investigate in future work. For instance, in our analysis, the inputs were blindly compared.

In our future work, we intend to implement a set of alignment procedures in the pre-

processing steps. Syncing time of day or sleep/wake cycles between two armband signals before

the persistent homology algorithm is applied could help reduce any noise associated with com-

paring across states (e.g. one participants sleep data with another’s morning routine). Another

route for our future investigations will be to implement a dynamic windowing method: by

altering the length of each window based on the number of included extrema, we can improve

the resolution of our algorithm in areas of high activity (e.g. exercise) without sacrificing accu-

racy in low-movement periods (e.g. sleep). A third future improvement to the analysis involves

error-checking the edge cases. If a window boundary splits a monotonically increasing or

decreasing section of the signal, a false maximum and minimum are formed on either side. By

implementing a check on the next point outside any given window, we can reduce the number

of artificial extrema, thus reducing inaccurate pairings and noise in the persistence diagrams.

Conclusions

To predict a priori weight loss/maintenance success in overweight or obese individuals by

applying information learned from one week of simple, noninvasive measures would heavily

impact the healthcare industry. With such a high prevalence rate in the country, both the eco-

nomic burden and the time spent treating overweight, obesity, and their related diseases could

be drastically reduced. By facilitating more tailored and individualized treatment, which may

include modifying an existing program, identifying alternative modalities, or focusing on

other patient issues, countless hours could be saved for both the patient population and the cli-

nicians. The results presented in this paper indicate, through the use of a novel computational

method, a measurable contrast between the group of participants able to maintain weight loss

and the group unable to do so. By using the windowed persistent homology method defined

above and the modified Hausdorff semimetric, a physician could determine whether or not a
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specific intervention would be effective for a given patient. This project demonstrates the effec-

tiveness of the novel signal processing method and the potential impact it can have on clinical

decision making and patient care.
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